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Abstract. In this article we interpret heuristically the conditions of the def-

inition of a uniformly elliptic random variable on Wiener space which allow

to obtain Aronson type estimates for the density of this random variable.

As an example we apply this concept to uniformly elliptic non-homogeneous

di�usions.

1. Introduction

In a recent article (see [10]), we have described some minimal conditions that

ensure that a random variable F de�ned on Wiener space has a density with

a lower bound of Gaussian type. We called a random variable satisfying such

conditions a uniformly elliptic random variable (see De�nition 1). This class of

random variables is broad enough to be applied to various stochastic equations. In

particular, it includes the solution to the uniformly elliptic stochastic heat equation

and the uniformly elliptic hyperbolic stochastic partial di�erential equation, also

known as the biparametric di�usion (see [4]). A natural environment for the study

of densities is Malliavin Calculus. We refer the reader to any of the well known

books available on the matter (see for example, [15], [19], [20]).

The purpose of this article is to clarify the role of each requirement in the

de�nition of uniformly elliptic random variable and show how it can be veri�ed in

a non-trivial simple example. Still, the result we obtain seems to be new.

We consider the case of the non-homogeneous uniformly elliptic di�usion.

That is, let X be the solution to the following stochastic di�erential equation

Xt = x+

Z t

0

b(s;Xs)ds+

Z t

0

�j(s;Xs)dW
j
s

where b : [0; T ]�Rq ! R
q, � : [0; T ]� Rq ! R

q �Rk and W is a k-dimensional

Wiener process. Assume that the coeÆcients b(t; �), �(t; �) 2 C1b (Rq) uniformly

in time and that the functions are jointly measurable. Under these conditions the
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solution to the above equation exists and is unique. Furthermore assume that

the solution process is uniformly elliptic. That is, for any vectors x, � 2 Rq and

t 2 [0; T ], there exists a strictly positive constant c so that

�0�(t; x)�(t; x)0� � c k�k
2
:

It is natural to expect under this condition that the random variable F = Xt

should behave as a Gaussian random variable. In fact, one expects to have that

Xt should have a density for t > 0, denoted by pt(x; �), and that there exists two

positive constants m and M such that

(1) m�1t�q=2 exp

 
�
m ky � xk

2

t

!
� pt(x; y) �Mt�q=2 exp

 
�
ky � xk

2

Mt

!

The fact that the density exists and that it has a Gaussian upper bound can be

solved with well known techniques of Malliavin Calculus (see [23]). Also there

are very well known established analytical techniques to solve the problem of

�nding upper and lower bounds for fundamental solutions of homogeneous or non-

homogeneous partial di�erential equations. See for example, [1], [5], [6], [17], [21],

[22] and [14]:

In the stochastic framework using Malliavin Calculus, the problem of �nding

a detailed global lower bound for the density of Xt was �rst studied for the hy-

poelliptic di�usion case in [13]. Furthermore, the metric in the exponent is more

explicit than the one in (1) and is closely related to the Riemmanianmetric de�ned

through the coeÆcients of the stochastic di�erential equation.

Azencott (see [2]) obtained a Gaussian lower bound estimate for the uni-

formly elliptic non-homogeneous di�usion in the case the coeÆcients are smooth

in time and space. We generalize this result, via a di�erent approach, weakening

the restrictions on the time variable. Furthermore, we want to stress the generality

of the de�nition of uniformly elliptic random variables. In fact, the result presented

here for non-homogeneous di�usions can be easily generalized to the case of solu-

tions of uniformly elliptic stochastic di�erential equations with random coeÆcients

under appropriate continuity and di�erentiability conditions on the coeÆcients.

C1b (Rd) denotes the space of real bounded functions on Rd such that they

are in�nitely di�erentiable with bounded derivatives. C1p (Rd) stands for a similar

space but the functions and their derivatives have polynomial growth instead. C;

c, m and M denote constants in general that may change from one line to another

unless stated otherwise. We also use the double index summation convention. k � k

without any subindices denotes the usual Euclidean norm in Rl. The dimension l

should be clear from the context. For stochastic processes we use indistinctively

X(t) or Xt.



Lower bounds for densities of uniformly elliptic non-homogeneous di�usions 3

2. Preliminaries

Let W be a k-dimensional Wiener process indexed in [0; T ] . Our base space is a

sample space (
;F ; P ) where the Wiener process is de�ned (for details see [19],

Section 1.1 and [20]). The associated �ltration will be de�ned as fFt; 0 � t � Tg,

where Ft is the ���eld generated by the random variables fW (s); s 2 [0; t]g.

On the sample space (
;F ; P ) one can de�ne a derivative operator D, associated

domains (Dn;p ; k�kn;p) where n denotes the order of di�erentiation and p denotes

the Lp(
) space where the derivatives lie. The high order stochastic derivative is

denoted by Dv
� for v 2 f1; :::; kgn and � 2 [0; T ]n. We say that F is smooth if

F 2 D1 = \n2N;p>1D
n;p .

For a q�dimensional random variable F 2 D1;2 , we denote by  F the Malli-

avin covariance matrix associated with F . That is,  
i;j

F =< DF i; DF j >L2[0;T ].

One says that the random variable is non-degenerate if F 2 D1 and the matrix

 F is invertible a.s. and (det F )
�1 2 \p�1L

p(
). In such a case expressions of

the type E(Æy(F )), where Æy denotes the Dirac delta function, have a well de�ned

meaning through the integration by parts formula.

The integration by parts formula of Malliavin Calculus can be briey de-

scribed as follows. Suppose that F is a non-degenerate random variable and G 2

D
1 . Then for any function g 2 C1p (Rq) and a �nite sequence of multi-indexes

� 2 [l�1f1; :::; qg
l, we have that there exists a random variable H�(F;G) 2 D1

so that

E(g�(F )G) = E(g(F )H�(F;G))

Here g� denotes the high order derivative of order l(�) and whose partial deriva-

tives are taken according the index vector �. This inequality can be obtained

following the calculations in Lemma 12 of [16]. In some cases we will consider the

above norms and de�nitions on a conditional form. That is, we will use partial

Malliavin Calculus. We will denote this by adding a further time sub-index in the

norms. For example, if one completes the space of smooth functionals with the

norm

kFk2;s = (E(kFk
2
=Fs))

1=2

kFk
2
1;2;s = kFk

2
2;s +E(

Z T

s

kDuFk
2
du=Fs),

we obtain the space D1;2s .

To simplify the notation we will sometimes denote Es(�) = E(�=Fs). Anal-

ogously we will write H�
s and  F (s) when considering integration by parts for-

mula and the Malliavin covariance matrix conditioned on Fs. That is,  
i;j

F (s) =<

DF i; DF j >L2[s;T ]. Also we say that F 2 D
1;2

s when F 2 D
1;2
s and kFk1;2;s 2

\p�1L
p(
). Similarly, we say that F is s�conditionally non-degenerate if F 2

D
1

s and (det F (s))
�1 2 \p>1L

p
s(
). In such a case, as before, expressions like

E(Æy(F )=Fs) have a well de�ned meaning through the partial integration by parts

formula or via an approximation of the delta function.
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We will also have to deal with similar situations for sequences Fi that are

Fti�measurable random variables, i = 1; :::; N for a partition 0 = t0 < t1 < ::: <

tN . In this case we say that fFi; i = 1; :::; Ng � D
1

uniformly if Fi 2 D
1

ti�1
for all

i = 1; :::; N and for any l > 1 one has that there exists a �nite positive constant

C(n; p; l) such that

sup
N

sup
i=1;::;N

E kFik
l

n;p;ti�1
� C(n; p; l):

In what follows we will sometimes expand our basic sample space to include further

increments of another independent Wiener process, W (usually these increments

are denoted by Zi =W (i+ 1)�W (i) � N (0; 1)) independent of W in such a case

we denote the expanded �ltration by F t = Ft_�(fW (s); s � i+1; ti � tg). We do

this without further mentioning and suppose that all norms and expectations are

considered in the extended space. Sometimes we will write F 2 Ft which stands

for F is a Ft -measurable random variable.

We use the notation Iij(h) =
R ti
ti�1

h(s)dW j(s) for j = 1; :::; k and h : 
 !

L2([ti�1; ti];R
q) a Fti�1

�measurable smooth random processes.

3. Some heuristics

In order to motivate the de�nition of uniformly elliptic random variable we give a

brief idea of how to obtain a lower Gaussian estimate for the density of this r.v. (for

a complete proof, see [10]). We use the case of non-homogeneous di�usion in order

to draw a parallel with some well known concepts. This will also help us guide in

the application of the De�nition 1 in Section 4. All references to the de�nition of

uniformly elliptic random variable are in De�nition 1. The idea for the proof which

also appears graphically in Figure 1 can be explained as follows: We say that an

estimate for a density p(x) is global if the estimate is valid for all x. In contrast, we

say that an estimate is local if it is only valid for points close to x. In order to obtain

a global Gaussian type lower bound for a random variable F = X(t) generated

by a Wiener process, we �rst identify a time component in the random variable

that will assure adaptedness. In our example this is t. Next, given any sequence of

partitions of the time interval [0; t] we assume there exists a sequence of adapted

approximations along the time axis. In our case, let 0 = t0 < t1 < ::: < tN = t

be any partition of [0; t]. Then we de�ne the sequence of approximations through

Fi = X(ti). Denote by p(ti; xi; ti+1; xi+1) the conditional density of Fi+1 at xi+1
with respect to Fi = xi.

Idea of the proof: In order to obtain the global Gaussian type lower bound

one uses the Chapman-Kolmogorov formula. That is, if one can have a good local

lower Gaussian estimate of the density of Fi = X(ti) conditioned to Fti�1
then one

can hope that the global lower estimate for the density of X(t) should be satis�ed.

In order to obtain this local estimate one needs to consider partitions of small size.
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Figure 1. Idea of the proof to obtain Gaussian lower bounds for

Fn. Here I
n�1(h) is conditionally Gaussian and its local variance

is of the order �n�1(g). G
l
n�1 is a residue in the sense that is of

smaller order than In�1(h) . As l becomes bigger F
l

n approaches

Fn.

The main idea of the argument is to use Chapman-Kolmogorov formula to obtain

that

p(0; x; t; y) =

Z
Rq

:::

Z
Rq

p(0; x; t1; x1):::p(tn�1; xn�1; tn; y)dx1:::dxn�1:

Here � = fti; i = 0; :::; Ng is a partition of [0; t] with 0 = t0 < ::: < tn = t. This is

noted in Figure 1 by the solid arrows. Next we localize the previous estimation by

considering balls Bi = B(xi; ri) for some appropiate radius ri and xn = y. Then
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the above can be bounded by below giving that

p(0; x; t; y) �

Z
Bn

:::

Z
B2

p(0; x; t1; x1):::p(tn�1; xn�1; tn; y)dx1:::dxn�1:

Therefore one needs to �nd a local Gaussian type lower bound for p(ti; xi; ti+1; xi+1).

Nevertheless, still, there are various points to this argument:

1. It is diÆcult to see how to obtain the local Gaussian type lower bound for

the density of a general random variable Fi = X(ti) conditioned to Fti�1
. First

one needs that the conditional density exists. This is the condition in (H2b) in

De�nition 1.

2. In order to obtain a Gaussian type lower bound for the conditional density

of Fi = X(ti) with respect to Fti�1
; one expands X(ti), conditioned on Fti�1

,

using a Itô-Taylor expansion (this is (2)) so that the main term in this expansion,Pk

j=1 I
i
j(hj); is a Gaussian random variable. This Gaussian random variable should

be non-degenerated and have the same local variance as the conditional density of

Fi = X(ti) conditioned toFti�1
which we will denote by �i�1(g) =

R ti
ti�1

kg(s)k2ds.

Note that g can change with time therefore it e�ectively measures a local variance.

In order for the estimate to lead to a global lower bound we need that this local

variance should not vanish or be unbounded. This is embodied in (H2c). This is

the core of the uniform elliptic condition.

3. The argument in 2. is not suÆcient as we also need that the density of

the newly de�ned random variable has to be close to the conditional density of Fi.

In conclusion, instead of �nding directly a local lower estimate for the conditional

density of Fi = X(ti) with respect to Fti�1
we �nd a local lower estimate for

the conditional density of the further approximation F
l

i � F i with respect to

Fti�1
. We call this new approximation the truncated approximation, the order of

the approximation being determined by the parameter l. In order to �nd the local

estimate for the conditional density of the truncated approximation one needs that

the Gaussian term
Pk

j=1 I
i
j(hj) has to be the dominant one in the series expansion.

That is, one needs to prove that the higher order terms, �i�1(g)
(l+1)Zi +Gl

i do

not contribute signi�cantly to the Gaussian estimate (this is condition (H2d)).

That is, the variance of the higher order terms is smaller than the variance of the

Gaussian term. This step is noted by the dashed arrows in Figure 1.

4. Next one needs to have that the conditional density of the truncated ap-

proximation,F i; with respect to Fti�1
has to be close to the conditional density of

Fi = X(ti) with respect to Fti�1
. For this, one needs to use a high number of terms

in the Itô-Taylor series expansion so as to obtain that the conditional density of

the truncated series and the conditional density of X(ti+1) are close enough. This

is embodied in condition (H2a). This step is noted by the dotted arrows in Figure

1.

5. Finally the estimates have to be uniform in the sense that the constants

appearing in the estimate should not depend \too much" on the partition or the
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sigma �eld Fti�1
. For this reason we need to require that various estimates are

uniform such as (H1) and that all constants appearing do not depend on ! 2 
:

The de�nition of a uniformly elliptic random variable is as follows

De�nition 1. Let F 2 Ft. Suppose that there exists:

1. � > 0 such that for any sequence of partitions �N = f0 = t0 < t1 < ::: < tN = tg

whose norm is smaller than � and j�N j = maxfjti+1� tij; i = 0; :::; N � 1g ! 0 as

N ! 1 there exists a sequence Fi 2 L2(
;Rq), i = 1; :::; N such that FN = F .

Fi is a Fti-measurable random variable and is a ti�1-conditionally non-degenerate

random variable.

2. a function g : [0; T ]! R>0 (the local variance function) and a positive constant

C(T ) such that kgkL2([0;T ]) � C(T ). We denote the local variance �i�1(g) =R ti
ti�1

kg(t)k
2
dt. This quantity measures approximately the variance in the local

Gaussian approximation to the density of Fi conditioned to Fti�1
.

3. Suppose that for each Fi and each l 2 N there exists a sequence F i � F
l

i such

that

(2) F i = �i�1(g)
(l+1)Zi + Fi�1 +

kX
j=1

Iij(hj) +Gl
i.

Here Gl
i are Fti\D

1

ti�1
random variables and hj � hjj[ti�1;ti]

: 
! L2([ti�1; ti];R
q)

is a collection of Fti�1
�measurable smooth random processes which satis�es for al-

most all ! 2 
 :

(H1) There exists a constant C(n; p; T ) such that

kFikn;p + sup
!2


khjkL2([ti�1;ti])
(!) � C(n; p; T )

for any j = 1; :::; k, i = 0; :::; N and n, p 2 N:

Furthermore the following four conditions are satis�ed for the approximation se-

quence F i and any i = 1; :::; N and almost all ! 2 


(H2a) There exists a constant  > 0, such that for any n, p, l 2 N,
Fi � F i


n;p;ti�1

�

C(n; p; T )�i�1(g)
(l+1) .

(H2b) There exists a constant C(p; T ) > 0 such that for any p > 1det �1Fi
(ti�1)


p;ti�1

� C(p; T )�i�1(g)
�q :

(H2c) De�ne

A = �i�1(g)
�1

0
B@
R ti
ti�1



h1(s); h1(s)

�
ds :::

R ti
ti�1



h1(s); hq(s)

�
ds

: : :R ti
ti�1



hq(s); h1(s)

�
ds :::

R ti
ti�1

hhq(s); hq(s)i ds

1
CA :

We assume that there exists strictly positive constants C1(T ) and C2(T ), such that

for all � 2 Rq;

C1(T )�
0� � �0A� � C2(T )�

0�:
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(H2d) There exist constants " > 0 and C(n; p; l; T ) such thatGl
i


n;p;ti�1

� C(n; p; l; T )�i�1(g)
1
2
+":

In the previous de�nition  is a constant that may change depending on

the characteristics of how the underlying noise appears in the structure of F and

the quality of the approximation sequence F i. For example in the case of the

non-homogeneous di�usion we will use for F i a high order Itô Taylor type of

approximation and in such a case  = 1=2.

In this setting we try to give conditions for the sequence as close as possible

to the general set-up of stochastic di�erential equations and requiring the least

amount of conditions so that the lower bound for the density of the approximative

random variable can be obtained. Note that in this de�nition, F i is measurable

with respect to the expanded �ltration F tias we are adding the variables Zi to its

de�nition. In particular the norm appearing in condition (H2a) is the norm in the

extended space.

Also we remark that the random variables F i, considered in this Theorem

will not necessarily be non-degenerate unless one adds the independent random

variable �i�1(g)
(l+1)Zi. Then the main result obtained in [10] is

Theorem 2. Let F be a uniformly elliptic random variable. Then there exists a

constant M > 0 that depends on all other constants in the de�nition 1 such that

pF (y) �

exp

�
�M

ky�F0k
2

kgk2
L2([0;t])

�
M kgk

L2([0;t])
q=2

:

4. Lower bound density estimates for non-homogeneous di�usions

Throughout this section we assume that the following hypotheses are satis�ed:

(H) The measurable coeÆcients b and � satisfy for any j = 0; 1; :::

sup
t2[0;T ]

�
sup
x2Rq

b(j)(t; x)+ sup
x2Rq

�(j)(t; �)� < 1;

�0�(t; x)�(t; x)0� � c k�k
2

for some positive constant c and any vectors x, � 2 Rq and t 2 [0; T ].

First we start with a preparatory Lemma that describes the smoothness of

the random variables Fi = X(ti).

Lemma 3. Assume condition (H). Then Fi 2 D
1

ti�1
\ Fti-measurable r.v. and is a

ti�1-conditionally non-degenerate r.v. for all i = 1; :::; N

The proof of this statement is done through the usual techniques of stochastic

di�erentiation. The technique is similar as in the homogeneous case, see for exam-

ple, [3], [19]. The non-homogeneous case is treated in [11]. Here we only need to do

a small modi�cation to their argument in order to incorporate the conditioning.
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Proof. We only briey sketch the main points of this proof. We will prove by

induction that for f 2 C1p (Rq;R), any n 2 N, p > 0, T > t > ti�1, � 2 [ti�1; t]
n,

� 2 f1; :::; kgn there exists a positive non-random constant C(n; p; T ) such that

(3) sup
�2[ti�1;t]n

Eti�1
(D�

�f(X(t)))
p
� C(n; p; T ):

Note that the constant C(n; p; T ) depends on all the other constants in the problem

but is independent of N , ! and the partition. First, let us prove the assertion for

n = 1; � 2 [ti�1; t] and i � k then we have that by the chain rule for the stochastic

derivative

Di
�f(X(t)) = f 0(X(t))Di

�X(t):

Next one obtains using the Picard iteration method that X(t) 2 D1 and that

Di
�X(t) = �i(�;X(�))+

Z t

�

b0(s;X(s))Di
�X(s)ds+

Z t

�

�0j(s;X(s))Di
�X(s)dW j(s);

then given that the coeÆcients are bounded with bounded derivatives, it follows

that

Eti�1

Di
�X(t)

p � C(t)

�
1 +

Z t

�

Eti�1

Di
�X(s)

p ds� :
for any p � 2 and C(t) is a positive constant increasing in t and independent of

�. Then the conclusion follows applying Gronwall's lemma. Now assume that the

assertion is true for n� 1 . The proof for n follows along the same lines as before.

That is, let � = (s1; :::; sn), � = (j1; :::; jn) and denote by �� = (s1; :::; sn�1) and

�� = (j1; :::; jn�1) then as before using a Picard approximation method, one can

prove that X(t) 2 D
n;p
ti�1

for any n � 1, p � 1 and t � ti�1. As a consequence one

also obtains the following equation for D�
�X(t)

D��
��D

jn
sn
X(t) = D��

���jn(sn; X(sn)) +

Z t

sn

D��
��

�
b0(s;X(s))Djn

sn
X(s)

�
ds

+D��
��

�Z t

sn

�0j(s;X(s))Djn
sn
X(s)dW j (s)

�
;

= D��
���jn(sn; X(sn)) +

Z t

sn

X
�1

D�1
�1
b0(s;X(s))D�2

�2
Djn
sn
X(s)ds

+

n�1X
k=1

D
�(k)

�(k)

�
�0jk(s;X(s))Djn

sn
X(s)

�

+

Z t

sn

X
�1

D�1
�1
�0j(s;X(s))D�2

�2
Djn
sn
X(s)dW j(s):

The �rst sum index is composed of splitting the indexes �� and �� into two

disjoint subsets �1 and �2 for �� and �1and �2 for ��. Similarly, �(k) and �(k)

denote the indices without the jk and sk component respectively. The �nal result
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follows as before by using the chain rule and the Gronwall lemma together with

the inductive hypothesis.

The assertion on the conditional non-degeneracy of Fi follows a similar ar-

gument as in Theorem 3.5 of [11].

In the particular case that � and b do not depend on t, Kusuoka and Stroock

proved in [13] under hypoelliptic conditions that if b =
Pr

i=1 ai�i for some func-

tions ai 2 C1b then a Gaussian type lower bound is satis�ed by the density of

Xt:

Here we improve their result in the sense that this extra condition is not

required, the di�usion is non-homogeneous and the conditions on the coeÆcients

with respect to the time parameters are minimal. This is obtained by applying the

de�nition of uniformly elliptic random variable. To apply this de�nition we need

to de�ne all its ingredients. That is, de�ne F = X(t) and g(s) � 1 for all s 2 [0; T ].

For any partition 0 = t0 < ::: < tn = t, let Fi = X(ti). In order to de�ne F i we

have to explicitly write an Itô-Taylor expansion for the case of non-homogeneous

di�usions. This is obtained considering the di�erence Fi � Fi�1. To introduce

the Itô-Taylor expansion we will deal with indices � 2 [n�1f0; 1; :::; kg
n[ f�g, �

denotes the empty index. In such a case, l(�) denotes the length of the multi-index

� and n(�) the quantity of zeros in �, l(�) = 0. �(i) denotes the i-th component

in �, �� denotes the index � without its �rst component. Similarly, one de�nes

��.

We also de�ne the following operators for a smooth function f : [ti�1; ti]
l(��)�

R
q! R

q , (here we adopt the double index summation notation)

Lrf(u� ; x) =
@f

@xi
(u��; x)�ir(ul(�); x)

L0f(u� ; x) =
1

2

@2f

@xi@xj
(u��; x)�ir�jr(ul(�); x) +

@f

@xi
(u��; x)bi(ul(�); x)

where u� = (u1; ::::; ul(�)) and similarly u�� = (u1; ::::; ul(�)�1): Then we de�ne

inductively

f�(u�; x) =
�
L�(l(�))f��

�
(u�; x)

f�(u; x) = f(x):

We will frequently use the above formulas for f(x) = x in such a case we note that

kf�k1 � C(�) for any � 2 [n�1f0; 1; :::; kg
n. I� denotes the multiple stochastic

integral where the indexes of the integral are determined by the set of indices �.

That is, for an adapted process Y we de�ne

I� [f�(�; Y (�))]ti�1;t
=

Z t

ti�1

I��
�
f�((�; ul(�)); Y (�))

�
ti�1;ul(�)

dW �(l(�))(ul(�)):
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Note that these formulae are not exactly the same as the usual Itô-Taylor expansion

(see for example, [9]). In fact, for � = (0; 1) then for f(x) = x, we have

I� [f�(�; Y (�))]ti�1;t
=

Z t

ti�1

Z u2

ti�1

@b

@xi
(u1; Y (u1))�i1(u2; Y (u1))du1dW

1(u2):

In particular note that the integrand depends on both integrating variables u1 and

u2 which is not the common in the usual Itô-Taylor formula. In this way one can

weaken some restrictive conditions on the coeÆcients. Then we have the following

Itô-Taylor formula for X.

Lemma 4. Let f 2 C1p (Rq) and Al = f� 2 [n�1f0; 1; :::; kg
n; 1 � l(�)+n(�) � lg,

Bl = f� 2 [n�1f0; 1; :::; kg
n;�� 2 Al; � =2 Alg then

(4) f(X(t)) � f(X(s)) =
X
�2Al

I�[f�(�; Xti�1
)]ti�1;ti +

X
�2Bl

I� [f�(�; X(�))]ti�1;ti:

In the case that f(x) = x we have the following estimate for � 2 [n�1f0; 1; :::; kg
n

(5)
I� [f�(�; X(�))]

ti�1;t


n;p;ti�1

� C(n; p; T ) (t � ti�1)
n_l(�)

2 :

Proof. First we prove the �rst statement by induction. Obviously the result is true

for l = 0: Now suppose that the result is true for l. To prove that the expansion

is true for l + 1, one has to take every term of the type I�[f�(�; X(�))]ti�1;ti for

� 2 Bl with n(�) + l(�) = l + 1 and consider the di�erence

I� [f�(�; X(�))]ti�1;ti � I�[f�(�; Xti�1
)]ti�1;ti = I�

�
f�(�; X(�))� f�(�; Xti�1

)
�
ti�1;ti

Then we apply Itô's formula for f�(u� ; X(ul(�))) � f�(u� ; Xti�1
) �xing the time

component to obtain that

f�(u�; X(ul(�)))� f�(u�; Xti�1
) =

Z ul(�)

ti�1

Lrf�(u(�;r); Xul(�)+1
)dW r(ul(�)+1)

+

Z ul(�)

ti�1

L0f�(u(�;0); Xul(�)+1
)dul(�)+1

Therefore

I�[f�(�; X(�))]ti�1;ti = I� [f�(�; Xti�1
)]ti�1;ti +

kX
r=0

I(�;r)[f(�;r)(�; X(�))]ti�1;ti

and (�; r) 2 Bl+1:: To �nish the proof of (4) one has to prove that:

1. Al+1 = Al [ f� 2 Bl;n(�) + l(�) = l + 1g:

2. Bl+1 = (Bl �Al+1) [ f(�; r); r = 0; :::; k; � 2 Bl; n(�) + l(�) = l + 1g:

To prove property 1., take � 2 Al+1 � Al then obviously n(��) + l(��) � l and

therefore �� 2 Al. Therefore the inclusion � follows. The other inclusion is trivial.

For property 2., the inclusion � is trivial. For the other, suppose that there exists

�0 2 Bl+1 such that �0 =2 (Bl �Al+1) [ f(�; r); r = 0; :::; k; � 2 Bl; n(�) + l(�) =
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l + 1g. Then l(�0) + n(�0) = l + 2, l(��0) + n(��0) = l. Therefore �0 2 Bl �Al+1

which is a contradiction.

Next we prove the norm estimate (5) by induction. For this, we �rst have

that I� [f�(�; X(�))]ti�1;t 2 D
n;p
ti�1

for any n � 1, p � 1 and any t � ti�1 due to

Lemma 3. Next, suppose that for � 2 [n�1f0; 1; :::; kg
n we have � � �, then we

de�ne �(�) as the set of indices that are in � but not in �. We will prove that there

exits a positive constant C(j; a; n; p; T ) such that for � = (i1; :::; ia) 2 f1; :::; kga

with � � �, �1 2 f1; :::; kgn, �2 2 f1; :::; kgj, � = (s1; :::; sa), �1 2 [ti�1; t]
n,

�2 2 [ti�1; t]
j, j � 0; n � 0 and a � 0; we have

Eti�1

0
@Z

[ti�1;t]n+j+a

D�1
�1
I�(�)[

aY
i=1

1(ui = si)D
�2
�2
f�(�; X�)]ti�1;t


2

d�1d�2d�

1
A
p

� C(j; a; n; p; T )(t� ti�1)
(n_l(�(�))+j+a)p:(6)

Here we denote by u� = (u1; :::; ul(�)) the variables of integration in I� where the

�rst a components correspond to the indices in �. To simplify notation we will

denote �� =
Qa

i=1 1(ui = si). The induction is performed in n. So let us suppose

�rst that n = 0. Then we have

Eti�1

 Z
[ti�1;t]j+a

I�(�)[��D
�2
�2
f�(�; X�)]ti�1;t

2 d�2d�
!p

� (t � ti�1)
(j+a)(p�1)

Z
[ti�1 ;t]j+a

Eti�1

I�(�)[��D
�2
�2
f�(�; X�)]ti�1;t

2p d�2d�
� C(T )(t � ti�1)

(j+a+l(�(�)))(p�1)

Z
[ti�1;t]j+l(�)

Eti�1

D�2
�2
f�(u�; Xu1)

2p du�d�2:
This step �nishes by noting thatEti�1

D�2
�2
f�(u� ; Xu1)

2p � C(j; l(�); p; T ) where

the positive constant C is independent of �2, �2 and � (see (3)). Next suppose

that the assertion is valid for n� 1. Then let �1 = (j1; :::; jn) and �1 = (s01; :::; s
0
n).

We consider two cases: First suppose that jn =2 �(�), then we have that

D�1
�1
I�(�)[��D

�2
�2
f�(�; X�)]ti�1;t = D�1�

�1�
I�(�)[��D

jn
s0n
D�2
�2
f�(�; X�)]ti�1;t:

Then it is clear that the assertion follows from the inductive hypothesis.

Next suppose that jn 2 �(�) = (i1; :::; il(�(�))) and that the indices i1; :::; ih,

h � l(�(�)), are all the indices in �(�) equal to jn. That is , jn =2 fih+1; :::; il(�(�))g.

Then

D�1
�1
I�(�)[��D

�2
�2
f�(�; X�)]ti�1;t = D�1�

�1�
I�(�)[��D

jn
s0n
D�2
�2
f�(�; X�)]ti�1;t

+

hX
r=1

D�1�
�1�

I�(�;ir)[1(ul(�)+r = s0n)��D
�2
�2
f�(�; X�)]ti�1;t:

Again it is clear then that the assertion follows from the inductive hypothesis.

From (6) one obtains (5):
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It should be clear that the estimate (6) is not optimal. In fact, the estimate

improves as the number of zeros in � increase. Nevertheless this is suÆcient for

our purposes.

Now we can de�ne the approximation random variables F i = X(ti) as the

Itô-Taylor approximation of order l of X based on time ti�1. That is, X is de�ned

as follows

X ti = (ti � ti�1)
l+1
2 Zi +Xti�1

+
X
�2A1

I� [f�(�; Xti�1
)]ti�1;ti + Gl

i

Gl
i =

X
2�l(�)+n(�)�l

I� [f�(�; Xti�1
)]ti�1;ti

hj(u) = f(j)(u;Xti�1
), u 2 [ti�1; ti]

g(u) = 1, u 2 [0; T ]

where f(x) = x, Zi = W (i+1)�W (i) is a q-dimensional N (0; I) random variable

independent of the Wiener process W and Zj for j 6= i.

Theorem 5. Assume (H) and t > 0. Let X be the unique solution of the non-

homogeneous di�usion equation. Then X(t) has a smooth density, denoted by

p(t; x; y) that satis�es

m exp(�
kx�yk2

mt
)

tq=2
� p(t; x; y) �

exp(�M
kx�yk2

t
)

Mtq=2

for two constants m, M 2 [1;+1).

Proof. We verify each hypothesis in the De�nition 1:

Preliminaries: First, Fi = X(ti) is ti�1-conditionally non-degenerate by Lemma 3,

therefore 1. follows. Next, kgk
2
L2[0;T ] = T , therefore 2. follows. Gl

i 2 D
1

ti�1
\ Fti

due to Lemma 4, kf�k1 � C(�) and classical estimates for the Dn;p -norms of

stochastic integrals. hj is obviously smooth and adapted to Fti�1
. Therefore 3.

follows and all the conditions in the preliminaries of the de�nition of uniformly

elliptic random variable are satis�ed.

(H1): kFikn;p = kX(ti)kn;p � C(n; p) due to Theorem 3.5 in [11]. sup! khjkL2([ti�1;ti])
(!) �

C(n; p) is satis�ed due to the boundeness of hj.

(H2a): Using (4) and (5), we obtain that there exists a universal positive constant

independent of the initial point,

Xti �X ti


n;p;ti�1

=

(ti � ti�1)
l+1
2 Zi +

X
�2Bl

I[f�(�; X�)]ti�1;ti


n;p;ti�1

� (ti � ti�1)
l+1
2 kZikn;p;ti�1

+
X
�2Bl

I[f�(�; X�)]ti�1;ti


n;p;ti�1

� C (ti � ti�1)
l+1
2 :
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Therefore  = 1=2 and (H2a) follows.

(H2b): It is also known (see Theorem 3.5 in [11]) thatdet �1
X(ti)

(ti�1)

p;ti�1

� C (ti � ti�1)
�q

for a positive constant C independent of ti�1.

(H2c): In this case we have that

A = (ti � ti�1)
�1

Z ti

ti�1

�(s;X(s))�0(s;X(s))ds:

Then due to the hypothesis (H), we have uniform ellipticity and uniform bound-

edness of � and therefore we have that (H2c) is satis�ed.

(H2d):
Gl

i


n;p;ti�1

�
P

2�l(�)+n(�)�l

I� [f�(�; Xti�1
)]ti�1;ti


n;p;ti�1

� C(n; p; T )(ti�

ti�1). To obtain this estimate one can either use known estimates for the Dn;p -

norms of stochastic integrals (see [19]) or (5) for l(�) � 2 and compute separately

the case � = (0). This �nishes the proof that the hypothesis in De�nition 1 are

satis�ed and therefore by Theorem 2 the lower bound follows. The upper bound

follows using the same technique used for the Itô-Taylor expansion together with

classical techniques (see [23], Section 3).

5. Comments and Applications

Looking at the proof of Theorem 5 one sees that although the de�nition of uni-

formly elliptic random variable may seem to be too complicated all its conditions

are naturally satis�ed. Furthermore most of the properties required in De�nition 1

are usually proved when studying the existence and smoothness of densities in the

framework of Malliavin Calculus. This result besides giving an explicit Gaussian

lower bound estimate for various equations also characterizes the support of an

uniformly elliptic random variable as the whole space, Rq. In very loose terms the

above estimate also means that the behavior of the non-homogeneous uniformly

elliptic di�usion is the same as the Wiener process itself. This has various appli-

cations in di�erent areas. Just to show this point let us introduce the following

application to potential theory.

Theorem 6. Assume the same conditions as in the previous theorem with d > 2.

De�ne k(x) = kxk
2�d

and let Capd�2(�) denote the d � 2 Newtonian capacity

associated with the kernel k. Then one has that for any set A � B(0; R) and

any time interval [a; b] � [0; T ] there exist two positive constants C1(a; b;R) and

C2(a; b;R) such that

C1Capd�2(A) � P (Xt 2 A, for some t 2 [a; b]) � C2Capd�2(A):

Furthermore the Haussdorf dimension of the random set fX(t); 0 � tg is 2 if d > 2.
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This result follows by combining the result in Theorem 5 in conditional form

together with Theorem 2.4 in [4]. One can also use Theorem 5 to improve the

results in [24] (quantile estimation) and [7] (statistics of di�usions).

By looking at the proof of Theorem 2 one may be lead to believe that some

of the hypotheses are redundant. For example, (H2b) and (H2c) are obviously

related. Similarly, (H2a) and (H2d) are also related. Nevertheless, for each case, the

generality of the truncated approximation sequence in the de�nition of uniformly

elliptic random variable allows for counterexamples. One open problem is how

to improve this de�nition so as to minimize its requirements. However, from the

practical point of view, verifying one of these hypotheses is not very di�erent (but

not the same) as verifying the other.
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by K. Itô, Kinokuniya, Tokyo, 1984, 271-306.

[12] Kusuoka, S. and Stroock, D.: Applications of the Malliavin Calculus, Part II. J. Fac.

Sci. Univ. Tokyo SectIA Math 32 (1985) 1-76.

[13] Kusuoka, S. and Stroock, D.: Applications of the Malliavin Calculus, Part III. J.

Fac. Sci. Univ. Tokyo Sect IA Math. 34 (1987) 391-442.

[14] Liskevich, V. and Semenov, Y.: Estimates for fundamental solutions of second-order

parabolic equations. J. London Math. Soc. (2) 62 (2000), no. 2, 521{543.

[15] Malliavin, P.: Stochastic Analysis. Berlin Heidelberg New York: Springer 1997.



16 Arturo Kohatsu-Higa

[16] Moret, S. and Nualart, D.: Generalization of Itô's formula for smooth non-degenerate
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