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Abstract

We treat an extension of Jacod’s theorem for initial enlargement of filtrations with respect
to random times. In Jacod’s theorem the main condition requires the absolute continuity of the
conditional distribution of the random time with respect to a non-random measure. Examples
appearing in the theory on insider trading require extensions of this theorem where the reference
measure can be random. In this article we consider such an extension which leads to an extra
term in the semimartingale decomposition in the enlarged filtration. Furthermore we consider
a slightly modified enlargement which allows for the bounded variation part of the semimartin-
gale decomposition to have finite moments depending on the modification considered. Various
examples for Lévy processes are treated.

Semimartingale, Lévy processes, Jacod’s theorem

1 Introduction

In Corcuera et. al. [3], the authors introduced a framework to study the behavior of an insider for
markets driven by a Wiener process where the additional utility obtained is finite and furthermore
the market does not allow for arbitrage. To explain this further, suppose that we have a stock
market with one asset and two agents, one which has the information contained in the price itself
up to the current time. The other agent is an insider.

That is, he/she possesses information regarding future movements of the stock price (such as the
value at some time, the maximum value up to some time, the time at which the maximum will be
taken, etc.). The goal is then to characterize the dynamics of the underlying for the insider and to
quantify his/her advantage.

Mathematical models that deal with this situation in a enlargement of filtrations framework have
been considered by Karatzas-Pikovski [13], Imkeller[9], [1], [10], Pontier [6], Grorud [5], Baudoin [2]
between others. In all these models, if the information (or sometimes called signal in filtering theory)
is a “clear” signal then the extra utility of the insider up to the revelation time of the signal is infinite.
This result is on one side, mathematically evident: That is, the extra utility of the insider is infinite
due to the degenerative behavior of the semimartingale decomposition of the Wiener process in the
enlarged filtration.

On the other hand, this issue restricted the practical interest of these results to the detection
of unlawful insiders. The direction taken in Corcuera et. al. is to try to introduce insiders in the
market so as to avoid this degenerative behavior but still letting the insider have information about
the future. In particular, a model where insiders have dynamical information about an event in
future time is provided. In this model the utility of insiders is finite and there is no arbitrage.

∗This research was partially supported with grants from the Spanish and Japanese governments.
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AMS Subject Classification: 60G35, 60G48
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To be more specific, suppose that the information of the insider is composed of the signal plus
some independent noise that disappears as the revelation time approaches. Then the filtration
is being enlarged continuously as time evolves. Then the authors prove that the semimartingale
decomposition of the driving Wiener process is a projection of the semimartingale decomposition in
Jacod’s theorem. Finally they apply it to the study of the logarithmic utility of the insider. It is
proved that if the rate at which the independent noise disappears is slow enough then the market
does not allow arbitrage and the logarithmic utility of the insider is finite. This is related to the
fact that the Wiener process becomes an integrable semimartingale with a bounded variation part
whose Radon-Nikodym derivative (w.r.t. the Lebesgue measure) is square integrable in the enlarged
filtration.

There is obviously another practical reason to study this type of models. Insiders usually only
have an idea of what the future information is. Therefore this modeling is closer to reality than as-
suming that the insider knows with probability one the value of a certain random variable. Therefore
one needs to study “progressive” enlargement of filtration problems.

We are interested in extending the previous application to random times for jump processes. The
problem can then be divided into two parts:

First, is it possible to do the enlargement of filtration for random times with an additional
perturbing noise? The answer to this question is that even in the simple case of random times
without any perturbation, Jacod’s theorem is not applicable. For example, for a simple Poisson
process N of parameter λ, with natural filtration F , let Tn denote the time of the n-th jump. Then,
we have that

P (Tn ≥ x/Ft) = 1{x ≤ Tn ≤ t}+ 1{Tn > t}
∫ ∞

(x−t)∨0

λ
(λu)n−1−Nte−λu

(n− 1−Nt)!
du.

Therefore the conditional law of the random variable Tn is absolutely continuous with respect
to a random measure but not to a fixed one. This case can not be handled by Jacod’s Theorem.
In the financial application this corresponds to the insider that knows the time of the n-th jump of
a stock price of size bigger than a certain number (see example 20). We propose in Theorem 2 a
reformulation of Jacod’s theorem to deal with perturbed random times in the framework of jump
processes.

In the case that a perturbation of the random time is considered then the question is if an
appropriate deformation of the information can give a semimartingale in the enlarged filtration
where some moments (particularly the second) of the Radon-Nikodym derivative of the bounded
variation part of the semimartingale decomposition are finite.

The second part deals with the implications of these semimartingale decompositions on markets
with insiders driven by Lévy processes. This will be discussed in another article (but see Remark
15).

The article is structured as follows. First, in Section 2, we give our extension of Jacod’s theorem
for progressive enlargement of filtrations based on a random time. This result which appears in
Theorem 2 is the main result of the paper.

In Section 4, we give some examples of applications and in particular, we analyze the modification
of the jump structure of a Lévy process when its filtration is enlarged. We also provide some explicit
formulas of the semimartingale decomposition and discuss when the decomposition can be extended
to the whole time interval. The important issue to be able to extend the semimartingale property
to the whole time interval is the rate of degeneration of the additional drift in the semimartingale
decomposition in the enlarged filtration.

Finally in Section 5 we use the results developed in Section 2 and apply it to the case of the
progressive enlargement of filtrations based on two random times. One is a stopping time (the time
of the n-th jump bigger than a certain size) and a honest time (the last jump bigger than a certain
size in a fixed time interval).

We remark here that although the definition of progressive enlargement that can be found in the
literature does not include the situation described here, we preferred to keep using this terminology
for the situation described here.
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2 Expansion of filtration with respect to perturbed random

times

Let Z = {Zt, 0 ≤ t ≤ T} be a d dimensional semimartingale defined on a complete probability space
(Ω,F , P ). Here, (Ft)t∈[0,T ] ≡

(
FZt

)
t∈[0,T ]

is the filtration generated by the process Z satisfying the
usual conditions. We will assume through the article unless stated otherwise that Z satisfies

sup
t∈[0,T ]

E|Zt| <∞. (1)

Assume that the additional information until time t is given by a family of d dimensional random
variables {Is , s ≤ T} which we sometimes call the signal. Suppose that these random variables have
the following structure:

It = G(τ, Yt),

where G : R2d → Rd is a given measurable function, τ = (τ1, ..., τd) is an FZT -measurable random
(time) vector on Rd and the process Y = {Yt, 0 ≤ t ≤ T} is a stochastic process on Rd adapted to a
filtration H ⊇ F , such that for any integrable random variable ψ ∈ FYT and any s ≤ T

E(ψ|FZs ∨ σ(τ)) = E(ψ|τ). (2)

Condition (2) states the τ−conditional independence of Y and Z. This is obviously satisfied if the
noise process Y is independent of Z. But this noise process can still depend on τ with (2) still
satisfied. We assume (2) throughout the article.

We define G = (Gt)t∈[0,T ] as the smallest filtration, satisfying the usual conditions that contains
the filtration FZt ∨ σ(Is, s ≤ t) (see [19, Section II.67]).

We assume that condition (2) is satisfied throughout the article. We remark that we have assumed
without loss of generality that the dimensions of the random vectors τ , Yt, It and Zt are the same.

For each t ∈ [0, T ], we denote by Pt(ω, dx) ≡ P τt (ω, dx) a regular version of the conditional law
of a random variable τ given the σ-field Ft, abbreviating it by Pt(dx) if its nature as a measure is
emphasized. We can choose this version in such a way that the following conditions are satisfied:

1. For every Borel set B on Rd, {Pt(B), t ∈ [0, T ]} is an (Ft)t∈[0,T ]-progressively measurable
process.

2. For every (t, ω) ∈ [0, T ]× Ω, Pt(ω, dx) is a probability measure on Rd.

3. For any bounded and (Ft)t∈[0,T ]-adapted process h : Ω× [0, T ] → R and for any bounded and
measurable function f : Rd → R, we have

E

[
f(τ)

∫ T

0

htdt

]
= E

[∫ T

0

∫
Rd

f(x)Pt(dx)htdt

]
.

In order to establish the general formula for the compensator, we require the random vector τ
to belong to a certain class L∗ to be defined below.

Definition 1 We say that a random (time) vector τ belongs to the class L∗, denoted by τ ∈ L∗, if
there exists random kernels P (i)

t (ω, dx), i = 1, 2 and a finite deterministic measure m such that

1. For every Borel set B in Rd, {P (i)
t (B), t ∈ [0, T )} is an (Ft)t∈[0,T )-progressively measurable

process.

2. For every (t, ω) ∈ [0, T )× Ω, P (i)
t (ω, dx) is a signed measure on Rd.

3. For every t ∈ [0, T ), E
[∫ t

0

∣∣∣P (i)
u

∣∣∣m(du)
]
<∞.
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4. For any bounded and (Ft)t∈[0,T ]-adapted process h : Ω × [0, T ] → R, for any bounded and
measurable function f : Rd → R, and for every 0 ≤ s < t < T , we have

E [(Zt − Zs) 1(τ1 < s)f(τ)hs] = E

[∫ t

s

∫
[0,s)×Rd−1

f(x)P (1)
u (dx)m(du)hs

]

E [(Zt − Zs) 1(t < τ1)f(τ)hs] = E

[∫ t

s

∫
(t,T ]×Rd−1

f(x)P (2)
u (dx)m(du)hs

]
.

We now give the main theorem of this article.

Theorem 2 Suppose that τ is a random vector in the class L∗ and Z is a semimartingale satisfying
(1) such that E |∆Z(τ1)| < ∞. Assume that for almost all (t, ω), the signed measures P (i)

t (dx),
i = 1, 2 are absolutely continuous with respect to Pt(dx), and set

α
(i)
t (x) =

dP
(i)
t

dPt
(x).

We can choose a version of α(i)
t (x) which is P ⊗B(Rd)-measurable. Set the progressively measurable

version of the compensator

β(u) = α(1)
u (τ)1(u > τ1) + α(2)

u (τ)1(u < τ1).

Then

Z(t)−
∫ t

0

E [β(u)| Gu]m(du)− E [∆Z(τ1)1(t ≥ τ1)| Gt]

is a martingale with respect to the filtration (Gt)t∈[0,T ).

Proof. First note that due to property 3 in definition 1, we have that E
[∫ t

0
|βs|m(ds)

]
<∞ for

all t ∈ [0, T ). We can choose a version of αt(x) which is P ⊗B(Rd)-measurable and adapted process
therefore it has a version that is progressively measurable, see Meyer [16], page 68.

Let h be a measurable F- adapted bounded process and f : Rdn → R a bounded measurable func-
tion. Let 0 ≤ s1 < ... < sn ≤ s < t < T and consider F = f(Is1 , . . . , Isn

). Denote Y = (Ys1 , ..., Ysn
)

and P (ys1 , ..., ysn |τ) the conditional probability measure of Y = (ys1 , ..., ysn) conditioned to σ(τ).
Using (2), we have that P (ys1 , ..., ysn |Fs ∨σ(τ)) = P (ys1 , ..., ysn |τ) for any s ∈ [0, T ). Then we have

E [(Zt − Zs)F1(t < τ1)hs]
= E [(Zt − Zs)f(G(τ, Y (s1)), . . . , G(τ, Y (sn)))1(t < τ1)hs]

= E

[
(Zt − Zs)

∫
Rdn

f(G(τ, ys1)), . . . , G(τ, ysn
))dP (ys1 , ..., ysn

|τ)1(t < τ1)hs

]
= E

[∫ t

s

∫
(t,T ]×Rd−1

∫
Rdn

f(G(x, ys1), . . . , G(x, ysn))dP (ys1 , ..., ysn |τ1 = x1)α(2)
u (x)Pu(dx)m(du)hs

]

= E

[∫ t

s

f(G(τ, Y (s1)), . . . , G(τ, Y (sn)))α(2)
u (τ)m(du)1(t < τ1)hs

]
= E

[∫ t

s

1(t < τ1)α(2)
u (τ)m(du)Fhs

]
.

Similarly, one obtains that

E [(Zt − Zs)1(τ1 < s)Fhs] = E

[∫ t

s

1(τ1 < s)α(1)
u (τ)m(du)Fhs

]
.
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To finish the proof we consider the general case. Let π = {t0 < s = t1 < ... < tn−1 = t < tn} be a
partition with |π| = max{tk − tk−1; 1 ≤ k ≤ n}.

E [(Zt − Zs)Fhs]

= E

[(
1(τ1 ≤ t0)

∫ t

s

α(1)
u (τ)m(du) + 1(tn < τ1)

∫ t

s

α(2)
u (τ)m(du)

)
Fhs

]
+
n−2∑
j=1

E
[
(Ztj+1 − Ztj )

(
1(t0 < τ1 ≤ tj) + 1(tj < τ1 ≤ tj+1) + 1(tj+1 < τ1 ≤ tn)

)
Fhs

]
.

The second term of the right-hand side can be rewritten as follows:

E

n−2∑
j=1

(Ztj+1 − Ztj )1(t0 < τ1 ≤ tj)Fhs

 = E

n−2∑
j=1

∫ tj+1

tj

α(1)
u (τ)m(du)1(t0 < τ1 ≤ tj)Fhs


→ E

[∫ t

s

1(s < τ1 < u)α(1)
u (τ)m(du)Fhs

]
,

n−2∑
k=1

E
[
(Ztk+1 − Ztk)1(tk < τ1 ≤ tk+1)Fhs

]
→ E [∆Z(τ1)1(s < τ1 ≤ t)Fhs]

and

E

n−2∑
j=1

(Ztj+1 − Ztj )1(tj+1 < τ1 ≤ tn)Fhs

 = E

n−2∑
j=1

∫ tj+1

tj

α(2)
u (τ)m(du)1(tj+1 < τ1 ≤ tn)Fhs


→ E

[∫ t

s

1(u < τ1 ≤ t)α(2)
u (τ)m(du)Fhs

]
,

as |π| ↓ 0. Therefore Zt −
∫ t
0
E [β(u)| Gu]m(du) − E [∆Z(τ1)1(t ≥ τ1)| Gt] is a martingale in the

filtration (Gt)t∈[0,T ).

Remark 3 The condition P
(i)
t (dx) is absolutely continuous with respect to Pt(dx) in Definition 1

replaces the condition Pu << P τ0 which appears in Jacod’s theorem (see [11]). This introduces some
advantages as the reference (deterministic) measure in Jacod’s theorem (usually the Lebesgue mea-
sure) is not used. In fact, example 20 (n-th jump of the driving process of size bigger than a) shows
an example where Theorem 2 is applicable and therefore the semimartingale decomposition can be
obtained.

We now give some corollaries of our main result.

Definition 4 We say that an FT -measurable, Rd-valued random variable X belongs to the class L1

if there exists a random kernel P (1)
t (ω, dx, dz) and some deterministic finite measure m such that

1. Properties 1, 2 and 3 of Definition 1 are satisfied for P (1)
t (ω, dx).

2. For any bounded and (Ft)t∈[0,T ]-adapted process h : Ω × [0, T ] → R, for any bounded and
measurable function f : Rd → R, and for every 0 < s < t < T , we have

E [(Zt − Zs) f(X)hs] = E

[∫ t

s

∫
Rd

f(x)P (1)
u (dx)m(du)hs

]
.
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Theorem 5 Suppose that Z is a semimartingale satisfying (1) and X is an FT -measurable Rd
valued random vector in the class L1 satisfying condition (2) with τ = X. Assume that for almost
all (t, ω) ∈ [0, T ) × Ω, the signed measure P (1)

t (dx) is absolutely continuous with respect to Pt(dx),
and set

αt(x) =
dP

(1)
t

dPt
(x),

βt = E[αt(X)|Gt],

where α(x) and β are chosen to be progressively measurable. That is, P ⊗B(Rd) and P-measurable,
where P denotes the Ft-progressive σ-field.

Then Zt −
∫ t
0
βsm(ds) is a martingale with respect to the filtration (Gt)t∈[0,T ).

Proof. To obtain the proof is enough to note that due to Property 2 in Definition 4

n−2∑
k=1

E
[
(Ztk+1 − Ztk)1(tk < X1 ≤ tk+1)Fhs

]
=

n−2∑
k=1

E

[∫ tk+1

tk

αu(X)m(du)1(tk < X1 ≤ tk+1)Fhs

]
→ E [m({X1})αX1(X)Fhs] .

From here the result follows.
From the above proof, it is clear that the jump term E [∆Z(τ1)1(t ≥ τ1)| Gt] in Theorem 2

becomes part of the integral compensator in Theorem 5.

Remarks 6 1. If P (1)
t (dx) has a Radon-Nikodym derivative αt(x) with respect to Pt(dx), then

E[Zt − Zs|Fs ∨ σ(X)] = E[
∫ t

s

αu(X)m(du)|Fs ∨ σ(X)].

This implies that Zt −
∫ t
0
αu(X)m(du) is an F ∨ σ(X)-martingale.

2. Define the F-martingale Mf (u) =
∫
f(x)Pu(dx) and suppose that Z = N + A where, N is a

square integrable martingale and A is an integrable bounded variation process with dA(u) << m(du)
and d〈Mf , N〉(u) << m(du), then X ∈ L1 with∫

f(x)P (1)
u (dx) = Mf (u)

dA

dm
(u) +

d〈Mf , N〉
dm

(u).

Although this result shows the nature of P (1)
u , it is not easy to apply in the examples given in this

paper. This is because computing P (1)
u from 〈Mf , Z〉 is not straightforward.

3. Similarly, if E
∫ T
0
|βs|m(ds) <∞ then Zt−

∫ t
0
βsm(ds) is a martingale in the filtration (Gt)t∈[0,T ].

This will be used in some of the examples. In most examples, we will show that all the above condi-
tions are satisfied, compute β and therefore giving a G- martingale in [0, T ). Then we may finally
discuss if we can close the martingale in the interval [0, T ] or if the local martingale property is
satisfied without assuming the integrability condition (1).

3 Explicit formulas for the compensator

In the next theorem we give a formula for β in the case G(x, y) = x+ y, τ1 is a [0, T ]-valued random
time and Yt = Z ′

τ1−t where {Z ′
t; t ∈ R} is a one dimensional process independent of {Zt; t ≥ 0}

such that Z ′
0 = 0 and that {Z ′

t, t ≥ 0} and {Z ′
t, t ≤ 0} are additive processes (that is, processes

with independent increments but they are not necessarily stationary) . Note that in this case Y is
not independent of Z. Before obtaining explicit formulas for the compensator, we introduce some
further notation related with conditional expectations.
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As before, let Pu(dt) be the regular conditional probability of τ given Fu. We assume that the
laws of Z ′

t and Z ′
−t are equal and denote it by Qt. Let γt(x, ω) be P ⊗ B(Rd)- measurable process

such that
∫

Rd |γt(x, ω)|P0(dx) <∞ for a.a. ω, 0 ≤ t < T and let Qt be the law of Z ′
t.

For a measurable set A in Rd with Pt(A) > 0, define the following measures

µA(B, t, ω) =
∫
A

∫
R

1B(x1 + y)Qx1−t(dy)Pt(dx)

and
µAγ (B, t, ω) =

∫
A

∫
R

1B(x1 + y)γt(x)Qx1−t(dy)Pt(dx)

for B ∈ B(R). The random measures µA and µAγ are (Ft)t∈[0,T ) progressively measurable for
fixed B and µAγ is absolutely continuous with respect to µA for all (t, ω). We define ργ,At (ω, x)

as a progressively measurable version of the Radon-Nikodym derivative dµA
γ

dµA (x, t, ω) which therefore
satisfies∫

A

∫
R

1B(x1 + y)ργ,At (x1 + y)Qx1−t(dy)Pt(dx) =
∫
A

∫
R

1B(x1 + y)γt(x)Qx1−t(dy)Pt(dx), (3)

for any B ∈ B(R).
First we give a Lemma.

Lemma 7 Let It = τ1 + Yt. Then

E(γt(τ)1(τ ∈ A)|Gt) = ργ,At (It)P (τ ∈ A|Gt) a.e.

Proof. As (3) holds, then for any B(R2) measurable bounded function f and A ∈ B(Rd), we
have∫

A

γu(t)E[f(t1, t1 + Z ′(t1 − u))]Pu(dt) =
∫
A

∫
R
γu(t)f(t1, t1 + y)Qt1−u(dy)Pu(dt)

=
∫
A

∫
R
ργ,Au (t1 + y)f(t1, t1 + y)Qt−u(dy)Pu(dt). (4)

For 0 ≤ s1 < s2 < · · · < sn = u, h an F-adapted bounded process and bounded measurable functions
f1, f2, define F1(t) = f1(t+Z ′(t−u)) and F2(t) = f2(Z ′(t−sn−1)−Z ′(t−u), . . . , Z ′(t−s1)−Z ′(t−s2)).
We have, by Fubini’s theorem, the independence of FT and Z ′, the independent increment property
of Z ′ and property (4) that

E[1(τ ∈ A)γu(τ)F1(τ1)F2(τ1)hu] = E[
∫
A

γu(t)E[F1(t1)F2(t1)]Pu(dt)hu]

= E[
∫
A

γu(t)E[F1(t1)]E[F2(t1)]Pu(dt)hu]

= E[
∫
A

∫
R
ργ,Au (t1 + y)f1(t1 + y)Qt1−u(dy)E[F2(t1)]Pu(dt)hu]

= E[
∫
A

ργ,Au (t1 + Z ′(t1 − u))F1(t1)E[F2(t1)]Pu(dt)hu]

= E[ργ,Au (Iu)F1(τ1)F2(τ1)hu1(τ ∈ A)]

Hence, ργ,Au (Iu)P (τ ∈ A|Gu) = E [γu(τ)1(τ ∈ A)|Gu].
In the next result we restrict our attention to the case of one dimensional random times d = 1.

Define two (signed) measures for i = 1, 2

µ(i)(B, u, ω) = µA
i

(B, u, ω)
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and
µ(i)
α (B, u, ω) = µA

i

α(i)(B, u, ω)

for B ∈ B(R), A1 = (0, u) and A2 = (u, T ), 0 ≤ u ≤ T . Let ρα,(i)u (y, ω) denote the Radon-Nikodym

derivative dµ(i)
α

dµ(i) (y, u, ω) which satisfies (3).

Theorem 8 Assume that d = 1 and the same conditions as in Theorem 2 and assume that {Z ′
t; t ∈

R} is an d-dimensional additive process on R. Let It = τ + Z ′(τ − t) and Gt = Ft ∨ σ(Iu;u ≤ t).
Then,

E[βu|Gu] = ρα,(1)u (Iu)P (u > τ |Gu) + ρα,(2)u (Iu)P (u < τ |Gu) a.s.
Moreover, if Qt−u has a density qt−u, then

E[βu|Gu] =
2∑
i=1

∫
Ai α

(i)
u (t)qt−u(Iu − t)Pu(dt)∫
Ai qt−u(Iu − t)Pu(dt)

P (τ ∈ Ai|Gu) a.s. (5)

Proof. The first part is a direct application of Theorem 2 and Lemma 7. Now, assume that
Qt−u has a density qt−u. Then

ρ(i)
u (y) =

∫
A(i) α

(i)
u (t)qt−u(y − t)Pu(dt)∫

A(i) qt−u(y − t)Pu(dt)

satisfies (3). Hence we have (5) after applying Theorem 2.
Similarly , we can also give a formula for β in the case G(x, y) = x + y, τ = X and Yt = Z ′

T−t
where Z ′ is an additive process independent of {Zt}.

Theorem 9 Suppose that the assumptions of Theorem 5 hold and It = X + Yt for t ∈ [0, T ). Then
Zt −

∫ t
0
βudu is a G-martingale in [0, T ) where βt is a progressively measurable version of ραt (It, ω)

given in Lemma 7. Furthermore,
1. If QT−t has a density qT−t then we have for t ∈ [0, T )

βt =

∫
Rd αt(x) qT−t(It − x)Pt(dx)∫

Rd qT−t(It − x)Pt(dx)
. (6)

2. If both QT−t and Pt(·) are discrete distributions with probability functions qT−t(y) and pt(x),
then P

(1)
t (dx) is discrete with probability function p

(1)
t (x) = P

(1)
t ({x}) = αt(x)pt(x) and

βt =
∑
αt(x) qT−t(It − x) pt(x)∑
qT−t(It − x) pt(x)

.

The reason for the general formulation introduced so far is that we believe it to be more general
than the following result which is a slight extension of Proposition 1 of [3].

Proposition 10 Let Z be an adapted process in a subfiltration B ⊆ A. If Z is a semimartingale in
A with a Doob-Meyer decomposition

Zt = Mt +
∫ t

0

αsm(ds)

with M a local martingale and m a finite signed measure then Z is also a B-semimartingale with a
Doob-Meyer decomposition

Zt = M ′
t +

∫ t

0

E(αs|Bs)m(ds).

Note that in order to apply Proposition 10, it is necessary to know the semimartingale decom-
position of Z in a bigger filtration A in order to obtain the respective decomposition in the smaller
filtration. From this point of view, it is obvious that our previous results are more general than this
proposition.

An example where the above proposition may not be applicable is Yt = f(Zt+ε)Z ′
t+ε with ε < T/2.

For a related example in the Brownian setting, see [15].
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4 Examples for τ = X = Z(T ) and Z is a Lévy process

In our first example of application we consider the case where Z is a Lévy process. The following
is an extension of an example of enlargement of filtrations with respect to Lévy processes known as
Kurtz theorem (although this example was known since Itô, see Jacod and Protter [12] , Chaumont
and Yor [4] where the concept of harness is stressed). Let {Zt; t ∈ [0, T ]} be an Rd-valued Lévy
process with characteristic function E[ei〈θ,Zt〉] = etψ(θ) where

ψ(θ) = i〈b, θ〉 − 〈cθ, cθ〉/2 +
∫

Rd

(ei〈θ,x〉 − 1− i〈θ, x〉1{|x|≤1}(x))ν(dx).

Here, b ∈ Rd, c is a nonnegative definite d × d matrix and ν is a measure on Rd\{0} satisfying∫
|x| ∧ |x|2ν(dx) < ∞. Note that under these hypotheses, (1) is satisfied. Let {Z ′

t; t ∈ [0, T ]}
be an Rd-valued additive process independent of {Zt; t ∈ [0, T ]}. Furthermore, let Yt = Z ′

T−t,
G(x, y) = x+ y and X = ZT .

Let Rt(dx) = P (Zt ∈ dx) and let hs be an Fs-measurable bounded random variable. For
s ≤ u < t ≤ T , we have

E[(Zt − Zu)ei〈θ,ZT 〉hs]

= E[
∫

Rd

∫
Rd

∫
Rd

exp{i〈θ, x+ y + z + Zs〉}yRT−t(dx)Rt−u(dy)Ru−s(dz)hs]

= E[
∫

Rd

∫
Rd

( ∫
Rd

ei〈θ,y〉yRt−u(dy)
)

exp{i〈θ, x+ z + Zs〉}RT−t(dx)Ru−s(dz)hs]

=
1
i
(t− u)∇ψ(θ) exp{(T − s)ψ(θ)}E[ei〈θ,Zs〉hs].

Hence,

E[
Zt − Zu
t− u

ei〈θ,ZT 〉hs] =
1
i
∇ψ(θ) exp{(T − s)ψ(θ)}E[ei〈θ,Zs〉hs].

Letting t = T , and integrating the both sides with respect to du, we have∫ t

s

E[
ZT − Zu
T − u

ei〈θ,ZT 〉hs]du =
1
i
(t− s)∇ψ(θ) exp{(T − s)ψ(θ)}E[ei〈θ,Zs〉hs].

Therefore

E[(Zt − Zs)ei〈θ,ZT 〉hs] = E[
∫ t

s

ZT − Zu
T − u

duei〈θ,ZT 〉hs].

In conclusion, we have that ZT ∈ L1 with m(du) = du, P (1)
u (dx) = x−Zu

T−u Pu(dx), where Pt(dx) =
RT−t(dx− Zt) is the regular conditional law of ZT given Ft and

αt(x) =
x− Zt
T − t

.

Next, note that E
[∫ T

0

∣∣∣P (1)
u

∣∣∣ du] =
∫ T
0
E

∣∣∣ZT−Zu

T−u

∣∣∣ du < ∞ (see the proof of 1 in Proposition 16).

Therefore by 1 of Remark 6 with X = ZT , we have that Zt−
∫ t
0
αu(ZT )du is a F ∨σ(ZT )-martingale

in [0, T ]. Note that E
∫ T
0

(
ZT−Zu

T−u

)2

du = ∞. This quantity is of importance when considering the
logarithmic utility of the insider in mathematical finance (see Remark 15).

In particular, if the previous integral were finite it would imply that the Radon-Nikodym deriva-
tive of the bounded variation part of the semimartingale decomposition of Z in the enlarged filtration
is square integrable.

One way to solve the previous problem is to consider the filtration G. Therefore, our goal
now is to compute β as explicitly as possible using Theorem 9. In the present example, we have
It = ZT + Z ′

T−t, Gt = Ft ∨ σ(Is, s ≤ t) and let Lt = ZT − Zt + Z ′
T−t. UT−t will denote the law of

Lt and R̃T−t(dx) = xRT−t(dx). As before, Qt denotes the law of Z ′
t.
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Theorem 11 The signed vector measure R̃T−t is a finite measure and QT−t ∗ R̃T−t is absolutely
continuous with respect to UT−t. Furthermore, Zt −

∫ t
0
βudu is a G- martingale in [0, T ), where

βt =
1

T − t

d(QT−t ∗ R̃T−t)
dUT−t

(Lt).

In the next three cases, β can be rewritten as follows:
1. If QT−t has a density qT−t, then UT−t has a density uT−t and

βt =

∫
Rd xqT−t(Lt − x)RT−t(dx)

(T − t)uT−t(Lt)
.

2. If RT−t has a density rT−t and
∫

Rd |x|QT−t(dx) <∞, then UT−t has a density uT−t and

βt =
Lt
T − t

−
∫

Rd xrT−t(Lt − x)QT−t(dx)
(T − t)uT−t(Lt)

.

3. If both QT−t and RT−t are discrete with probability functions qT−t and rT−t, then UT−t is discrete
with probability function uT−t and

βt =
∑
x xqT−t(Lt − x)rT−t(x)

(T − t)uT−t(Lt)
=

Lt
T − t

−
∑
x xrT−t(Lt − x)qT−t(x)

(T − t)uT−t(Lt)
,

where we assume
∑
|x|qT−t(x) <∞ for the second expression of β.

Proof. In order to compute β in Theorem 9, it is enough to note that

µα(B, t) =
∫

Rd

αt(x)QT−t(B − x)Pt(dx)

=
∫

Rd

αt(z + Zt)QT−t(B − z − Zt)RT−t(dz)

=
1

T − t

∫
Rd

QT−t(B − z − Zt)zRT−t(dz)

=
1

T − t
QT−t ∗ R̃(B − Zt) (7)

and

µ(B, t) =
∫

Rd

QT−t(B − x)Pt(dx)

=
∫

Rd

QT−t(B − z − Zt)RT−t(dz)

= UT−t(B − Zt).

In the following, we will use the stochastic representation for the Lévy process Z. That is, there
exists a d-dimensional Wiener process Wt and a Poisson random measure N(dx, ds) on (Rd\{0})×
[0, T ] with compensator N(dx, ds) = ν(dx)ds such that

Zt = bt+ cWt +
∫ t

0

∫
|x|≤1

xÑ(dx, ds) +
∫ t

0

∫
|x|>1

xN(dx, ds). (8)

Here, Ñ(dx, ds) = N(dx, ds) − N(dx, ds) denotes the compensated martingale measure. For the
additive process Z ′, there exists a continuous Rd-valued deterministic function b′t, a d-dimensional
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Gaussian additive process G′ with a covariance matrix c′·, and a Poisson random measure N ′ on
(Rd\{0})× [0, T ] such that

Z ′(t) = b′t +G′
t +

∫ t

0

∫
|x|≤1

xÑ ′(dxds) +
∫ t

0

∫
|x|>1

xN ′(dxds)

where Ñ ′ is the compensated martingale measure. Let N
′
(dxds) = ν′(dx, ds) be the compensator

of N ′.
The objective of the next results leading to Theorem 14 is to find how the jump structure of the

Lévy process is modified by the progressive enlargement of the filtration.
First we discuss a special case of Theorem 11. That is, let Zt = N(B, (0, t]), Z ′

t = N ′(B, (0, t])
where B ∈ B(Rd) such that d(B, 0) := infy∈B |y| > 0. Let Yt = N ′(B, (0, T − t]) and

GBt = Ft ∨ σ
(
N(B, (0, T ]) +N ′(B, (0, T − u]);u ≤ t

)
.

Theorem 12 Let

βs =
ν(B){N(B, (s, T ]) +N ′(B, (0, T − s])}

ν′(B, (0, T − s]) + ν(B)(T − s)
.

Then Zt −
∫ t
0
βsds is a GB-martingale.

Proof. We have

QT−t({k}) = exp[−ν′(B, (0, T − t])]
{ν′(B, (0, T − t])}k

k!

and

RT−t({k}) = exp[−ν(B)(T − t)]
{ν(B)(T − t)}k

k!
for k = 0, 1, 2, . . . . Therefore

QT−t ∗ R̃T−t({n})

= exp[−ν(B)(T − t)− ν′(B, (0, T − t])]ν(B)(T − t)
{ν′(B, (0, T − t]) + ν(B)(T − t)}n−1

(n− 1)!
.

Similarly, we have

UT−t({n})

= exp[−ν(B)(T − t)− ν′(B, (0, T − t])]
{ν′(B, (0, T − t]) + ν(B)(T − t)}n

n!
.

Hence, by Theorem 11, we have that

βt =
ν(B)Lt

ν′(B, (0, T − t]) + ν(B)(T − t)
.

Theorem 12 suggests that the explicit form of the compensator of N w.r.t. a given filtration G
is not simple in general.

If G is included in GB , then we can obtain an explicit form of the compensator using Proposition
10, otherwise one uses Theorem 5.

In order to obtain the formula for the compensator in greater generality, we will use the following
result.

11



Lemma 13 For bounded measurable functions f , g : Rd × [0, T ] → R vanishing in a neighborhood
of the origin, we have

E
[ ∫

Rd×[0,T ]

f(x, t)N(dx, dt) exp{iθ
∫

Rd×[0,T ]

g(x, t)N(dx, dt)}
]

=
∫

Rd×[0,T ]

f(x, t) exp{iθg(x, t)}ν(dx)dtE
[
exp{iθ

∫
Rd×[0,T ]

g(x, t)N(dx, dt)}
]

(9)

=
∫

Rd×[0,T ]

f(x, t) exp{iθg(x, t)}ν(dx)dt exp{
∫

Rd×[0,T ]

(eiθg(x,t) − 1)ν(dx)dt}.

Proof. For mutually disjoint A1, . . . , Am ∈ B(Rd) satisfying d(Aj , 0) > 0, for 1 ≤ j ≤ m,
mutually disjoint B1, . . . , Bn ∈ [0,∞) and ajk, bjk ∈ R 1 ≤ j ≤ m, 1 ≤ k ≤ n, consider

E
[ m∑
j=1

n∑
k=1

ajkN(Aj , Bk) exp{iθ
m∑
j=1

n∑
k=1

bjkN(Aj , Bk)}
]

=
m∑
j=1

n∑
k=1

ajke
iθbjkν(Aj)|Bk|E[exp{iθ

m∑
j=1

n∑
k=1

bjkN(Aj , Bk)}]

=
m∑
j=1

n∑
k=1

ajke
iθbjkν(Aj)|Bk| exp{

m∑
j=1

n∑
k=1

(eiθbjk − 1)ν(Aj)|Bk|}).

Here, |B| denotes the Lebesgue measure of B. Using a limit argument, we have the conclusion.
Now we consider the following enlargement of filtration which generalizes the result in Theorem

12. Define,

Ht = Ft ∨ σ
(
cWT +G′

T−s; 0 ≤ s ≤ t
)

∨σ
(
N(B, (0, T ]) +N ′(B, (0, T − s]);B ∈ B(Rd), d(B, 0) > 0, 0 ≤ s ≤ t

)
.

Decompose ν′ as ν′(dx, ds) = γ(x, s)ν(dx)ds+ ν′
s(dx, ds) where γ is the Radon-Nikodym derivative

of the absolutely continuous part and ν′s is the singular part of ν′ w.r.t. ν.

Theorem 14 Let

Bt = cWt −
∫ t

0

cηsds,

M(dx, ds) = N(dx, ds)− Fs(dx)ds,

with

ηs =
(
(T − s)c+ c′T−s

)−1(
c(WT −Ws) +G′

T−s

)
Fs(dx) =

1supp(ν)(x)∫ T−u
0

(1 + γ(x, v))dv

(
N(dx, (u, T ]) +N ′(dx, (0, T − u])

)
.

Here,
(
(T − s)c + c′T−s

)−1

denotes the inverse of the restriction of (T − s)c + c′T−s to its own
range. Then Bt and M(dx, dt) are H-martingales.

Proof. Let 0 ≤ s1 < · · · < sn ≤ s and let Xk = N(Ak, (0, T ]), Ysk
= N ′(Ak, (0, T − sk]) for

k = 1, . . . , n with Ai ∩ Aj = ∅ for i 6= j and d(Ak, 0) > 0 for k = 1, . . . , n. Let φ(x1, . . . , xn) =∏n
k=1 e

iθkxk for θ = (θ1, ..., θn) ∈ Rn and let X = (Xk)nk=1, Y = (Ysk
)nk=1. Let f be a bounded
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measurable function vanishing in a neighborhood of the origin. We have, for s ≤ u < t ≤ T and hs
a bounded Fs-measurable function that

E[φ(X + Y )hs
∫

Rd

f(x)N(dx, (u, t])]

= E
[
hs

n∏
k=1

exp
(
iθk{N(Ak, (0, u] ∪ (t, T ]) + Ysj

}
)]

×E
[ ∫

Rd

f(x)N(dx, (u, t]) exp{i
n∑
k=1

θkN(Ak, (u, t])}
]
.

We have by (9) that

E
[ ∫

Rd

f(x)N(dx, (u, t]) exp{i
n∑
k=1

θkN(Ak, (u, t])}
]

= (t− u)
( ∫

Rd

f(x) exp{i
n∑
k=1

θk1Ak
(x)}ν(dx)

)
E

[
exp{i

n∑
k=1

θkN(Ak, (u, t])}
]
.

Hence

E
[
φ(X + Y )hs

∫
Rd

f(x)N(dx, (u, t])
]

= (t− u)
( ∫

Rd

f(x) exp{i
n∑
k=1

θk1Ak
(x)}ν(dx)

)
E[φ(X + Y )hs]. (10)

By letting t = T and integrating w.r.t. u, we have∫ t

s

E
[
φ(X + Y )hs

∫
Rd

f(x)
N(dx, (u, T ])

T − u

]
du

= (t− s)
( ∫

Rd

f(x) exp{i
n∑
k=1

θk1Ak
(x)}ν(dx)

)
E[φ(X + Y )hs]. (11)

By an argument similar to (10), we have

E
[
φ(X + Y )hs

∫
Rd

f(x)N ′(dx, (0, T − u])
]

=
( ∫

Rd

f(x) exp{i
n∑
k=1

θk1Ak
(x)}ν′(dx, (0, T − u])

)
E[φ(X + Y )hs].

By (10), we have

E
[
φ(X + Y )hs

∫
Rd

f(x)1supp(ν)(x)∫ T−u
0

(1 + γ(x, v))dv
N(dx, (u, T ])

]
=

( ∫
Rd

f(x)(T − u)∫ T−u
0

(1 + γ(x, v))dv
exp{i

n∑
k=1

θk1Ak
(x)}ν(dx)

)
E[φ(X + Y )hs].

Similarly, we have

E
[
φ(X + Y )hs

∫
Rd

f(x)1supp(ν)(x)∫ T−u
0

(1 + γ(x, v))dv
N ′(dx, (0, T − u])

]
=

( ∫
Rd

f(x)
∫ T−u
0

γ(x, v)dv∫ T−u
0

(1 + γ(x, v))dv
exp{i

n∑
k=1

θk1Ak
(x)}ν(dx)

)
E[φ(X + Y )hs].
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Therefore, we have

E
[
φ(X + Y )hs

∫
Rd

f(x)1supp(ν)(x)∫ T−u
0

(1 + γ(x, v))dv

(
N(dx, (u, T ]) +N ′(dx, (0, T − u])

)]
=

( ∫
Rd

f(x) exp{i
n∑
k=1

θk1Ak
(x)}ν(dx)

)
E[φ(X + Y )hs]

= E
[
φ(X + Y )hs

∫
Rd

f(x)
N(dx, (u, T ])

T − u

]
by (10). Integrating both sides of the above equality w.r.t. u in [s, t], we have that

N(B, (0, t])−
∫ t

0

∫
B

1supp(ν)(x)∫ T−u
0

(1 + γ(x, v))dv

{
N ′(dx, (u, T ]) +N(dx, (0, T − u])

}
du

is an H-martingale for all B ∈ B(Rd) satisfying d(B, 0) > 0 by (11). The proof for cWt is essentially
the same and easier. We remark that for two nonnegative definite symmetric matrices A and B,
Ker(A+B) = KerA∩KerB. Hence, Ax = A(A+B)−1(A+B)x where the inverse is understood as
the inverse of the restriction of A+B to the range of A+B.

Remark 15 Without giving details (see [14]), we remark that the logarithmic utility of an insider
can be characterized as

u(t, π) = E

[∫ t

0

(
(b+ cη(s))πs −

c2

2
π2
s

)
ds

]
+E

[∫ t

0

∫
R
xπs(Fs(dx)− ν(dx))ds

]
+E

[∫ t

0

∫
R
{log (1 + (ex − 1)πs)− x1(|x| ≤ 1)πs}Fs(dx)ds

]
.

Here c > 0, d = 1 and π is a process satisfying enough integrability conditions and models the
portfolio process of the insider. One can write the equation characterizing the optimal portfolio but
no explicit expression is available. Instead one proves that

u(t, π) ≤ c2

2
E

[∫ T

0

(πos)
2ds

]
+ E

[∫ T

0

∫
{x>1}

xFs(dx)ds

]
.

where

πot =
1
c2

{
(b+ cη(t)) +

∫
|x|≤1

x(Ft(dx)− ν(dx))

+
∫
{x<1}

(ex − 1− x1(|x| ≤ 1))Ft(dx)

+
∫
{x>1}

xFt(dx)
}
.

From here one sees that if E
[∫ T

0
η(s)2ds

]
<∞ and E

[∫ T
0

(∫
A
xFs(dx)

)2
ds

]
<∞ for A = {|x| ≤ 1},

{x > 1} and {x < 1} then the logarithmic utility of the insider is finite.

We now study when we can define the compensator up to T . That is, we specify when β is locally
integrable. We will not make any assumptions on the moment properties for Z ′. In particular, we
will not assume (1) a priori.

Proposition 16 1. If
∫
|x|>1

|x|ν(dx) <∞, then Zt −
∫ t
0
βsds is a G-martingale in [0, T ].

2. Without the assumption
∫
|x|>1

|x|ν(dx) <∞, Zt is a G-semimartingale in [0, T ].
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Proof. Proof of 1.

E(|βt|)

≤ 1
T − t

E(|ZT − Zt|)

≤
|b|(T − t) + |c|

√
T − t+

√
T − t

∫
{|z|≤1} |z|

2ν(dz) + (T − t)
∫
{|z|>1} |z|ν(dz)

T − t

= |b|+
∫
{|z|>1}

|z|ν(dz) +
1√
T − t

(
|c|+

∫
{|z|≤1}

|z|2ν(dz)
)

Hence ∫ T

0

E(|βt|)dt <∞.

Therefore we have proved that Zt −
∫ t
0
βsds is a G- martingale in [0, T ].

Proof of 2. Define Z2
t =

∑
s≤t ∆Zs1(|∆Zs| > 1) + bt and Z1

t = Zt − Z2
t . Note that Z1 and Z2

are independent Lévy processes with E|Z1| <∞. By Theorem 14,

Z1
t −

∫ t

0

c
(
(T − s)c+ c′T−s

)−1(
c(WT −Ws) +G′

T−s

)
ds+

∫
(0,t]

∫
|x|≤1

x
(
Fs(dx)ds−N(dx, ds)

)
is anH-martingale. Obviously the second term and the third term are processes of bounded variation.

Therefore, taking conditional expectations, we have that Z1 is a semimartingale in the filtration
G. As Z2 is adapted to the filtration G and it is a process of bounded variation, then Zt = Z1

t +Z2
t

is a G-semimartingale and therefore the conclusion follows.
Next, we give alternative expressions of β in the case that Z ′ is a Lévy process with characteristic

function E(ei〈θ,Z
′
t〉) = etψ̃(θ), where

ψ̃(θ) = i〈̃b, θ〉 − 1
2
〈c′θ, c′θ〉+

∫
Rd

(ei〈θ,x〉 − 1− i〈θ, x〉1{|x|≤1}(x))ν′(dx)

where b̃ ∈ Rd, c′ is a nonnegative definite d× d-matrix and
∫

Rd 1 ∧ |x|2ν′(dx) <∞.

Theorem 17 Let g be a continuous increasing function on [0, T ]. If the law of Z ′ is identical with
the law of Z and Yt = Z ′

g(T−t), then Zt −
∫ t
0
βudu is a G-martingale in [0, T ), where

βt =
Lt

T − t+ g(T − t)
.

Proof. We calculate the Fourier transform of the measure µα defined in (7).∫
Rd

ei〈θ,u〉µα(du, t) =
∫

Rd

ei〈θ,u〉
1

T − t

∫
Rd

QT−t(du− z − Zt)zRT−t(dz)

=
1
i
ψ′(θ)ei〈θ,Zt〉E(ei〈θ,Lt〉) (12)

=
1

T − t+ g(T − t)

∫
Rd

ei〈θ,u〉(u− Zt)UT−t(du− Zt)

=
∫

Rd

ei〈θ,u〉
u− Zt

T − t+ g(T − t)

∫
Rd

QT−t(du− x)Pt(dx).

Hence ραt (ω, x) = x−Zt(ω)
T−t+g(T−t) . Therefore by Theorem 9 , we have

βt =
Lt

T − t+ g(T − t)
.
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Note that in Theorem 17, densities do not need to exist and the process L is not necessarily
additive in time as the function g is not necessarily linear. Also, note that in general, L is not a
Lévy process. As explained before, note that E

∫ T
0
|βs|2ds <∞ if g(T − t) = O((T − t)a) for a < 1

under the assumptions of Theorem 17. Therefore adding the Lévy process Z ′ is justified if we want
to obtain the properties required in Remark 15.

Proposition 18 Assume that d = 1. In any of the following cases, Zt −
∫ t
0
βudu is a G-martingale

in [0, T ).
1. If either
1a. c2 + c′

2
> 0,

1b. c2 + c′
2 = 0 and lim infr↓0 rα−2

∫
[−r,r] z

2(ν + ν′)(dz) > 0 for some 0 < α < 2 or

1c. c2 + c′
2 = 0 and, ν(dx) and ν′(dx) have respective densities n(x) and ñ(x) such that

lim
x↓0

|x| {n(x) + n(−x) + ñ(x) + ñ(−x)} = ∞,

then UT−t has a bounded density uT−t with bounded derivative u′T−t and

βt =

∫
R{uT−t(Lt − z)− uT−t(Lt)1{|z|≤1}(z)}zν(dz)− c2u′T−t(Lt)

uT−t(Lt)
+ b. (13)

2. If c2 + c′
2 = 0, ν(dx) + ν′(dx) is absolutely continuous,

∫
{|x|≤1}(ν(dx) + ν′(dx)) = ∞ and∫

{|x|≤1} |x|(ν(dx) + ν′(dx)) <∞, then UT−t has a density and β satisfies (13) with c = 0.

3. If c2 + c′
2 = 0,

∫
R(ν(dx) + ν′(dx)) < ∞ and both ν and ν′ are discrete, then UT−t is discrete.

Let uT−t be its probability function. Then β satisfies (13) with c = 0.
Furthermore, suppose that b =

∫
|x|≤1

xν(dx) holds. Then in either case 2 or 3, we have that

βt =

∫
R uT−t(Lt − z)zν(dz)

uT−t(Lt)
.

Proof. We start by proving that in any of the cases considered in 1, UT−t has a smooth
density with bounded derivatives. In Case 1a, |E(eiθLt)| ≤ e−((T−t)c2+g(T−t)c′2)θ2/2. Hence UT−t
has a C∞

b density (that is, the density is an infinitely differentiable bounded function with bounded
derivatives).
Case 1b. If ν + ν′ satisfies the assumption of Case 1b, then (T − t)ν + g(T − t)ν′ also satisfies the
assumption. Hence

|E[eiθLt ]| ≤ exp
[ ∫ 1/|θ|

−1/|θ|
(cos(θz)− 1){(T − t)ν + g(T − t)ν′}(dz)

]
≤ exp

[
− 1

8

∫ 1/|θ|

−1/|θ|
(θ2z2){(T − t)ν + g(T − t)ν′}(dz)

]
≤ e−C|θ|

α

for large |θ|,

where C is a positive constant. Then UT−t(dx) has a C∞
b density uT−t (see Orey [17]).

Case 1c. Let k ≥ 0. For each t ∈ [0, T ) and M > k + 1, there is δ > 0 such that (T − t){n(z) +
n(−z)}+ g(T − t){ñ(z) + ñ(−z)} > M/z for 0 < z < δ. Hence

|E[θkeiθLt ]| ≤ |θ|k exp{
∫ δ

1/|θ|
(cos(|θ|z)− 1)

M

z
dz}

≤ |θ|k−M exp{M(− log δ +
∫ |θ|δ

1

cos z
z

dz)}

≤ C|θ|k−M for large θ,
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where C is a positive constant independent of θ. Hence UT−t(dx) has a C∞
b density uT−t.

Since uT−t is bounded and has a bounded derivative in all these cases, we have that∫
{|z|≤1}

{uT−t(x− z)− uT−t(x)}|z|ν(dz) +
∫
{|z|>1}

uT−t(x− z)|z|ν(dz) <∞ (14)

for each x ∈ R. Therefore, one can easily compute the Fourier transform of∫
R

{
uT−t(x− Zt − z)− uT−t(x− Zt)1{|z|≤1}(z)

}
zν(dz)− c2u′T−t(x− Zt) + buT−t(x− Zt).

This gives (12), and therefore the proof of (13) is finished.
In Case 2, UT−t has a density uT−t (see [20] Theorem 27.7). Since uT−t and zn(z) are integrable,

then the condition (14) holds and we have (13) with c = 0. In Case 3, uT−t becomes the probability
function of Lt, the integral becomes a summation and the argument of the proof follows the same
reasoning as in the previous cases.

Remark 19 Assume ν = ν′ in any of the cases of Proposition 18. Then we have

xuT−t(x) = {T − t+ g(T − t)}
∫

R
{uT−t(x− z)− uT−t(z)1|z|≤1(z)}zν(dz)

+{(T − t)b+ g(T − t)̃b}uT−t(x)− {(T − t)c2 + g(T − t)c′2}u′T−t(x)

for x a.e. Applying the above formula to (13), we obtain that

βt =
1

T − t+ g(T − t)

[
Lt − (̃b− b)g(T − t) + (c′2 − c2)g(T − t)

u′T−t(Lt)
uT−t(Lt)

]
.

5 Examples of enlargements with respect to random times

In this section, we consider some simple examples of applications of Theorem 2. One corresponds
to a stopping time and the other to a honest time. The first example treats the situation where
the filtration is enlarged by the time of the n-th jump of size bigger than a > 0 in absolute value.
In these examples we use the representation of a Lévy process using Poisson random measures as
explained in Section 3.

First, we consider a setup for initial enlargement of filtrations. That is, Gt = Ft ∨ σ(τ). After
that we consider the case where the filtration is enlarged progressively with It.

Example 20 (time of the n-th jump of absolute size bigger than a) Let Nt =
∫ t
0

∫
|x|>aN(dx, ds)

and let Tn be the n-th jump time of Nt. In this example we have that Ft = σ(Zu;u ≤ t) and
Gt = Ft∨σ(Tn). Further define Xt =

∫ t
0

∫
|x|>a xN(dx, ds) and Yt = Zt−Xt. Let F1

t = σ(Nu;u ≤ t),
G1
t = F1

t ∨σ(Tn), G2
t = σ(Xu;u ≤ t)∨σ(Tn) and G3

t = σ(Yu;u ≤ t). To avoid studying many different
cases we assume that n ≥ 2 and a ≥ 1.

Also, as the time of the n−th jump of size bigger than a has a range in (0,∞) we use the extension
of the previous theory to this time interval without any further comment. By the independence of X
and Y , we have

E[Nt|Gs] = E[Nt|G1
s ], E[Xt|Gs] = E[Xt|G2

s ], E[Yt|Gs] = E[Yt|G3
s ].

Let λ = E[N1]. For s < t,

E[1(Tn ≤ t)|Fs] = P [Nt ≥ n|Fs] =
∞∑

k=(n−Ns)∨0

λk(t− s)k

k!
e−λ(t−s).
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Hence for bounded measurable function f , we have

E[f(Tn)|Fs] =

{ ∫ +∞
s

λn−Ns (u−s)n−1−Ns

(n−1−Ns)! e
−λ(u−s)f(u)du if Tn > s,

f(Tn) if Tn ≤ s.

Therefore

Ps(dx) = 1(x ≤ s)δTn
(dx) + 1(x > s)λn−Ns

(x− s)n−1−Ns

(n− 1−Ns)!
e−λ(x−s)dx.

First we will compute the measure P (2). For this, consider h an F-adapted bounded process

E [(Zt − Zs) f(Tn)1(t < Tn)hs]
= E [(Xt −Xs) f(Tn)1(t < Tn)hs] + E [(Yt − Ys) f(Tn)1(t < Tn)hs] (15)

Here, one obtains that

E [(Yt − Ys) f(Tn)1(t < Tn)hs] = E[Y1](t− s)E [f(Tn)1(t < Tn)hs] .

The first term in (15) can be rewritten as

E [(Xt −Xs) f(Tn)1(t < Tn)hs]
= E[(Xt −Xs]E [f(Tn)| Ft) 1(t < Tn)hs]

= E

[
(Xt −Xs)

∫ ∞

t

λn−Nt
(u− t)n−1−Nt

(n− 1−Nt)!
e−λ(u−t)f(u)du1(t < Tn)hs

]
=

E[X1]
λ

E

[
(Nt −Ns)

∫ ∞

t

λn−Nt
(u− t)n−1−Nt

(n− 1−Nt)!
e−λ(u−t)f(u)du1(t < Tn)hs

]
=

E[X1]
λ

E

[
n−Ns−1∑
l=1

∫ ∞

t

λn−Ns
(u− t)n−1−l−Ns

(n− 1− l −Ns)!
(t− s)l

(l − 1)!
e−λ(u−s)f(u)duhs

]

=
E[X1]
λ

(t− s)E

[
n−Ns−2∑
l=0

∫ ∞

t

λn−Ns
(u− t)n−2−l−Ns

(n− 2− l −Ns)!
(t− s)l

l!
e−λ(u−s)f(u)duhs

]
.

Similarly, we calculate E
[
n−1−Nt

Tn−t f(Tn)1(t < Tn)hs
]
,

E[X1]
λ

(t− s)E
[
n− 1−Nt
Tn − t

f(Tn)1(t < Tn)hs

]
= E [(Xt −Xs)f(Tn)1(t < Tn)hs] .

In particular, supposing that X is a Poisson process, we have that

E [ (Nt −Ns)| Gs] 1(t < Tn) = (t− s)E
[
n− 1−Nt
Tn − t

∣∣∣∣Gs] 1(t < Tn).

Subtracting the right-hand side from the left-hand side, we obtain that on the set {t < Tn}

E

[
Nt

Tn − t
− Ns
Tn − s

∣∣∣∣Gs] =
(n− 1)(t− s)

(Tn − s)(Tn − t)
=

n− 1
Tn − t

− n− 1
Tn − s

.

By this equality, we have that n−1−Nu

Tn−u is a G-martingale on the set {u < Tn}. Through a similar
calculation one also obtains that

E

[
f(Tn)1(t < Tn)

∫ t

s

n− 1−Nu
Tn − u

duhs

]
= (t− s)E

[
f(Tn)1(t < Tn)

n− 1−Nt
Tn − t

hs

]
.

Therefore we have that m(du) = du and

P (2)
u (dx) = 1(u < x)

(
E[X1]
λ

n− 1−Nu
x− u

+ E[Y1]
)
Pu(dx)
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with E
∫ T
0

∣∣∣P (2)
u

∣∣∣ du <∞. Computing P (1) is easier since

E [f(Tn)1(Tn < s) (Zt − Zs)hs] = E [f(Tn)1(Tn < s)hs]E [Zt − Zs] ,

therefore
P (1)
u (dx) = E[Z1]1(x ≤ u)δTn

(dx) = E[Z1]Pu(dx).

From here we see that the conditions of Theorem 2 are satisfied and

Z(t)−
∫ t

0

((
E [X1]
λ

n− 1−Nu
Tn − u

+ E[Y1]
)

1(u < Tn) + E[Z1]1(u ≥ Tn)
)
du−∆Z(Tn)1(t ≥ Tn)

is a G martingale in [0, T ] due to the integrability of the compensator. With some further calculation
one also obtains that E

[∫ T
0
|βs| ds

]
<∞ and E

[∫ T
0
|βs|2 ds

]
= ∞.

Now, suppose that the time is perturbed as It = Tn+Z ′(Tn− t) where Z ′ is a Lévy process with
density function q. Then using Theorem 2, we have

Z(t)−
∫ t

0

(
E [X1]
λ

E

[
1(u < Tn)

n− 1−Nu
Tn − u

∣∣∣Gu] + E[Y1]E [ 1(u < Tn)| Gu]

+E[Z1]E
[
1(u ≥ Tn)

∣∣∣Gu] )
du− E

[
∆Z(Tn)1(t ≥ Tn)

∣∣∣Gu] .
Furthermore, using Theorem 8, we have that

E

[
1(u < Tn)

n− 1−Nu
Tn − u

∣∣∣∣Gu] =
λP (u, Iu, n− 1)
P (u, Iu, n)

where

P (u, z, n) =
∫ ∞

u

(y − u)n−1−Nu

(n− 1−Nu)!
e−λ(y−u)qy−u(z − y)dy.

The result is similar if Z ′ has a discrete distribution.

The following is a classical example of a random time which is not a stopping time.

Example 21 (the last jump of absolute size bigger than a before T ) Let Xt, Yt, Nt and Tn be
the same as Example 20. Let τ be the last jump time of Nt before T . Let Gt = Ft ∨ σ(τ) and
G1
t = σ(Nu;u ≤ t) ∨ σ(τ). Let

τt = inf{s > 0 : Nt −Ns = 0}.

Then τT = τ and
P (τt ≤ s) = P (Nt −Ns = 0) = e−λ(t−s).

Using the Markov property, we have for t ≤ v ≤ T ,

E[f(τT )1(τT > v)|Ft] = ENt
[f(τT )1(τT > v)]

= E[f(τT−t+t)1(τT−t > v − t)]

= λ

∫ T

v

e−λ(T−y)f(y)dy =: g(v).

Hence, we obtain that

Pt(dx) = 1(x ≤ t)e−λ(T−t)δτt(dx) + 1(x > t)λe−λ(T−x)dx

To compute P (2), we consider for 0 < s < t < u and h an F-adapted bounded process,

E[(Zt − Zs)f(τ)1(τ > u)hs] = E[(Zt − Zs)hsE[f(τ)1(τ > u)|Fu]]
= E[(Zt − Zs)hsg(u)]
= E[Zt − Zs]E[hs]g(u)
= E[(t− s)E(Z1)f(τ)1(τ > u)hs].
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Hence P (2)
u (dx) = E(Z1)Pu(dx). Next, in order to compute P (1), consider 0 < u < s < t,

E[(Xt −Xs)f(τ)1(τ < u)hs] = 0

and

E[(Yt − Ys)f(τ)1(τ ≤ u)hs] = E[f(τ)1(τ ≤ u)hsE[(Yt − Ys)]]
= E[(t− s)E(Y1)f(τ)1(τ ≤ u)hs].

Therefore P (1)
u (dx) = E(Y1)Pu(dx). Finally we have that

Zt − E[Z1] (t ∧ τ)− E[Y1]((t ∨ τ)− τ)−∆Z(τ)1(t ≥ τ)

is a G martingale in [0, T ].
We remark here that the conclusion of Theorem 2 is still valid for G(τ, Z ′(T − t)) instead of

G(τ, Z ′(τ−t)). This remark is made because for τ = τT it is difficult to give a financial interpretation
to a model of the type It = τT + Z ′(τT − t). For this reason, we prefer to consider the model
It = τT + Z ′(T − t).

Therefore the compensator becomes∫ t

0

{
E[Z1]P (u < τT | Gu) + E[Y1]P (u≥τT | Gu)

}
du+ E [∆Z(τT )1(t ≥ τT )| Gt] .

In this situation we obtain that

P (u < τT | Gu)

=

∫ T
u
Pu(dy)qT−u(Iu − y)∫ T

0
Pu(dy)qT−u(Iu − y)

=
λ

∫ T
u
e−λ(T−y)qT−u(Iu − y)dy

e−λ(T−u)qT−u(Iu − τu) + λ
∫ T
u
e−λ(T−y)qT−u(Iu − y)dy

.

Since ∆Z(τT )1(t ∈ [τT , T ]) = ∆Z(τt)1(t ∈ [τT , T ]) and ∆Z(τt) is Gt adapted, one obtains for t ≤ T
that

E [∆Z(τT )1(t ≥ τT )| Gt] = ∆Z(τt)P ( t≥τT | Gt) .
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