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Abstract

Weak approximations have been developed to calculate the expectation value of functionals
of stochastic differential equations, and various numerical discretization schemes (Euler, Mil-
shtein) have been studied by many authors. We present a general framework based on semigroup
expansions for the construction of higher order discretization schemes and analyze its rate of
convergence. We also apply it to approximate general Lévy driven stochastic differential equa-
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1 Introduction

Weak approximation problems play an important role in the numerical calculation of E[f(Xt(x))]
where Xt(x) is the solution of the stochastic differential equation (SDE for short)

Xt(x) = x+

∫ t

0

Ṽ0(Xs−(x))ds+

∫ t

0

V (Xs−(x))dBs +

∫ t

0

h(Xs−(x))dYs. (1.1)

with smooth coefficients Ṽ0 : RN → RN , V = (V1, . . . , Vd), h : RN → RN ⊗Rd whose derivatives of
any order (≥ 1) are bounded. Here Bt is a d-dimensional standard Brownian motion and Yt is an
d-dimensional Lévy process associated with the Lévy triplet (b, 0, ν) satisfying the condition∫

Rd
0

(|y|2 ∨ |y|p)ν(dy) <∞.

for any p ∈ N.

Our purpose is to find a discretization scheme (X
(n)
t (x))t=0,T/n,...,T for given T > 0 such that

|E[f(XT (x))]− E[f(X
(n)
T (x))]| ≤ C(T, f, x)

nm
.

We denote briefly by E[f(XT (x))] − E[f(X
(n)
T (x))] = O(1/nm) the above situation, and say that

X
(n)
T is a m-th order discretization scheme for Xt or that X

(n)
T is an approximation scheme of order

m. The Euler scheme is a 1st order scheme, and has been studied by many researchers. Talay-
Tubaro [22] shows the 1st order convergence of the Euler scheme and 2nd order convergence with
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the Romberg extrapolation for continuous diffusions. The fact that the convergence rate of the Euler
scheme also holds for certain irregular functions f under a Hörmander type condition has been proved
by Bally-Talay [3] using Malliavin calculus. For the general Lévy driven case, the Euler-Maruyama
scheme was first studied in Protter- Talay [20], see also Jacod-Protter [9] and Jacod et al. [8] (for
smooth f). The Itô-Taylor (weak-Taylor) high order scheme is a natural extension of the Euler
scheme although is hard to simulate due to the use of multiple stochastic integrals. A discussion on
the Itô-Taylor scheme with the Romberg extrapolation can be found in Kloeden-Platen [10].

In the continuous diffusion case, some new discretization schemes (also called Kusuoka type
schemes) which are of order m ≥ 2 without the Romberg extrapolation have been introduced by
Kusuoka [13], Lyons-Victoir [15], Ninomiya-Victoir [18], Kusuoka-Ninomiya-Ninomiya [14] and Fu-
jiwara [6] (m = 6). The rate of convergence of these schemes is closely related to the stochastic
Taylor expansion, or series expansion of exponential maps on a noncommutative algebra.

The actual simulation is carried out using (quasi) Monte Carlo methods. That is, one computes
1
N

∑N
i=1 f(X

(n),i
T (x)) where X

(n),i
T (x), i = 1, ..., N denotes N i.i.d. copies of X

(n)
T (x). Therefore,

using the law of large numbers, the final error 1
N

∑N
i=1 f(X

(n),i
T (x)) − E[f(XT (x))] is of the order

O
(

1√
N

+ 1
nm

)
. Then the optimal asymptotic choice of n is O(nm) = O(

√
N).

The goal of the present article is two-fold. First, we introduce a general framework to study weak
approximation problems from the standpoint of operator (semigroup) expansions. That is given two
processes that have equal semigroup expansions up to some order lead after composition to two
processes that are closed in law. This goal is not new. In fact, using PDE techniques, Milshtein and
Talay between others proved various weak approximation results. Although our proof is essentially
the same it gives a new viewpoint that will help in defining new approximation schemes.

The next idea, is to decompose the generator associated with (1.1) in (say) d+2 components where
each component is associated with each component of the driving process (the whole Lévy process
is considered as one component). Then we prove that if each of these components is approximated
with an error of order m + 1 then the composition gives an error of order m. In the particular
case that each component can be characterized as the semigroup of a flow-type process then the
composition leads to a composition-type approximation scheme.

Secondly, using the above strategy we provide approximations for solutions of (1.1). In partic-
ular, our approximations are valid for infinite activity Lévy processes Y . We prove that in fact,
if one uses the Asmussen-Rosiński idea of approximating the jumps of size smaller than ε with a
Brownian motion and we only simulate one jump of size bigger than ε per each time interval in the
approximation is enough to provide a first order approximation procedure. Furthermore we give the
necessary estimate to determine ε as a function of n. For this approximation, we found it better to
decompose the generator in d+ 4 components.

This paper is organized as follows. In Section 2, we introduce the main example and the goal for
the first part of this article in explicit mathematical terms. The general framework is introduced in
Section 3. In Section 4 we give the results of convergence rates of numerical discretization schemes
in the general framework. In Section 5, we give a general result that states how to recombine
the approximations to coordinate processes in order to approximate the semigroup associated to
(1.1). Finally, in Section 6 we approximate each coordinate process and in particular, we define
approximation schemes for Lévy driven SDEs.

2 Weak approximation problem

In order to better understand the abstract formulation in Section 3, we introduce here our main
example. Let (Yt) be a d-dimensional Lévy process characterized by Lévy-Khintchin formula:

E[ei〈θ,Yt〉] = exp t

(
i〈θ, b〉 − 〈θ, cθ〉

2
+

∫
Rd

0

(ei〈θ,y〉 − 1− i〈θ, τ(y)〉)ν(dy)

)
(2.1)
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where b ∈ Rd, c ∈ Rd ⊗ Rd (symmetric, semi-positive definite) and ν is a Borel measure on
Rd

0 := Rd \ {0} satisfying that for all p ≥ 2∫
Rd

0

(|y|2 ∨ |y|p)ν(dy) <∞. (2.2)

This measure ν is called the Lévy measure. It is well known that (2.2) implies that Yt ∈
⋂
p≥1 L

p

for all t. We also recall that τ is a truncation function (e.g. τ(y) = y1{|y|≤1}, the constant b and τ
depend on each other). The triplet (b, c, ν) is called the Lévy triplet.

The Lévy driven stochastic differential equation is given by

Xt(x) = x+

∫ t

0

Ṽ0(Xs−(x))ds+

∫ t

0

V (Xs−(x))dBs +

∫ t

0

h(Xs−(x))dYs (2.3)

with smooth coefficients Ṽ0 : RN → RN , V = (V1, . . . , Vd), h : RN → RN ⊗Rd whose derivatives
of any order (≥ 1) are bounded. Here Bt and Yt are independent d-dimensional standard Brownian
motion and Yt is a d-dimensional Lévy process associated with the Lévy triplet (b, 0, ν) satisfying
the condition (2.2). Using general semimartingale theory (see [19]) we have that the above equation

has a unique solution. We define V0 := Ṽ0 − 1
2

∑d
i=1

∑N
j=1

∂Vi
∂xj

V
(j)
i . Then (2.3) can be rewritten in

the following Stratonovich form:

Xt(x) = x+

d∑
i=0

∫ t

0

Vi(Xs−(x)) ◦ dBis +

∫ t

0

h(Xs−(x))dYs

where B0
t = t.

Before introducing the general framework of approximation, let us explain in mathematical terms
the goal in this article. Our main example corresponds to the approximation of the semigroup Pt
defined as the semigroup associated to the Markov process Xt:

Ptf(x) = E[f(Xt(x))]

where f : RN → R is a continuous function with polynomial growth at infinity.
Let Qt ≡ Qnt be an operator such that the semigroup property is satisfied in {kT/n; k = 0, ..., n}.

Assume that Qt approximates Pt in the sense that it satisfies the local error estimate (Pt−Qt)f(x) =
O(tm+1). Then using the semigroup property of both Pt and (QkT/n), we notice that

PT f(x)− (QT/n)nf(x) =

n−1∑
k=0

(QT/n)k(PT/n −QT/n)PT− k+1
n T f(x).

Therefore if we have good norm estimates of (QT/n)k and PT− k+1
n T in a sense to be defined later (in

particular the norm estimates have to be independent of n) then we can expect that (QT/n)n is an
approximation of order m to PT . Finally in order to be able to perform Monte Carlo simulations we
assume that Q has a stochastic representation. That is, there exists a stochastic process M = Mt(x)
starting at x such that Qtf(x) = E[f(Mt(x))]. Then clearly, we have the following representation.

QT f(x) = (QT/n)nf(x) = E[f(M1
T/n ◦ · · · ◦M

n
T/n(x))]

where M i
T/n are independent copies of MT/n and ◦ is defined as (M i

t ◦M
j
t )(x) := M i

t (M
j
t (x)).

The above ideas are well known and have been already used to achieve proofs of weak convergence
(for historical references, see [10]). Nevertheless, it seems to us that this is the first time it appears
in this general framework. For example, if we take Mt(x) := x+ Ṽ0(x)t+V (x)Bt+h(x)Yt for d = 1,
one obtains the Euler-Maruyama scheme.
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Next to further simplify the procedure to obtain approximations we write the operator Pt as a
composition of d + 2 operators as follows. First define the following stochastic processes Xi,t(x),
i = 0, ..., d+ 1, usually called coordinate processes, which are the unique solutions of

X0,t(x) = x+

∫ t

0

V0(X0,s(x))ds

Xi,t(x) = x+

∫ t

0

Vi(Xi,s(x)) ◦ dBis 1 ≤ i ≤ d

Xd+1,t(x) = x+

∫ t

0

h(Xd+1,s−(x))dYs.

Then we define
Qi,tf(x) := E[f(Xi,t(x))] (2.4)

for continuous function f : RN → R with polynomial growth at infinity.
For notational convenience we identify a smooth function V : RN → RN with a smooth vector

field
∑N
i=1 V

(i) ∂
∂xi

on RN . Let us define (integro-)differential operators Li acting on C2 by

L0f(x) := (V0f)(x), Lif(x) :=
1

2
(V 2
i f)(x), 1 ≤ i ≤ d (2.5)

Ld+1f(x) := ∇f(x)h(x)b+

∫
(f(x+ h(x)y)− f(x)−∇f(x)h(x)τ(y))ν(dy).

It is well known that L :=
∑d+1
i=0 Li is the generator of X and similarly Li is the generator of

Xi,t. Also etL := Pt and etLi := Qi,t respectively where we consider these expressions as exponential
maps on a noncommutative algebra. One notices that these operators have the form

etL =

m∑
k=0

tk

k!
Lk +O(tm+1) (2.6)

etLi =

m∑
k=0

tk

k!
Lki +O(tm+1) (2.7)

To approximate etL, we would like to find some combination of operators satisfying

etL −
k∑
j=1

ξje
t1,jA1,j · · · et`j ,jA`j ,j = O(tm+1) (2.8)

with some ti,j > 0, Ai,j ∈ {L0, L1, . . . , Ld+1} and weights {ξj} ⊂ [0, 1] with
∑k
j=1 ξj = 1. This will

correspond to an m-th order discretization scheme.
To find such schemes, one can perform formal Taylor expansions for etA in each of the terms

in (2.8). We remark that the result (2.8) will follow directly from (2.6) and (2.7) independent of

the specific form of the decomposition L :=
∑d+1
i=0 Li. This algebraic calculation has lead to the

introduction of the following approximation schemes
Ninomiya-Victoir (a):

1

2
e
t
2L0etL1 · · · etLd+1e

t
2L0 +

1

2
e
t
2L0etLd+1 · · · etL1e

t
2L0 (2.9)

Ninomiya-Victoir (b):

1

2
etL0etL1 · · · etLd+1 +

1

2
etLd+1 · · · etL1etL0 (2.10)

Splitting method:
e
t
2L0 · · · e t2LdetLd+1e

t
2Ld · · · e t2L0 (2.11)
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The semigroups generated by these operators have a probabilistic representation. For example,
Ninomiya-Victoir (a) corresponds to

1U< 1
2
X0,t/2 ◦Xd+1,t · · ·X1,t ◦X0,t/2(x) + 1 1

2≤U
X0,t/2 ◦X1,t · · ·Xd+1,t ◦X0,t/2(x)

where U is a uniform random variable taking values in [0, 1], independent of Xi,t. However, since a
closed-form solution Xi,t is not always available, one has to replace Xi,t with other approximations
of order m+ 1 so that the final approximation result remains unchanged. Nevertheless the fact that
there is only one driving process simplifies this task. This problem will be discussed in Section 5.

3 Preliminaries

3.1 Notation and assumptions

In this section, we consider a general framework for weak approximations following the arguments
in Section 2, without using the specific form of the operator. We first define the following functional
spaces.

• Cmp ≡ Cmp (RN ): the set of Cm functions f : RN → R such that for each multi-index α with
0 ≤ |α| ≤ m, |∂αx f(x)| ≤ C(α)(1 + |x|p) for some positive constant C(α).

We also let Cp ≡ C0
p . Let us define a norm on Cmp by

‖f‖Cmp := inf{C ≥ 0 : |∂αx f(x)| ≤ C(1 + |x|p), 0 ≤ |α| ≤ m,x ∈ RN}

where we denote |α| := α1 + · · ·+ αN for α = (α1, . . . , αN ) ∈ ZN+ .

• C1,m
p ([0, T ]×RN ): the set of functions f : [0, T ]×RN → R such that s 7→ f(s, x) is continuous

differentiable for all x ∈ RN and satisfies that f(s, ·), ∂sf(s, ·) ∈ Cmp with sups∈[0,T ](‖f(s, ·)‖Cmp +
‖∂sf(s, ·)‖Cmp ) <∞.

From now on, we denote by Qt :
⋃
p≥0 Cp(R

N )→
⋃
p≥0 Cp(R

N ) a linear operator for 0 ≤ t ≤ T
such that Qt1 ≡ 1.

Assumption (M0) . If f ∈ Cp with p ≥ 2, then Qtf ∈ Cp and

sup
t∈[0,T ]

‖Qtf‖Cp ≤ K‖f‖Cp

for some constant K > 0 independent of n. Futhermore, we assume 0 ≤ Qtf(x) ≤ Qtg(x) whenever
0 ≤ f ≤ g.

We now introduce two assumptions which are highly related to the convergence rate of approxi-
mation schemes.

Assumption (M) . Qt satisfies (M0), and for each fp(x) := |x|2p (p ∈ N),

Qtfp(x) ≤ (1 +Kt)fp(x) +K ′t (3.1)

for some constant K = K(T, p), K ′ = K ′(T, p) > 0.

For m ∈ N, δm : [0, T ]→ R+ denotes a increasing function which satisfies

lim sup
t→0+

δm(t)

tm−1
= 0.

Usually, we have δm(t) = tm.
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Assumption R(m, δm) . For each p ≥ 2, there exists a constant q = q(m, p) ≥ p and linear

operators ek ≡ eQk : C2k
p → Cp+2k (k = 0, 1, . . . ,m) such that

(A): For every f ∈ C2(m′+1)
p with 0?? ≤ m′ ≤ m, the operator Qt satisfies

Qtf(x) =

m′∑
k=0

(ekf)(x)tk + (Err
(m′)
t f)(x), t ∈ [0, T ], (3.2)

where Err
(m′)
t f ∈ Cq, and satisfies the following condition:

(B): If f ∈ Cm
′′

p with m′′ ≥ 2k, then ekf ∈ Cm
′′−2k

p+2k and there exists a constant constant K =
K(T,m) > 0 such that

‖ekf‖Cm′′−2k
p+2k

≤ K‖f‖Cm′′p
k = 0, 1, . . . ,m. (3.3)

Furthermore if f ∈ Cm′′p with m′′ ≥ 2m′ + 2,

‖Err
(m′)
t f‖Cq ≤

{
Ktm

′+1‖f‖Cm′′p
if m′ < m

Ktδm(t)‖f‖Cm′′p
if m′ = m

for all 0 ≤ t ≤ T .
(C): For every 0 ≤ k ≤ m and j ≥ 2k+2, if f ∈ C1,j

p ([0, T ]×RN ), then ekf ∈ C1,j−2k
p+2k ([0, T ]×RN ).

In order to compare the finite power expansions of different operators, we introduce the following
notation.

J≤m(Qt) :=

m∑
k=0

tkek

Jm(Q) := em.

J≤m(Qt) is a linear operator, which is related to the series expansion of t 7→ etLi (cf. Proposition
7.6). The following Lemma comprises some basic properties related to the above definition. The
proof is straightforward.

Lemma 3.1. The following properties are satisfied:

R(m+ 1, δm+1) ⇒ R(m, tm)

R(m, δm) ⇒ R(m, δ̃m)

whenever δm(t) ≤ Kδ̃m(t) and lim supt→0+ δ̃m(t)/tm−1 = 0.

(i) Let {ξi}1≤i≤` be deterministic positive constants with
∑
i ξi = 1, and assume (M) for Q

(i)
t

(i = 1, . . . , `). Then
∑`
i=1 ξiQ

(i)
t also satisfies (M).

(ii) Let {ξi}1≤i≤` ⊂ R and assume R(m, δm) for Q
(i)
t (i = 1, . . . , `). Then

∑`
i=1 ξiQ

(i)
t also satisfies

R(m, δm).

4 Weak rate of convergence

In this section, we prove the rate of convergence for the approximating operator Q under the as-
sumptions (M), R(m, δm). Throughout this section, we assume the following assumption

Assumption (MP ) . For all f ∈ Cmp then P·f ∈ C1,m−2
p+2 with Pt1 ≡ 1 and furthermore the

following two properties are satisfied for some positive constant C
1. supt∈[0,T ] ‖Ptf‖Cmp ≤ C‖f‖Cmp .
2. ‖(Pt − Ps) f‖Cmp ≤ C|t− s|‖f‖Cmp .
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Theorem 4.1. Assume (M) and R(m, δm) for Pt and Qt with J≤m(Pt − Qt) = 0. Then for any

f ∈ C2(m+1)
p , there exists a constant K = K(T, x) > 0 such that∣∣∣PT f(x)− (QT/n)nf(x)

∣∣∣ ≤ Kδm(T
n

)
‖f‖

C
2(m+1)
p

. (4.1)

For the proof, we need the following lemma.

Lemma 4.2. Under assumption (M), the operators Pt and Qt satisfy

sup
n

max
0≤k≤n

((
PT/n

)k
+ (QT/n)k

)
f(x) <∞

for any positive function f ∈ Cp with p ≥ 0.

Proof. Without loss of generality we do the proof for Q. Let fp(x) = |x|2p for p ∈ N. By the
assumption (M), we have

(QT/n)kfp(x) = (QT/n)k−1(QT/nfp)(x)

≤ (1 +
C

n
)(QT/n)k−1fp(x) +

C ′

n

with some constant C,C ′ independent of t, x, k, n. Since (1 + C
n )k ≤ eC , one proves by induction

that
sup
n

max
0≤k≤n

(QT/n)kfp(x) ≤ eCC ′(1 + |x|2p).

This completes the proof.

Proof. Proof of Theorem 4.1: Let f ∈ C
2(m+1)
p . Using the semigroup property and assumption

R(m, δm), we have

PT f(x)− (QT/n)nf(x) =

n−1∑
k=0

(QT/n)k(PT/n −QT/n)PT− k+1
n T f(x)

=

n−1∑
k=0

(QT/n)k(Err
(m)
T/nPT− k+1

n T f)(x)

where Err
(m)
t is the error term of (P −Q) defined in (3.2). We obtain from assumptions R(m, δm)

and (MP )

|(Err
(m)
T/nPT− k+1

n T f)(x)| ≤ K1
T

n
δm

(T
n

)
(1 + |x|q)‖PT− k+1

n T f‖C2(m+1)
p

≤ K2T

n
δm

(T
n

)
(1 + |x|q)‖f‖

C
2(m+1)
p

and hence Lemma 4.2 leads to

|(QT/n)k(Err
(m)
T/nPT− k+1

n T f)(x)| ≤ K2T

n
δm

(T
n

)
‖f‖

C
2(m+1)
p

(QT/n)k((1 + |x|q))

≤ K

n
δm

(T
n

)
‖f‖

C
2(m+1)
p

for some constant K = K(T, x). This completes the proof.

The following theorem is an extension of Theorem 4.1, and is analogous to Talay-Tubaro [22,
Theorem 1].
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Theorem 4.3. Assume (M) and R(m + 1, δm+1) for Qt with J≤m(Pt − Qt) = 0. Then for each

f ∈ C2(m+3)
p , we have

PT f(x)− (QT/n)nf(x) =
K

nm
+O

((T
n

)m+1

∨ δm+1

(T
n

))
(4.2)

where K = Tm
∫ T

0
PsJm+1(P −Q)PT−sf(x)ds.

Proof. We start by noting that as in the proof of Theorem 4.1,

(PT/n −QT/n)PT−sf(x) =
(T
n

)m+1

Jm+1(P −Q)PT−sf(x) + (Err
(m+1)
T/n PT−sf)(x)

and therefore,

PT f(x)− (QT/n)nf(x) =
(T
n

)m+1 n−1∑
k=0

(QT/n)kJm+1(P −Q)PT− k+1
n T f(x)

+O
(
δm+1

(T
n

))
.

Now applying the proof of Theorem 4.1 (for m = 1) to Jm+1(P − Q)PT− k+1
n T f ∈ C4

p+2(m+1), we

obtain

|((QT/n)k − PkT/n)Jm+1(P −Q)PT− k+1
n T f(x)|

≤ C1(T, x)

n
‖Jm+1(P −Q)PT− k+1

n T f‖C4
p+2(m+1)

≤ C2(T, x)

n
‖f‖

C
2(m+3)
p

.

Next, we have by hypothesis (MP ),

|PkT/nJm+1(P −Q)PT− k+1
n T f(x)− P k+1

n TJm+1(P −Q)PT− k+1
n T f(x)|

= |(I − PT/n)PkT/nJm+1(P −Q)PT− k+1
n T f(x)|

≤ C3(T, x)

n
‖PkT/nJm+1(P −Q)PT− k+1

n T f‖C4
p+2(m+1)

≤ C4(T, x)

n
‖f‖

C
2(m+3)
p

.

Using Lemmas 7.1, 7.2 in the Appendix and Jm+1(P −Q)PT−sf(x) ∈ C1,2
p+2(m+2), we have

∣∣∣T
n

n−1∑
k=0

P k+1
n TJm+1(P −Q)PT− k+1

n T f(x)−
∫ T

0

PsJm+1(P −Q)PT−sf(x)ds
∣∣∣

≤ C(T, f, x)

n
.

As a result, taking K = Tm
∫ T

0
PsJm+1(P −Q)PT−sf(x)ds, we conclude that

PT f(x)− (QT/n)nf(x) =
K

nm
+O

((T
n

)m+1

∨ δm+1

(T
n

))
.

This concludes the proof.
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5 Algebraic approximations of semigroup operators using co-
ordinate operators

Throughout this section, we assume that Pt, t ∈ [0, T ] is a semigroup that satisfies (M), (MP )and
R(m, δm). Furthermore we suppose that

J≤m(Pt) = I +

m∑
j=1

tj

j!
ej

with ej =
(∑d+1

i=0 Li

)j
satisfying the properties stated in R(m, δm). Similarly, we assume that

Qi,t:
⋃
p≥0 Cp(R

N )→
⋃
p≥0 Cp(R

N ), i = 0, ..., d+1 be a sequence of operators such that they satisfy
(M), (MP )and R(m, δm) with

J≤m(Qi,t) = I +

m∑
j=1

tj

j!
Lji .

∏`
i=1 ai := a1a2 · · · a` denotes a noncommutative product.

Theorem 5.1. Assume m = 2. That is, (M) and R(2, δ2) are satisfied for Qi,t (i = 0, 1, . . . , d+ 1).
Then all the following operators satisfy (M) and R(2, δ2):

N-V(a) Q
(a)
t = 1

2Q0,t/2

∏d+1
i=1 Qi,tQ0,t/2 + 1

2Q0,t/2

∏d+1
i=1 Qd+2−i,tQ0,t/2

N-V(b) Q
(b)
t = 1

2

∏d+1
i=0 Qi,t + 1

2

∏d+1
i=0 Qd+1−i,t

Splitting Q
(sp)
t = Q0,t/2 · · ·Qd,t/2Qd+1,tQd,t/2 · · ·Q0,t/2

Moreover, we have J≤2(Q
(a)
t ) = J≤2(Q

(b)
t ) = J≤2(Q

(sp)
t ) =

∑2
k=0

tk

k!L
k. In particular, the above

schemes define a second order approximation scheme.

The proof of Theorem 5.1 is an application of Theorem 4.1. The conditions follow from the next
lemma, together with an algebraic calculation as pointed out at the end of Section 2.

This theorem can also be stated for third order approximation schemes.

Lemma 5.2. Let Q1
t and Q2

t :
⋃
p≥0 Cp(R

N )→
⋃
p≥0 Cp(R

N ) be two linear operators and let Q1
tQ

2
t

be the composite operator. Then
(i) If (M) holds for Q1

t , Q
2
t , then it also holds for Q1

tQ
2
t .

(ii) If R(m, δm) holds for Q1
t , Q

2
t , then it also holds for Q1

tQ
2
t .

Proof. (i) is obvious. We now prove (ii). Let m′ ≤ m. We have by hypothesis that

Q1
tf(x) =

m′∑
k=0

(JkQ
1
tf)(x)tk + (Err

(m′,1)
t f)(x)

Q2
tf(x) =

m′∑
k=0

(JkQ
2
tf)(x)tk + (Err

(m′,2)
t f)(x)

for f ∈ C2(m′+1)
p , p ≥ 2. Furthermore there exists q = q(m, p) > 0 such that Err

(m′,1)
t f , Err

(m′,2)
t f ∈

Cq. Now we prove (A)-(C) in the definition of R(m, δm).

(A): Note that for f ∈ C2(m′+1)
p (RN ),

Q1
tQ

2
tf(x) = Q1

t

 m′∑
k=0

(JkQ
2
tf)(x)tk + (Err

(m′,2)
t f)(x)

 .
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Since JkQ
2
tf ∈ C

2(m′+1)−2k
p+2k , Q1

t (JkQ
2
tf) can be written as

(Q1
t (JkQ

2
tf))(x) =

m′−k∑
`=0

(J`Q
1
t (JkQ

2
tf))(x)t` + (Err

(m′−k,1)
t JkQ

2
tf)(x).

As a result, we have

Q1
tQ

2
tf(x) =

m′∑
k=0

m′−k∑
`=0

(J`Q
1
t (JkQ

2
tf))(x)tk+` + (Err

(m′,1,2)
t f)(x)

where

(Err
(m′,1,2)
t f)(x) = (Q1

tErr
(m′,2)
t f)(x) +

m′∑
k=0

(Err
(m′−k,1)
t JkQ

2
tf)(x)tk. (5.1)

We obtain from the properties of the error terms that Err
(m′,1,2)
t f ∈ Cq′ for some q′ = q′(m, p) > q.

(B): For f ∈ Cm′′p with m′′ ≥ 2(m′ + 1), we can derive for k + ` ≤ m′,

‖J`Q1
t (JkQ

2
tf)‖

C
m′′−2(k+`)

p+2(k+`)

≤ K1‖JkQ2
tf‖Cm′′−2k

p+2k

≤ K2‖f‖Cm′′p

and by (5.1),

‖Err
(m′,1,2)
t f‖Cq′ ≤ K3‖Err

(m′,2)
t f‖Cq +K4‖Err

(m′,1)
t J0Q

2
tf‖Cq′

+ K5

m′∑
k=1

‖JkQ2
tf‖Cm′′−2k

p+2k

tm
′+1

≤

{
Ktm

′+1‖f‖Cm′′p
if m′ < m

Ktδm(t)‖f‖Cm′′p
if m′ = m.

Finally, the proof of (C) is straightforward.

Proof. Proof of Theorem 5.1: Using this lemma, we end the proof, calculating J≤m for each numerical
discretization scheme. For instance, in the case of N-V(b) (i.e. (2.10)), we obtain

J≤2

(1

2

d+1∏
i=0

Qi,t +
1

2

d+1∏
i=0

Qd+1−i,t

)
=

1

2
J≤2

( d+1∏
i=0

J≤2

(
Qit

))
+

1

2
J≤2

( d+1∏
i=0

J≤2

(
Qd+1−i,t

))
=

1

2
J≤2

( d+1∏
i=0

( 2∑
k=0

tk

k!
Lki

))
+

1

2
J≤2

( d+1∏
i=0

( 2∑
k=0

tk

k!
Lkd+1−i

))
=

1

2

(
I + t

d+1∑
i=1

Li +
t2

2

d+1∑
i=1

L2
i + t2

∑
i<j

LiLj

)

+
1

2

(
I + t

d+1∑
i=1

Li +
t2

2

d+1∑
i=1

L2
i + t2

∑
i>j

LiLj

)
= J≤2(Pt).

Another idea to construct construct higher order schemes is to use local Romberg extrapolation.
In order to do this we need to weaken the assumption {ξi} ⊂ [0, 1]. This is done in the next theorem.
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Theorem 5.3. Let m = 1 or 2. Assume (M) and R(2m, t2m) for Pt and Q
[i]
t (i = 1, . . . , `) and

(MP ) for Pt. Furthermore, we assume

(1) J≤2m

(
Pt −

∑`
i=1 ξiQ

[i]
t

)
= 0 for some real numbers {ξi}i=1,...,` with

∑l
i=1 ξi = 1

(2) There exists a constant q = q(m, p) > 0 such that for every f ∈ Cm
′

p with m′ ≥ 2(m + 1),

(Pt −Q[i]
t )f ∈ Cm

′−2(m+1)
q and

sup
t∈[0,T ]

‖(Pt −Q[i]
t )f‖

C
m′−2(m+1)
p

≤ CT ‖f‖Cm′q Tm+1.

Then we have for any f ∈ C4(m+1)
p ,

∣∣∣PT f(x)−
∑̀
i=1

ξi(Q
[i]
T/n)nf(x)

∣∣∣ ≤ C(T, f, x)

n2m
.

Proof. We first remark that the operator
∑`
i=1 ξiQ

[i]
t no longer satisfies the semigroup property, i.e.∑`

i=1 ξi(Q
[i]
T/n)n 6= (

∑`
i=1 ξiQ

[i]
T/n)n. Thus the proof is nontrivial. Note that for f ∈ C4(m+1)

p ,

E := PT f(x)−
∑̀
i=1

ξi

(
Q

[i]
T/n

)n
f(x) =

∑̀
i=1

ξi

(
PT −

(
Q

[i]
T/n

)n)
f(x).

Using the semigroup property of Pt and Q
[i]
k
nT

, we have

E =
∑̀
i=1

ξi

n−1∑
k=0

(Q
[i]
T/n)k

(
PT/n −Q

[i]
T/n

)
PT− k+1

n T f(x)

=
∑̀
i=1

ξi

n−1∑
k=0

PkT/n

(
PT/n −Q

[i]
T/n

)
PT− k+1

n T f(x)

+
∑̀
i=1

ξi

n−1∑
k=0

(
(Q

[i]
T/n)k − PkT/n

)(
PT/n −Q

[i]
T/n

)
PT− k+1

n T f(x)

We expand (Q
[i]
T/n)k − PkT/n again, to obtain

E =

n−1∑
k=0

(PT/n)k
(
PT/n −

∑̀
i=1

ξiQ
[i]
T/n

)
PT− k+1

n T f(x)

+
∑̀
i=1

ξi

n−1∑
k=0

k−1∑
l=0

(
Q

[i]
T/n

)l(
Q

[i]
T/n − PT/n

)
PT− l+1

n T

(
PT/n −Q

[i]
T/n

)
PT− k+1

n T f(x).

By the assumption (1), we have

∣∣∣ n−1∑
k=0

(PT/n)k
(
PT/n −

∑̀
i=1

ξiQ
[i]
T/n

)
PT− k+1

n T f(x)
∣∣∣ ≤ C1(T, f, x)

n2m
.

Thus we end the proof by showing that∣∣∣ ∑̀
i=1

ξi

n−1∑
k=0

k−1∑
l=0

(
Q

[i]
T/n

)l(
Q

[i]
T/n − PT/n

)
PT− l+1

n T

(
PT/n −Q

[i]
T/n

)
PT− k+1

n T f(x)
∣∣∣

≤ C2(T, f, x)

n2m
.
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Using here the assumption (2), we obtain∥∥∥(Q[i]
T/n − PT/n

)
PT− l+1

n T

(
PT/n −Q

[i]
T/n

)
PT− k+1

n T f
∥∥∥
Cq′

≤ C(T )

nm+1

∥∥∥(PT/n −Q[i]
T/n

)
PT− k+1

n T f
∥∥∥
C

2(m+1)
q

≤ C ′(T )

n2(m+1)
‖f‖

C
4(m+1)
p

and therefore∣∣∣ ∑̀
i=1

ξi

n−1∑
k=0

k−1∑
l=0

(
Q

[i]
T/n

)l(
Q

[i]
T/n − PT/n

)
PT− l+1

n T

(
PT/n −Q

[i]
T/n

)
PT− k+1

n T f(x)
∣∣∣

≤
n−1∑
k=0

k−1∑
l=0

C2(T, f, x)

n2(m+1)
≤ C2(T, f, x)

n2m
.

This completes the proof.

Example 5.4. It is known that the Ninomiya-Victoir scheme

(1

2
e
T
2nL0

d+1∏
i=1

e
T
nLie

T
2nL0 +

1

2
e
T
2nL0

d+1∏
i=1

e
T
nLd+2−ie

T
2nL0

)n
is of order 2 (m = 2, δ2(t) = t2 in Theorem 4.1). By Theorem 5.3, the following modified Ninomiya-
Victoir scheme

1

2

(
e
T
2nL0

d+1∏
i=1

e
T
nLie

T
2nL0

)n
+

1

2

(
e
T
2nL0

d+1∏
i=1

e
T
nLd+2−ie

T
2nL0

)n
is also of order 2.

Example 5.5. Fujiwara [6] gives a proof of a similar version of the above theorem and some examples
of 4th and 6th order. We introduce the examples of 4th order:

4

3

(
1

2

( d+1∏
i=0

e
t
2Li
)2

+
1

2

( d+1∏
i=0

e
t
2Ld+1−i

)2
)
− 1

3

(
1

2

d+1∏
i=0

etLi +
1

2

d+1∏
i=0

etLd+1−i

)

In order to complete the approximation procedure through (quasi) Monte Carlo methods we need
to find a stochastic characterization of the operators Qi,t.

Definition 5.6. Given a stochastic process Yt(x) ∈ ∩p≥1L
p, we say that Y is the stochastic char-

acterization of the linear operator Qt if Qtf(x) = E [f(Yt(x))] for f ∈
⋃
p≥0 Cp. In such as case we

use the notation Qt ≡ QYt .

Remark 5.7. Given the operators QZ
i

t (i = 1, . . . , `) and the deterministic positive weights {ξi}1≤i≤`
with

∑l
i=1 ξi = 1. Let U be a uniform random variable on [0, 1] independent of (Zi)i and define

Z :=
∑`
i=1 1(

∑i−1
j=1 ξj ≤ U <

∑i
j=1 ξj)Z

i. Then

QZt f(x) ≡ E[f(Zt(x))] =
∑̀
i=1

ξiQ
Zi

t f(x).

Therefore by Lemma 3.1 if QZ
i

t satisfy (M) and R(m, δm) so does QZt . This property will be used
repeatedly in what follows.
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6 Applications

From this section on, we discuss the application of the previous approximation results to the case
of solutions of the sde (1.1). From the results in the Appendix (see Corollary 7.7), it is clear
that the semigroup Ptf(x) := E[f(Xt(x))] satisfies the hypotheses (M) and R(m, δm). We define

various approximations generated via a stochastic process X̄i with corresponding operator QX̄it
(i = 0, 1, . . . , d+ 1).

Due to the previous results and in particular, Theorem 5.1, we see that is enough to verify
local conditions on the approximation operators to conclude global properties of approximation. In
particular, we only need to verify that the operator associated with X̄i (the approximation to the

coordinate process) satisfies (M) and R(m, δm) and J≤m(QX̄it ) = I +
∑m
j=1

tj

j!L
j
i for some m ≥ 2

for Li given by (2.5). This is the goal in most of the applications in this section.
Recall that the stochastic differential equation to be approximated is

Xt(x) = x+

d∑
i=0

∫ t

0

Vi(Xs−(x)) ◦ dBis +

∫ t

0

h(Xs−(x))dYs.

In each of the following sections we consider different approximation processes for the coordinate
processes Xi,t. In each section, the notation for the approximating process is always X̄i,t. We hope
that this does not raise confusion as the framework in each section is clear.

6.1 Continuous diffusion component

a) Explicit solution: Let V : RN → RN be a smooth function satisfying the linear growth
condition |V (x)| ≤ C(1 + |x|). The exponential map is defined as exp(V )x = z1(x) where z denotes
the solution of the ordinary differential equation

dzt(x)

dt
= V (zt(x)), z0(x) = x. (6.1)

The solution of the coordinate sde is obtained in the following Proposition. The proof follows
from Ito’s formula.

Proposition 6.1. For i = 0, 1, ..., d, the stochastic differential equation

Xi,t(x) = x+

∫ t

0

Vi(Xi,s(x)) ◦ dBis (6.2)

has a unique solution given by
Xi,t(x) = exp(BitVi)x.

Xi,t(x) is called the i-th coordinate process and its semigroup is denoted by Qit. This is a
trivial example of the approximation of etLi , i = 0, 1, . . . , d satisfying (M) and R(m, tm). However,
sometimes it is not easy to obtain the closed-form solution to the ODE (6.1). In those cases, we
shall approximate exp(tV )x. Here we will do this with the Taylor expansion first and then the
Runge-Kutta methods denoted by bm and cm respectively.

b) Taylor expansion: We first prove the following lemmas which help us to find the rate of
convergence of the scheme to be defined later. The following Lemma follows easily from Gronwall’s
lemma.

Lemma 6.2. Let V be a smooth function which satisfies the linear growth condition. Then | exp(tV )x| ≤
C eK|t|(1 + |x|) for t ∈ R, x ∈ RN .

From now on we denote by ej : RN → R, the coordinate function ej(x) = xj for j = 1, ..., N .
Furthermore, we also denote by V the vector field operator defined from V .
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Lemma 6.3. Let f ∈ Cm+1
p . Then we have for i = 0, 1, . . . , d,

f (exp(tVi)x) =

m∑
k=0

tk

k!
V ki f(x) +

∫ t

0

(t− u)m

m!
V m+1
i f(exp(uVi)x)du (6.3)

and ∣∣∣ ∫ t

0

(t− u)m

m!
V m+1
i f(exp(uVi)x)du

∣∣∣ ≤ Cm‖f‖Cm+1
p

eK|t|(1 + |x|p+m+1)|t|m+1.

for all t ∈ R.

Proof. Assertion (6.3) follows application of Taylor expansion to the function f(exp(tV )x) around
t = 0. Next, as |V m+1

i f(x)| ≤ C(1 + |x|p+m+1), we obtain from Lemma 6.2,∣∣∣ ∫ t

0

(t− u)m

m!
V m+1
i f(exp(uV )x)du

∣∣∣
≤ Cm‖f‖Cm+1

p

∫ |t|
0

|t|mCeK|u|(1 + |x|p+m+1))du

≤ C ′m‖f‖Cm+1
p

eK|t|(1 + |x|p+m+1)|t|m+1.

Based on this Lemma, we define the approximation to the solution of the coordinate equation
(6.2) as follows

bjm(t, V )x =

m∑
k=0

tk

k!
(V kej)(x), j = 1, ..., N.

Define
X̄i,t(x) = b2m+1(Bit, Vi)x for i = 0, ..., d.

Then we have the following approximation result.

Proposition 6.4. (i) For every p ≥ 1,

‖Xi,t(x)− X̄i,t(x)‖Lp ≤ C(p,m, T )(1 + |x|2(m+1))tm+1.

(ii) Let f ∈ C1
p . Then we have

E[|f(Xi,t(x))− f(X̄i,t(x))|] ≤ C(m,T )‖f‖C1
p
(1 + |x|p+2(m+1))tm+1.

Proof. (i): Apply Proposition 6.1 and Lemma 6.3 with f = ei. Then we have

‖Xi,t(x)− X̄i,t(x)‖Lp ≤ E
[
|CmeK|Bt|(1 + |x|2(m+1))|Bt|2(m+1)|p

]1/p
≤ C(1 + |x|2(m+1))tm+1

for some constant C = C(p,m, T ).
(ii): We first apply the mean value theorem to obtain

E[|f(Xi,t(x))− f(X̄i,t(x))|]
≤ ‖f‖C1

p
‖1 + |θXi,t(x) + (1− θ)X̄i,t(x)|p‖L2‖Xi,t(x)− X̄i,t(x)‖L2

≤ C‖f‖C1
p
‖1 + |Xi,t(x)|p + |X̄i,t(x)|p‖L2(1 + |x|2(m+1))tm+1.

We see by Lemma 6.2 that

sup
t∈[0,T ]

‖1 + |Xi,t(x)|p + |X̄i,t(x)|p‖L2 ≤ C ′(1 + |x|p)

from which the proof follows.
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As a result of this proposition we can see that R(m, tm) holds for the operators associated with
bm(t, V0)x and b2m+1(Bit, Vi)x, 1 ≤ i ≤ d. Indeed, we have for m′ ≤ m,

E[f(X̄i,t(x))] = E [f(Xi,t(x))] + E[f(X̄i,t(x))− f(Xi,t(x))]

=

m′∑
k=0

tk

k!
Lki f(x) + (Em

′

t f)(x)

where
(Em

′

t f)(x) := (Err
(m′)
t f)(x) + E[f(X̄i,t(x))− f(Xi,t(x))]

and (Err
(m′)
t f)(x) is defined through the residue appearing in Proposition 7.6, using Li and Qi

instead of L and P . Furthermore, using Proposition 6.4 (ii), we have that the error term Em
′

t

satisfies (B) in assumption R(m, tm).
It remains to prove that (M) holds for X̄i,t(x). For the proof, we need an additional growth

condition for the vector field Vi.

Proposition 6.5. Assume that (V ki ej) (2 ≤ k ≤ m, 0 ≤ i ≤ d, 1 ≤ j ≤ N) satisfies the linear
growth condition then (M) holds for X̄i,t(x), i = 0, . . . , d.

Proof. The assumption (M0) follows from the smoothness and the linear growth property of V ki ej .
We only prove the moment condition (3.1) for X̄i,t(x) i = 1, . . . , d. Consider the multiplication
(p ∈ N) ∣∣∣ m∑

k=0

(Bit)
k

k!
(V ki ej)(x)

∣∣∣2p =
∣∣∣x+BitVi(x) +

m∑
k=2

(Bit)
k

k!
(V ki ej)(x)

∣∣∣2p.
Taking into account that E[

(
Bit
)2k+1

] = 0, k ∈N . Then by the assumption, we obtain the result.

Therefore we obtain the main result.

Theorem 6.6. Assume that (V ki ej) (2 ≤ k ≤ m, 0 ≤ i ≤ d, 1 ≤ j ≤ N) satisfies the linear growth
condition. Let X̄i,t(x) be defined by

X̄i,t(x) = b2m+1(Bit, Vi)x =

2m+1∑
k=0

1

k!
(V ki I)(x)

∫
0<t1<···<tk<t

1 ◦ dBit1 · · · ◦ dB
i
tk
.

Denote by QX̄it the semigroup associated with X̄i,t(x). Then QX̄it satisfies (M) and R(m, tm).

Furthermore J≤m(QX̄it ) = I +
∑m
j=1

tj

j!L
j
i .

c) Runge-Kutta methods: We say here that cm is an s-stage explicit Runge-Kutta method of
order m for the ODE (6.1) if it can be written in the form

cm(t, V )x = x+ t

s∑
i=1

βiki(t, V )x (6.4)

where ki(t, V )x defined inductively by

k1(t, V )x = V (x),

ki(t, V )x = V
(
x+ t

i−1∑
j=1

αi,jkj(t, V )x
)
, 2 ≤ i ≤ s,

and satisfies
| exp(tV )x− cm(t, V )x| ≤ CmeK|t|(1 + |x|m+1)|t|m+1

for some constants ((βi, αi,j)1≤j<i≤s). Runge-Kutta formulas of order less than or equal to 7 are
well known. For details, see e.g. Butcher [4].

The following proposition can be shown by the same argument as in the proof of Proposition 6.4.
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Proposition 6.7 (stochastic Runge-Kutta). (i) For every p ≥ 1,

‖Xi,t(x)− c2m+1(Bit, Vi)x‖Lp ≤ C(p,m, T )(1 + |x|2(m+1))tm+1 (6.5)

(ii) Let f ∈ C1
p . Then we have

E[|f(Xi,t(x))− f(c2m+1(Bit, Vi)x)|] ≤ C(m,T )‖f‖C1
p
(1 + |x|2(m+1))tm+1 (6.6)

Next we show that (M) still holds for the Runge-Kutta schemes.

Proposition 6.8. (M) holds for cm(Bit, Vi)x, i = 0, . . . , d.

Proof. We first note that for every 1 ≤ j ≤ s, there exists a function of the form pj =
∑j−1
k=0 ajk|t|k

such that
|kj(t, V )x| ≤ pj(t)(1 + |x|).

The assumption (M0) follows from the smoothness and the linear growth property of Vi. We now
prove (3.1). In the case i = 0, this is obvious by definition and the inequality (6.1). In the case
1 ≤ i ≤ d, observe that

cm(t, V )x = x+ t

s∑
l=1

βlV (x) + t

s∑
l=2

βl

∫ 1

0

d

dθ
V
(
x+ θt

l−1∑
j=1

αl,jkj(t, V )x
)
dθ

=: x+ t

s∑
l=1

βlV (x) +Dm(t, V )x.

Expanding multiplications and taking expectations, as in Proposition 6.5, we can show that the
terms containing odd powers of Bit have expectation 0. Finally, we obtain from the boundedness of
∂Vi that

|Dm(Bit, Vi)x| ≤ p(Bit)(1 + |x|)

where p = p(t) is of the form
∑s
k=2 ak|t|k. Using this, we conclude the proof.

Consequently, as in the Taylor scheme, R(m, tm) and (M) hold for the operators associated with
cm(t, V0)x and c2m+1(Bit, Vi)x, 1 ≤ i ≤ d. For more on this method, we refer the reader to [14].

d) Minor extension: In the previous approximation, the assumption that Bt ∼ N(0, Id) can be
weakened. In fact, we can use

√
tZ instead of Bt where (Zi)di=1 are independent and

P (Zi = ±
√

3) =
1

6
, P (Zi = 0) =

2

3

for each i = 1, . . . , d.

Proposition 6.9. Let Bt be a 1-dimensional Brownian motion and Z be a R-valued random variable
such that for all 0 ≤ k ≤ m,

E[(Z)k] = E[(B1)k]

and
E[exp(c|Z|)] <∞

for any c > 0. Then, for every f ∈ Cm+1
p ,

|E[f(exp(BtV )x)]− E[f(cm(
√
tZ, V )x)]| ≤ C(m,T )(1 + |x|p+m+1)t(m+1)/2.
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6.2 Compound Poisson case

Suppose that Yt is a compound Poisson process. That is,

Yt =

Nt∑
i=1

Ji

where (Nt) is a Poisson process with intensity λ and (Ji) are i.i.d. Rd-valued random variables
independent of (Nt) with Ji ∈

⋂
p≥1 L

p.
In this case Yt is a Lévy process with generator of the form∫

Rd
0

(f(x+ y)− f(x))ν(dy)

where τ ≡ 0, b = 0, ν(Rd
0) = λ <∞ and ν(dy) = λP (J1 ∈ dy).

Then in this case

Xd+1
t (x) = x+

∫ t

0

h(Xd+1
s− (x))dYs, t ∈ [0, T ] (6.7)

which can be solved explicitly. Indeed, let (Gi(x)) be defined by recursively

G0 = x

Gi = Gi−1 + h(Gi−1)Ji.

Then the solution can be written as Xd+1
t (x) = GNt(x). Define for fixed M ∈ N, the approximation

process X̄d+1,t = GNt∧M (x). This approximation requires the simulation of at most M jumps. In
fact, the rate of convergence is fast as the following result shows.

Theorem 6.10. Let M ∈ N. Then the process GNt∧M (x) satisfies (M) and R(M, tM−κ) for

arbitrary small κ > 0. Furthermore J≤M (Q
X̄d+1

t ) = I +
∑m
j=1

tj

j!L
j
d+1.

Proof. Note that for f ∈ Cp

Q
X̄d+1

t f(x)−Qd+1
t f(x) = E[f(GNt∧M (x))]− E[f(GNt(x))]

= E[(f(GNt∧M (x))− f(GNt(x))) 1{TM+1≤t}]

where TM := inf{t > 0 : Nt = M}. By the Hölder inequality,

|QX̄d+1

t f(x)−Qd+1
t f(x)|

≤ 2E[ sup
0≤t≤T

|f(GNt(x))|
γ
γ−1 ]

γ−1
γ P (TM+1 ≤ t)

1
γ

= 2E[ sup
0≤t≤T

|f(GNt(x))|
γ
γ−1 ]

γ−1
γ

(∫ t

0

(λs)M

M !
λe−λsds

) 1
γ

≤ C(γ, T )‖f‖Cp(1 + |x|p) (tλ)
(M+1)/γ

Take sufficiently small γ > 1, then R(M, tM−κ) holds for Q
X̄d+1

t where κ := (1− 1/γ)(M + 1) > 0.
Finally, we show (M). Let fp(x) = |x|2p (p ∈ N) and γ < M . Then using the above calculation
and Corollary 7.7, we have

Q
X̄d+1

t fp(x) = Qd+1
t fp(x) + (Q

X̄d+1

t fp(x)−Qd+1
t fp(x))

≤ (1 +K1t)fp(x) +K2t+ |QX̄d+1

t fp(x)−Qd+1
t fp(x)|

≤ (1 +K3t)fp(x) +K4t.
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6.3 Infinite activity case

In this subsection, we consider the SDE (2.3) under the conditions ν(Rd
0) = ∞. Without loss of

generality, we assume that c ≡ 0.

a) Ignoring small jumps: Define for ε > 0 the finite activity (i.e. drift + compound Poisson)
Lévy process (Y εt ) with Lévy triplet (b, 0, νε) where the Lévy measure is defined by

νε(E) := ν(E ∩ {y : |y| > ε}), E ∈ B(Rd
0). (6.8)

Consider the approximate coordinate SDE

X̄d+1,t(x) = x+

∫ t

0

h(X̄d+1,s−(x))dY εs ,

whose generator is

L1,ε
d+1f(x) = ∇f(x)h(x)b+

∫
(f(x+ h(x)y)− f(x)−∇f(x)h(x)τ(y))νε(dy).

Now we derive the error estimate for X̄d+1,t.

Theorem 6.11. Assume that 0 < ε ≡ ε(t) ≤ 1 is chosen as to satisfy that σ2(ε) :=
∫
|y|≤ε |y|

2ν(dy) ≤

tM . Then we have that Q
X̄d+1

t satisfies (M) and R(M, tM ). Furthermore J≤M (Q
X̄d+1

t ) = I +∑M
j=1

tj

j!L
j
d+1.

Proof. First, we remark that condition (M0) follows from Proposition 5.2 in [8]. We start by noting
that from Proposition 7.6, we have

Qd+1
t f(x)−QX̄d+1

t f(x) (6.9)

=

M∑
k=1

tk

k!

(
(Ld+1)

k −
(
L1,ε
d+1

)k)
f(x)

+

∫ t

0

(t− u)
M

M !

(
Qd+1
u (Ld+1)

M+1 −QX̄d+1
u

(
L1,ε
d+1

)M+1
)
f(x)du.

Therefore the proof is achieved if we prove that

|(Ld+1 − L1,ε
d+1)f(x)| ≤ C‖f‖C2

p
(1 + |x|p+2)tM+1.

For the proof, we change here the representation of the Lévy triplets of Yt and Y εt as follows:

(b, 0, ν), τ ⇒ (bε, 0, ν), τε

(b, 0, νε), τ ⇒ (bε, 0, ν
ε), τε

where τε(y) = y1{|y|≤ε}. Then

|(Ld+1 − L1,ε
d+1)f(x)| ≤

∣∣∣ ∫ ∇f(x)h(x)(y − τε(y))(ν(dy)− νε(dy))
∣∣∣ (6.10)

+
∣∣∣ ∫ ∫ 1

0

(1− θ) d
2

dθ2
f(x+ θh(x)y)dθ(ν(dy)− νε(dy))

∣∣∣.
We first obtain that for ε > 0, ∫

(y − τε(y))(ν(dy)− νε(dy)) = 0
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since the support of the measure (ν − νε) is {|y| ≤ ε}. Now we consider the second term of (6.10).
We can immediately show that due to the polynomial growth property for f ,∣∣∣ ∫ ∫ 1

0

d2

dθ2
f(x+ θh(x)y)dθ(ν(dy)− νε(dy))

∣∣∣ ≤ C‖f‖C2
p
(1 + |x|p+2)σ2(ε)

and hence as σ2(ε) ≤ tM+1, one obtains that J≤M (Q
X̄d+1

t ) = I +
∑m
j=1

tj

j!L
j
d+1 and that Q

X̄d+1

t

satisfies (M) and R(M, tM ) follows as in the proof of Proposition 6.10.

Using Theorem 5.1, we can incorporate the above approximating process X̄d+1,t to the whole
approximation method. This will require to first simulate the jump times of the approximating
Lévy process Y ε and then solving ode’s between these times. If the task is time consuming one can
also separate the jump component from the drift component as indicated by Theorem 5.1 (see also
Section 6.4). The right size of ε is determined by the condition σ2(ε) ≤ tM+1.

b) Approximation of small jumps: We apply here the Asmussen-Rosiński’s approximation for
small jumps of Lévy processes. The idea is that the small jumps ignored in (6.8) are close to a
Brownian motion with small variance σ2(ε) (see details in [2]).

Consider the new approximate SDE

X̄d+1,t(x) = x+

∫ t

0

h(X̄d+1,s(x))Σ1/2
ε dWs +

∫ t

0

h(X̄d+1,s−(x))dY εs (6.11)

where Wt is a new d-dimensional Brownian motion independent of Bt and Y εt , and Σε is the sym-
metric and semi-positive definite d× d matrix defined as

Σε =

∫
|y|≤ε

yy∗ν(dy). (6.12)

We remark that Σε is of the form AΛA∗, where A is an orthogonal matrix and Λ is the diagonal

matrix with entries λ1, . . . , λd ≥ 0 (eigenvalues). Thus we use the notation Σ
1/2
ε = AΛ1/2. Since

the above SDE is also driven by a jump-diffusion process, we can also simulate it using the second
order discretization schemes in Theorem 5.1.

Now we prove that rate of convergence in this case is faster than in the case that we ignore
completely the small jumps (see Theorem 6.11).

Theorem 6.12. Assume that 0 < ε ≡ ε(t) ≤ 1 is chosen as to satisfy that
∫
|y|≤ε |y|

3ν(dy) ≤

tM .Then we have that Q
X̄d+1

t satisfies (M) and R(M, tM ). Furthermore J≤M (Q
X̄d+1

t ) = I +∑M
j=1

tj

j!L
j
d+1.

Proof. As before, condition (M0) follows from Proposition 5.2 in [8]. The SDE X̄d+1,t corresponds
to the generator

L2,ε
d+1f(x) :=∇f(x)h(x)b+

1

2

∑
k,l

∂k,lf(x)(h(x)Σεh
∗(x))k,l

+

∫
(f(x+ h(x)y)− f(x)−∇f(x)h(x)τ(y))νε(dy).

Using this representation, we have for f ∈ C3
p ,

(Ld+1 − L2,ε
d+1)f(x) =

∫ ∫ 1

0

(1− θ) d
2

dθ2
f(x+ θh(x)y)dθ(ν(dy)− νε(dy))

− 1

2

∑
k,l

∂k,lf(x)(h(x)Σεh
∗(x))k,l

=

∫ ∫ 1

0

(1− θ)2

2

d3

dθ3
f(x+ θh(x)y)dθ(ν(dy)− νε(dy)).

Hence we finish the proof as in the proof of Theorems 6.10 and 6.11.
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If we put all the pieces together, we have the following final result. Here Bijt denote i = 1, ..., d,
j = 1, ..., 2n denote 2nd independent standard Brownian motions and B0j

t ≡ t.

Theorem 6.13. Assume that V0, V and h are infinitely differentiable functions with bounded deriva-

tives with
∫
Rd

0
(1 ∧ |y|p)ν(dy) <∞ for all p ∈ N. Define ε ≡ ε(T, n) so that

∫
|y|≤ε |y|

3ν(dy) ≤
(
T
n

)3
.

Let X̄j
i,t(x) = c5(Bijt , Vi)x, i = 0, ..., d, j = 1, ..., 2n, 2n copies of the Runge-Kutta method of order

2 as defined in (6.4) and X̄j
d+1,t(x) j = 1, ..., 2n independent copies of the approximation defined in

(6.11). Then the following schemes, X
(n)
T = Y nn ◦ Y n−1

n ◦ ... ◦ Y 1
n (x), are second order discretization

schemes:

N-V(a) Y jn (x) = UjX̄
j
0,T/(2n) ◦ X̄

j
1,T/n ◦ ...◦ X̄

j
d+1,T/n ◦ X̄

j
0,T/(2n)(x) + (1−Uj)X̄j

0,T/(2n) ◦ X̄
j
d+1,T/n ◦

... ◦ X̄j
1,T/n ◦ X̄

j
0,T/(2n)(x) where Uj is a Bernoulli r.v. with P (Uj = 1) = 1/2, independent of

everything else.

N-V(b) Y jn (x) = UjX̄
j
d+1,T/n ◦ ... ◦ X̄

j
0,T/n(x) + (1 − Uj) X̄j

0,T/n ◦ ... ◦ X̄
j
d+1,T/n(x) where Uj is a

Bernoulli r.v. with P (Uj = 1) = 1/2, independent of everything else.

Splitting Y jn (x) = X̄j
0,T/(2n) ◦ ... ◦ X̄

j
d,T/(2n) ◦ X̄

j
d+1,T/n ◦ X̄

n+j
d,T/(2n) ◦ ... ◦ X̄

n+j
0,T/(2n)(x).

One can also write a similar result for higher order schemes using Theorem 5.3.

6.4 Limiting the number of jumps per interval for approximations of
infinite activity Lévy driven SDE’s

In the previous two approximations although ε ∈ (0, 1) may be relatively large compared with
the interval size T/n, one still faces the possibility of having many jumps in the interval [0, T ].
Therefore we introduce the idea used in Section 6.2. That is, we propose another approximation
that restricts the numbers of possible jumps to at most n. Throughout this section we assume that∫
|y|<1

|y|ν(dy) <∞ and without loss of generality, we assume that τ(y) = y1|y|<1.

Then we decompose the operator

Ld+1 = L1
d+1 + L2

d+1 + L3
d+1

L1
d+1f(x) := ∇f(x)h(x)

(
b−

∫
ε<|y|≤1

τ(y)ν(dy)

)

L2
d+1f(x) :=

∫
|y|≤ε

(f(x+ h(x)y)− f(x)−∇f(x)h(x)τ(y))ν(dy)

L3
d+1f(x) :=

∫
ε<|y|

f(x+ h(x)y)− f(x)ν(dy).

The operator L1
d+1 can be easily approximated using any Runge-Kutta method for the ordinary

differential equation

X1
d+1,t = x+

(
b−

∫
ε<|y|≤1

τ(y)ν(dy)

)∫ t

0

h
(
X1
d+1,s

)
ds.

We denote by X̄1
d+1,t, the Euler scheme associated with this ordinary differential equation. Therefore

we only need to approximate L2
d+1 and L3

d+1.

Let l : Rd → R+ be a localization function that may be used for importance sampling of the
Lévy measure. Let F lε(dy) = λ−1

ε l(y)1|y|≤εν(dy) with λε =
∫
|y|≤ε l(y)ν(dy). Let Y ε ∼ Fε . Define

X̄2,ε
d+1,t(x) ≡ X̄2,ε

t (x) = x+h(x)Wt

√
λε, where W is a d-dimensional Wiener process with covariance

matrix given by Σij = l(Y ε)−1Y εi Y
ε
j which is independent of everything else.

First we prove that X̄2,ε
t (x) satisfies assumption (M).
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Lemma 6.14. Assume that for p ≥ 2, supε∈(0,1]

∫
|y|≤ε |y|

pl(y)−
p−2
2 ν(dy) < ∞, then assumption

(M) is satisfied with

E
[∣∣∣X̄2,ε

t (x)
∣∣∣p] ≤ (1 +Kt)|x|p +K ′t.

Proof. Let f(x) = |x|p, p ≥ 2. Using Ito’s formula for p 6= 3 and an approximative argument in the
case p = 3 (as in the proof of the Meyer-Ito formula) one obtains that

E
[
f
(
X̄2,ε
t (x)

)]
− f(x) (6.13)

=
p

2
λεE

[
l(Y ε)−1

∫ t

0

(p
2
− 1
) ∣∣X̄2,ε

s (x)
∣∣p−4 〈

h(x)Y ε, X̄2,ε
s (x)

〉2
(6.14)

+
∣∣X̄2,ε

s (x)
∣∣p−2 |h(x)Y ε|2 ds

]
We use the Lipschitz property of h to obtain that∣∣X̄2,ε

s (x)
∣∣ =

∣∣∣x+ h(x)Ws

√
λε

∣∣∣
≤
(

1 + C |Ws|
√
λε

)
(1 + |x|).

Then, we have ∣∣∣E [f (X̄2,ε
t (x)

)]
− f(x)

∣∣∣
≤ Cpt (1 + |x|p)

∫
|y|<ε

|y|2
(

1 +
(
|y|2 l(y)−1λεt

) p−2
2

)
ν(dy).

Lemma 6.15. Assume that for f ∈ C4
p , p ≥ 2,

Mp = sup
ε∈(0,1]

∫
|y|≤ε

|y|4l(y)−1

(
1 +

(
|y|2 l(y)−1λεt

) p−2
2

)
ν(dy) <∞

and
∫
|y|≤ε |y|

3ν(dy) ≤ Ct then∣∣∣E [f(X̄2,ε
t )
]
− f(x)− tL2

d+1f(x)
∣∣∣ ≤ C(p) ‖f‖C4

p
(1 + |x|p+4)t2.

That is, X̄2,ε
t (x) satisfies assumption R(2, t2).

Proof. Let f ∈ C4
p then applying Ito’s formula, one gets

E
[
f(X̄2,ε

t )
]

= f(x) +
λε
2
E

∫ t

0

∑
i,j,k,l

∂ijf(X̄2,ε
s )hikhil(x)l(Y ε)−1Y εk Y

ε
l ds


= f(x) +

t

2

∫
|y|≤ε

∑
i,j,k,l

∂ijf(x)hikhil(x)ykylν(dy) +Rε(x)

where by Lemma 6.14, we have

|Rε(x)| ≤ C ‖f‖C4
p

(1 + |x|p+4)t2
∫
|y|≤ε

|y|4l(y)−1

(
1 +

(
|y|2 l(y)−1λεt

) p−2
2

)
ν(dy).
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Furthermore

L2,ε
d+1f(x)− 1

2

∫
|y|≤ε

∑
i,j,k,l

∂ijf(x)hikhil(x)ykylν(dy)

=
∑
i,j,k,l

∫
|y|≤ε

∫ 1

0

(∂ijf(x+ αh(x)y)− ∂ijf(x)) (1− α)dαhikhil(x)ykylν(dy).

Therefore ∣∣∣∣∣∣L2,ε
d+1f(x)− 1

2

∫
|y|≤ε

∑
i,j,k,l

∂ijf(x)hikhil(x)ykylν(dy)

∣∣∣∣∣∣
≤ C ‖f‖C4

p
(1 + |x|p+3)

∫
|y|≤ε

|y|3ν(dy).

This finishes the proof

In the particular case that l(y) = yr, r = 2, the above scheme corresponds to a Asmussen-Rosiński
type approach.

The approximation for L3
d+1 is defined as follows. Let

Gε,l(dy) = C−1
ε,l l(y)1|y|>εν(dy),

Cε,l =

∫
|y|>ε

l(y)ν(dy)

and let Zε,l ∼ Gε,l and let Sε,l be a Bernoulli random variable independent of Zε,l. Then consider

the following two cases. If Sε,l = 0 define X̄3,ε
d+1,t ≡ X̄3,ε

t (x) = x, otherwise X̄3,ε
d+1,t ≡ X̄3,ε

t (x) =

x+ h(x)l(Zε,l)−1Zε,l. Then we have the following results.

Lemma 6.16. Assume that for p ≥ 2, supε∈(0,1]

∫
|y|>ε l(y)−p |y|p+1

ν(dy) <∞ and C−1
ε,l P [Sε = 1] ≤

Ct then assumption (M) is satisfied with

E
[∣∣∣X̄3,ε

t (x)
∣∣∣p] ≤ (1 +Kt)|x|p +K ′t.

Proof. The result follows clearly from (f(x) = |x|p)

P [Sε = 1]
∣∣E [f (x+ h(x)l(Zε,l)−1Zε,l

)
− f(x)

]∣∣
= C−1

ε,l P [Sε = 1]

∫
|y|>ε

(
f(x+ h(x)l(y)−1y)− f(x)

)
l(y)ν(dy)

≤ Ct(1 + |x|p)

(
1 +

∫
|y|>ε

l(y)−p |y|p+1
ν(dy)

)
.

Lemma 6.17. Assume that for f ∈ C2
p , we have that for some positive constant C,∫

|y|>ε
(1 + |y|)(p+1)q1

((
1 + l(y)−1

))pq1
ν(dy) ≤ C

and
∫
|y|>ε |y|

q2
∣∣l(y)−1 − 1

∣∣q2 ν(dy) ≤ tq2 for some conjugate exponents q1, q2 > 1 and
∣∣∣C−1
ε,l P

[
Sε,l = 1

]
− t
∣∣∣ ≤

Ct2 then ∣∣∣E [f(X̄3,ε
t )
]
− f(x)− tL3

d+1f(x)
∣∣∣ ≤ Ct2 ‖f‖C2

p
(1 + |x|p+2).

22



Proof. As before let f ∈ C2
p then

E
[
f(X̄3,ε

t )
]

= f(x) + E
[
f
(
x+ h(x)l(Zε,l)−1Zε,l

)
− f(x);Sε,l = 1

]
= f(x) +

∫
|y|>ε

(
f(x+ h(x)l(y)−1y)− f(x)

)
l(y)ν(dy)

× C−1
ε,l P

[
Sε,l = 1

]
.

Then we clearly have that∣∣∣E [f(X̄3,ε
t )
]
− f(x)− tL3

d+1f(x)
∣∣∣

≤

∣∣∣∣∣
∫
|y|>ε

∫ 1

0

∑
i

(
∂if(x+ αh(x)l(y)−1y)− ∂if(x+ αh(x)y)

)
dαh(x)yν(dy)

∣∣∣∣∣
× C−1

ε,l P
[
Sε,l = 1

]
+

∣∣∣∣∣
∫
|y|>ε

f(x+ h(x)y)− f(x)ν(dy)

∣∣∣∣∣
×
∣∣∣C−1
ε,l P

[
Sε,l = 1

]
− t
∣∣∣ .

Now note that∫
|y|>ε

∫ 1

0

∑
i

(
∂if(x+ αh(x)l(y)−1y)− ∂if(x+ αh(x)y)

)
dαh(x)yν(dy)

=

∫
|y|>ε

∫ 1

0

∫ 1

0

∑
i,j

(
∂2
ijf(x+ (1− β)αh(x)y + βαh(x)l(y)−1y)

)
α (h(x)y)j (h(x)y)i

(
l(y)−1 − 1

)
dβdαν(dy)

As f ∈ C2
p then

∣∣∂2
ijf(x)

∣∣ ≤ C(1+ |x|)p therefore the above quantity (after an application of Cauchy-
Schwartz inequality) is smaller than

C

(∫
|y|>ε

∫ 1

0

∫ 1

0

(
1 +

∣∣x+ (1− β)αh(x)y + βαh(x)l(y)−1y
∣∣)pq1 |h(x)y|q1 αq1dβdαν(dy)

)1/q1

(6.15)

×

(∫
|y|>ε

|h(x)y|q2
∣∣l(y)−1 − 1

∣∣q2 ν(dy)

)1/q2

Then by using the Lipschitz property of h one finds that the first term above is finite if∫
|y|>ε

(1 + |y|)(p+1)q1
((

1 + l(y)−1
))pq1

ν(dy) < C

for a constant C independent of t. Therefore∣∣∣E [f(X̄3,ε
t )
]
− f(x)− tL3

d+1f(x)
∣∣∣ ≤ C ‖f‖C2

p
(1 + |x|(p+1)q1+1)t2

This finishes the proof.

Using the previous results we can propose various schemes of approximation of order 1 as in
Theorem 6.13. We state the simplest type of approximation.

Theorem 6.18. Assume that V0, V and h are infinitely differentiable functions with bounded deriva-
tives with

∫
Rd

0
(1∧|y|p)ν(dy) <∞ for all p ∈ N. Define ε ≡ ε(T, n) so that the conditions on Lemmas

6.14, 6.15, 6.16 and 6.17 are satisfied for t = T/n and for appropriate localization functions. Let
X̄j
i,t(x), i = 0, ..., d, j = 1, ..., n, n copies of the Euler-Maruyama method for Xi,t(x).

Also, let X̄i,ε,j
d+1,T/n, i = 1, 2, 3, j = 1, ..., n be n independent copies of the schemes defined above.

Then the following scheme, X
(n)
T = Y nn ◦Y n−1

n ◦ ...◦Y 1
n (x), Y jn (x) = X̄j

0,T/n ◦ ...◦ X̄
j
d,T/n ◦ X̄

1,ε,j
d+1,T/n ◦

X̄2,ε,j
d+1,T/n ◦ X̄

3,ε,j
d+1,T/n(x).is a first order discretization scheme.
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Achieving higher order schemes for the approximation of L2
d+1 can be easily obtained from the

proof of Lemma 6.15. In fact, the required conditions are as follows. Assume that for p ≥ 2,∫
|y|≤ε

|y|4l(y)−1

(
1 +

(
|y|2 l(y)−1λεt

) p−2
2

)
ν(dy) ≤ Ct (6.16)∫

|y|≤ε
|y|3ν(dy) ≤ Ct2. (6.17)

For L3
d+1, the idea used in the previous scheme is that the probability of having more than one

jump in an interval of size T/n is of order (T/n)2 and therefore they can be neglected if the goal
is to achieve a scheme of order 1. Obviously, in order to obtain a higher order scheme, one has to
consider the possibility of more jumps per interval. As an example, we consider the case of at most
two jumps per interval with localization l ≡ 1.

For L3
d+1 one can do the following: Let Gε(dy) = C−1

ε 1|y|>εν(dy), Cε =
∫
|y|>ε ν(dy) and let

Zε1 , Z
ε
2 ∼ Gε independent between themselves and let Sε1 and Sε2 be two independent Bernoulli

random variable independent of Zε1 , Zε2 . Then consider the following cases. If Sε1 = 0 define
X̄3,ε
t (x) = x, if Sε1 = 1 and Sε2 = 0 then X̄3,ε

t (x) = x+ h(x)Zε1 and finally if Sε1 = 1 and Sε2 = 1 then
X̂3,ε
t (x) = x+ h(x)Zε1 + h(x+ h(x)Zε1)Zε2 .

Define

pε = P [Sε1 = 1] (1 + P [Sε2 = 1]) ,

qε = P [Sε1 = 1]P [Sε2 = 1] .

In this case we have

Lemma 6.19. If C−1
ε P [Sε1 = 1, Sε2 = 0] ≤ Ct and C−2

ε P [Sε1 = 1, Sε2 = 1] ≤ Ct then assumption
(M) is satisfied with

E
[∣∣∣X̂3,ε

d+1(x)
∣∣∣p] ≤ (1 +Kt)|x|p +K ′t

for all p ≥ 2.

Proof. The result follows clearly from (f(x) = |x|p)

P [Sε1 = 1, Sε2 = 0] |E [f (x+ h(x)Zε)− f(x)]|

≤ Ct(1 + |x|p)

(
1 +

∫
|y|>ε

|y|p ν(dy)

)
,

P [Sε1 = 1, Sε2 = 1] |E [f (x+ h(x)Zε1 + h(x+ h(x)Zε1)Zε2)− f(x)]|

≤ Ct(1 + |x|p)

1 +

(∫
|y|>ε

|y|p ν(dy)

)2
 .

Lemma 6.20. Assume that
∣∣C−1
ε pε − t

∣∣ ≤ Ct3 and
∣∣2C−2

ε qε − t2
∣∣ ≤ Ct3 then∣∣∣∣E [f(X̂3,ε

t )
]
− f(x)− tL3

d+1f(x)− t2

2

(
L3
d+1

)2
f(x)

∣∣∣∣
≤ Ct3 ‖f‖C2

p
(1 + |x|p+2)

1 +

(∫
|y|>ε

|y|ν(dy)

)2

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Proof. As before let f ∈ C2
p then

E
[
f(X̂3,ε

t )
]

= f(x) +

∫
|y|>ε

(f(x+ h(x)y)− f(x)) ν(dy)C−1
ε P [Sε1 = 1, Sε2 = 0]

+ E

[∫
|y|>ε

f(x+ h(x)y + h(x+ h(x)y)Zε2)− f(x)ν(dy)

]
C−1
ε P [Sε1 = 1, Sε2 = 1]

= f(x) + L3
d+1f(x)C−1

ε P [Sε1 = 1, Sε2 = 0]

+

∫
|y|>ε

∫
|y|>ε

f(x+ h(x)y + h(x+ h(x)y)y1)− f(x)ν(dy)ν(dy1)

× C−2
ε P [Sε1 = 1, Sε2 = 1]

= f(x) + L3
d+1f(x)C−1

ε (P [Sε1 = 1] + P [Sε1 = 1, Sε2 = 1])

+
(
L3
d+1

)2
f(x)C−2

ε P [Sε1 = 1, Sε2 = 1] .

Therefore ∣∣∣∣E [f(X̂3,ε
t )
]
− f(x)− tL3

d+1f(x)− t2

2

(
L3
d+1

)2
f(x)

∣∣∣∣
≤
∣∣L3
d+1f(x)

∣∣ ∣∣C−1
ε pε − t

∣∣+
∣∣∣(L3

d+1

)2
f(x)

∣∣∣ ∣∣∣∣C−2
ε qε −

t2

2

∣∣∣∣ .
Finally note that(

L3
d+1

)2
f(x)

=

∫
ε<|y|

L3
d+1f(x+ h(x)y)− L3

d+1f(x)ν(dy)

=

∫
ε<|y|

∫
ε<|y1|

(f(x+ h(x)y + h(x+ h(x)y)y1)− 2f(x+ h(x)y) + f(x)) ν(dy1)ν(dy)

=

∫
ε<|y|

∫
ε<|y1|

∫ 1

0

∇f(x+ h(x)y + αh(x+ h(x)y)y1)h(x+ h(x)y)y1

−∇f(x+ αh(x)y)h(x)ydαν(dy1)ν(dy)

=

∫
ε<|y|

∫
ε<|y1|

∫ 1

0

∇f(x+ h(x)y1 + αh(x+ h(x)y1)y)

×
∫ 1

0

∇h(x+ βh(x)y1)h(x)y1dβydαν(dy1)ν(dy)

+

∫
ε<|y|

∫
ε<|y1|

∫ 1

0

∫ 1

0

D2f(x+ αh(x)y + β(h(x)y1 + α (h(x+ h(x)y1)− h(x)) y))[
h(x)y1 + α

(∫ 1

0

∇h(x+ γh(x)y1)dγh(x)y1

)
y, h(x)y

]
dβdαν(dy1)ν(dy).

This finishes the proof.

A similar statement can be achieved if we limit the number of jumps in any interval. The parallel
of Theorem 6.18 can also be stated in this case.
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6.5 Example: Tempered stable Lévy measure

Now we consider the previous approximation in the case that the Lévy measure ν defined on R0 is
given by

ν(dy) =
1

|y|1+α

(
c+e
−λ+|y|1y>0 + c−e

−λ−|y|1y<0

)
dy

The Lévy process associated with no Brownian term and the above Lévy measure ν is called by

• Gamma: λ+, c+ > 0, c− = 0, α = 0.

• Variance gamma: λ+, λ−, c+, c− > 0, α = 0.

• Tempered stable: λ+, λ−, c+, c− > 0, 0 < α < 2.

Then, we have that for α ∈ [0, 1)∫
|y|≤ε

|y|kν(dy) ∼ εk−α, k ≥ 1.

Then supε∈(0,1]

∫
|y|≤ε |y|ν(dy) <∞. For L2

d+1, we consider as localization function l(y) = |y|r, then

the conditions of Lemma 6.15 are satisfied if α < r ≤ 2 and ε = t
1

3−α .
For L3

d+1, we consider as localization l(y) ≡ 1, then Lemma 6.17 is satisfied for example in the

following case. Let P [Sε = 1] = e−Cεa(ε,t) where Cε ∼ ε−α, a(ε, t) = −εα log
((
t2 + t

)
ε−α

)
as

ε = t
1

3−α then we have that
a = −t

α
3−α log

(
(t+ 1)t

3−2α
3−α

)
.

In the case of Lemma 6.20, one choice of parameters is

P [Sε1 = 1] = t
6−3α
3−α (t+ 1)(1 + t

α
3−α )

P [Sε2 = 1] =
1

2(1 + t
α

3−α )
.

The choice of r in the above scheme is related with variance/importance sampling issues.
Final Comment: In this article we have presented a general set-up to handle what maybe

called operator decomposition methods. In particular, the method is useful when considering ap-
proximations of expectations of functionals of diffusions. The approximation problem is divided in
components, each one driven by a single process. This single process, called the coordinate process
can be approximated to a high order using an appropriate (stochastic) Runge-Kutta scheme if the
driving process is the Brownian motion. In the case that the driving process is a Lévy process one
can decompose the Lévy measure in various pieces to facilitate the analysis. Note that sometimes is
not needed to know how to simulate Y but only the functional form of the Lévy measure. In com-
parison with the proposal presented in [10], where high order multiple integrals driven by different
Wiener processes have to be simulated at each step, we believe that the present methodology is a
better scheme.

The issue that local approximations of high order are interesting to study in comparison with
Romberg extrapolations as introduced in [22] is similar to the discussion of using Runge-Kutta
approximations in comparison with Romberg extrapolations to approximate solutions of ordinary
differential equations. We believe that this article helps to open the path in this direction. In fact,
it is somewhat clear from Theorem 4.3 that the leading constants in a Euler+Romberg method and
a Runge Kutta method do not coincide.

Finally, we used the structure of this construction to easily introduce and analyze the asymptotic
error of an approximating scheme for solutions of stochastic differential equations driven by Lévy
processes with possibly infinite activity.
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7 Appendix

In this section we assume condition (MP ).

Lemma 7.1. Let f = fs(x) ∈ C1,2
p ([0, T ]×RN ). Then a map s 7→ Psfs(x) is Lipschitz continuous

for all x ∈ RN .

Proof. Note that

|Ptft(x)− Psfs(x)| ≤ |Ptft(x)− Ptfs(x)|+ |Ptfs(x)− Psfs(x)|

Using the Lipschitz properties of t 7→ ft(x) and t 7→ Ptfs(x), the proof follows.

Lemma 7.2. Let g : [0, T ]→ R be a Lipschitz continuous function. Then we have∣∣∣T
n

n∑
k=1

g(kT/n)−
∫ T

0

g(s)ds
∣∣∣ ≤ C(T, g)

n
. (7.1)

Proof. From the assumption we immediately obtain∣∣∣T
n
g(kT/n)−

∫ kT/n

(k−1)T/n

g(s)ds
∣∣∣ ≤ C

n2

where C depends on T and the Lipschitz coefficient of g. This implies (7.1).

7.1 Appendix: Some properties of Lévy driven SDEs

We start with the differentiability properties of Xt(x) in x. The following material can be found in
[9], [8], [12], [19] and [20]. We quote them here for completeness.

Lemma 7.3. There exists a version of Xt(x) such that a map x 7→ Xt(x) is infinite times continuous
differentiable almost surely and in the Lp-sense. Moreover, we have for p ≥ 2,

E[ sup
0≤t≤T

|Xt(x)|p] ≤ C(p, T )(1 + |x|p) (7.2)

and
sup
x∈RN

E[ sup
0≤t≤T

|∂αxXt(x)|p] <∞ (7.3)

for any multi-index α with |α| ≥ 1.

Proposition 7.4. Let f ∈ Cmp with p ≥ 2.
(i)Then Ptf ∈ Cmp for all t ≥ 0 and

sup
t∈[0,T ]

‖Ptf‖Cmp ≤ C‖f‖Cmp (7.4)

(ii) If m ≥ 2, then Lf ∈ Cm−2
p+2 and

‖Lf‖Cm−2
p+2
≤ C‖f‖Cmp .

(iii) If f ∈ C1,m
p ([0, T ]×RN ), then (∂tLf)(t, x) = (L∂tf)(t, x)
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Proof. The proof of (i) follows by interchange of derivation and expectation together with the mo-

ment estimates in Lemma 7.3. Recall that L =
∑d+1
i=0 Li as defined in (2.5). (ii) We only do the

proof for Ld+1. We have∣∣∣ ∫ (f(x+ h(x)y)− f(x)−∇f(x)h(x)τ(y))ν(dy)
∣∣∣

≤
∣∣∣ ∫ ∇f(x)h(x)(y − τ(y))ν(dy)

∣∣∣+
∣∣∣ ∫ ∫ 1

0

d2

dθ2
f(x+ θh(x)y)dθν(dy)

∣∣∣
≤ C‖f‖Cmp (1 + |x|p+2).

Proposition 7.5. Let f ∈ C2
p . Then Pt and L are commutative and uf (t, x) := Ptf(x) is the

solution of the integro-differential equation:{
d
dtuf (t, x) = Luf (t, x)
uf (0, x) = f(x).

Let f ∈ C2m+2
p . Then the commutativity of Pt and L implies that Lmuf (= uLmf ) is differentiable

in t and the solution to similar integro-differential equations. That is,{
d
dt (L

muf )(t, x) = L(Lmuf )(t, x)
(Lmuf )(0, x) = (Lmf)(x).

for each m ≥ 0. Consequently, applying Taylor’s expansion to uf , we have

Proposition 7.6. For f ∈ C2m+2
p ,

Ptf(x) =

m∑
k=0

tk

k!
Lkf(x) +

∫ t

0

(t− s)m

m!
Ps(L

m+1f)(x)ds

Furthermore, if f ∈ Cmp with m ≥ 2. Then Ptf ∈ C1,m−2
p+2 .

Summarizing this section, we have

Corollary 7.7. Ptf(x) = E[f(Xt(x))] and Qitf(x) = E[f(Xi
t(x))] (i = 0, 1, . . . , d + 1) satisfy the

conditions (M) and R(m, tm). That is, for p ∈ N,

E[|Xt(x)|2p] ≤ (1 +Kt)|x|2p +K ′t

for some constant K = K(T, p), K ′ = K ′(T, p) > 0 and

J≤m(Pt) =

m∑
k=0

tk

k!
Lk

J≤m(Qit) =

m∑
k=0

tk

k!
Lki

for any m ∈ N.

29


