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Abstract

We present new algorithms for weak approximation of stochastic dif-

ferential equations driven by pure jump Lévy processes. The method is

built upon adaptive non-uniform discretization based on the times of large

jumps of the driving process. To approximate the solution between these

times we replace the small jumps with a Brownian motion, and construct

and approximate solution of the resulting continuous SDE. Our technique

avoids the simulation of the increments of the Lévy process, for which

algorithms are not available in general, and in many cases achieves better

convergence rates than the traditional Euler scheme with equal time steps.

To illustrate the method, we discuss an application to option pricing in

the Libor market model with jumps.

Key words: Lévy-driven stochastic differential equation, Euler scheme, jump-
adapted discretization, weak approximation, Libor market model with jumps.

2000 Mathematics Subject Classification: Primary 60H35, Secondary 65C05,
60G51.

1 Introduction

Let Z be a d-dimensional Lévy process without diffusion component, that is,

Zt = γt +

∫ t

0

∫

|y|≤1

yN̂(dy, ds) +

∫ t

0

∫

|y|>1

yN(dy, ds), t ∈ [0, 1].

∗Corresponding author
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Here γ ∈ R
d, N is a Poisson random measure on R

d × [0,∞) with intensity ν

satisfying
∫

1∧|y|2ν(dy) < ∞ and N̂(dy, ds) = N(dy, ds)− ν(dy)ds denotes the
compensated version of N . Further, let X be an R

n-valued adapted stochastic
process, unique solution of the stochastic differential equation

Xt = X0 +

∫ t

0

h(Xs−)dZs, t ∈ [0, 1], (1)

where h is an n × d matrix.
In this article, we propose a simulation method for X and study its rate

of convergence. In particular, we are interested in the case when ν(Rd) = ∞,
that is, there is an infinite number of jumps in every interval of nonzero length
a.s. The traditional method to simulate X is to use the Euler scheme which is
a uniformly-spaced discretization scheme for (1) [19, 12]. This method suffers
from two difficulties: first, for a general Lévy measure ν, there is no available
algorithm to simulate the increments of the driving Lévy process and second,
a large jump of Z occurring between two discretization points can lead to an
important discretization error.

A natural idea due to Rubenthaler [21] (in the context of finite-intensity
jump processes, this idea appears also in [3, 16]), is to replace the process Z

with a suitable compound Poisson approximation and place the discretization
points at the jump times of the compound Poisson process. When the jumps
of Z are highly concentrated around zero, however, this approximation is too
rough and can lead to convergence rates which are arbitrarily slow.

On the other hand, Mordecki et. al [16], propose an adaptive method for
a stochastic differerential equation driven by a compound Poisson process and
a Brownian motion. In that setting, in order to control the errors that may
come from large jumps they propose the simulation of all the jumps of the
compounded Poisson process and therefore their analysis cannot be extended
to the case ν(Rd) = ∞.

We assume in this article that the Lévy measure of Z is known as it is the case
in many applications. In such situation, one can easily simulate the jumps of Z

larger in absolute value than a certain ε > 0. Sometimes, other approximations
of Z by a compound Poisson process, such as the series representations [20] lead
to simpler simulation algorithms (see Example 6).

As we are interested in the case ν(Rd) = ∞, this means that there are many
small jumps and therefore an approximation of those jumps should improve the
approximation scheme. In order to take into account the jumps smaller than ε,
we use the idea of Asmussen and Rosiński [1] (see also [5]) and replace all the
jumps of Z smaller than ε between the jump times of the compound Poisson
approximation with σεW where W is a Brownian motion and σε is a coefficient
which equals the second moment associated to the jumps smaller than ε.

Combining these two ideas we propose the following approximating scheme.
At any time when there is a jump larger than ε, we compute the jump size and
the change in the approximating system. Between two jumps larger than ε, we
use an approximate solution of the continuous SDE driven by a σεW .
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The approximation of the solution to the continuous SDE between large
jumps is constructed as a perturbation around the solution of the deterministic
ODE, obtained by removing the small jumps completely. This ODE can be
solved either explicitly or using a Runge-Kutta type approach.

We separate our study into two cases: the one-dimensional and the multi-
dimensional case. This is done because the approximate solution of an one
dimensional stochastic differential equation driven by a Brownian motion can
be written using solutions for ordinary differential equations and therefore the
approximation between two jumps larger than ε can be achieved easily. In
the multidimensional case, we use a Taylor approximation in order to obtain a
scheme between two jumps larger than ε.

We denote the approximation obtained with our method by X̂ε for the one-
dimensional scheme and X̃ε for the multidimensional scheme. The theoretical
goal in this article is to study the behavior of the weak approximation error
defined by

|E [f(X1)] − E [f(Y ε
1 )]|

for Y ε = X̂ε, X̃ε.
Supposing that no further discretization is done between the times of jumps

larger than ε, the computational complexity of simulating a single approximate
trajectory on the time interval [0, 1] is proportional to the number of such jumps,
which is a random variable. To compare our method to the traditional equally-
spaced discretizations, we measure instead the computational complexity by the
average number of jumps larger than ε on [0, 1], denoted by λε. We say that the
approximation Y ε converges weakly for some order p > 0 if, for a sufficiently
smooth function f ,

|E[f(X1)] − E[f(Y ε
1 )]| ≤ Kλ−p

ε

for some K > 0 and all ε sufficiently small.
The exact order of convergence depends on the characteristics of the Lévy

process. In particular, if the Lévy measure has a singularity of the form 1
|x|1+α

near zero, the order of our schemes is ( 3
α − 1) ∧ ( 2

α ). In the same setting,
[21] obtains a strictly lower order of ( 1

α − 1
2 ) ∧ 1. It is therefore clear that the

introduction of the Asmussen-Rosiński approach leads to an improvement in the
rate of convergence.

We can use our theoretical results in order to choose ε in the above method
in an optimal way. This means that the study of the error of approximation
gives exactly the order of ε in order to achieve a certain order of error. The fact
that ν(Rd) = ∞, which implies that the weak error becomes arbitrarily small
as ε decreases, plays an important role in this conclusion.

We start with a section of Preliminaries in order to introduce the notation
and the general truncation method for removing small jumps. This is done in
some generality in order to later introduce examples using series approxima-
tions (see Example 6 and the first example in Section 5) where the truncation
functions are non-trivial.
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Next, we provide two versions of the jump-adapted discretization scheme for
pure jump Lévy processes. The scheme presented in Section 3 is easier to use
and implement but works in the case d = n = 1. A fully general scheme is then
presented in Section 4.

We close the article with some simulation experiments. In the first one, we
check that the theoretical rates obtained in the article coincide with the observed
rates in the simulation of an example using the Normal inverse Gaussian model.
In this model there exists an explicit algorithm for simulating the increments,
which makes it possible to compare our method with the Euler scheme.

In our second example, we apply our methodology to a financial problem
of option valuation in the Libor market models with jumps. Although this
second problem does not satisfy all the assumptions necessary to establish the
theoretical convergence rates, we observe very fast convergence, which shows
that the results proved in the previous sections may be satisfied in greater
generality. In this article, we require f to have some smoothness properties
while in the financial applications f usually does not have these properties. The
generalization of the theoretical results to nonsmooth f may be carried out using
density estimation techniques (see [17], [14] among others). As these estimates
come at the cost of a much greater technicality, and impose restrictions on the
choice of the Lévy measure, we do not discuss them here.

Throughout the article we use X(t) or Xt to denote the value at time t of
the stochastic process X . Positive constants will be denoted by C and they may
change from one line to the next. Cn

b (A) denotes the set of n times differentiable
functions on A whose n derivatives are bounded.

2 Preliminaries

Consider a family of measurable functions (χε)ε>0 : R
d → [0, 1] such that∫

Rd χε(y)ν(dy) < ∞ and
∫
|y|>1 |y|2(1 − χε)(y)ν(dy) < ∞ for all ε > 0 and

limε↓0 χε(y) = 1 for all y 6= 0. The Lévy measure ν will be assumed to satisfy
ν(Rd) = ∞ and

∫
Rd |y|2ν(dy) < ∞. This measure will be approximated by fi-

nite measures χεν. The most simple such approximation is χε(y) := 1|y|>ε, but
others can also be useful (see Example 6 below and Section 5). We denote by Nε

a Poisson random measure with intensity χεν × ds and by N̂ε its compensated

Poisson random measure. Similarly, we denote by ̂̄Nε the compensated Poisson
random measure with intensity χ̄εν × ds, where χ̄ε := 1 − χε. The process Z
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can then be represented in law as follows:

Zt
d
= γεt + Zε

t + Rε
t ,

γε = γ −
∫

|y|≤1

yχεν(dy) +

∫

|y|>1

yχ̄εν(dy),

Zε
t =

∫ t

0

∫

Rd

yNε(dy, ds),

Rε
t =

∫ t

0

∫

Rd

y ̂̄Nε(dy, ds).

We denote by λε =
∫

Rd χεν(dy) the intensity of Zε, by (Nε
t ) the Poisson process

which has the same jump times as Zε, and by T ε
i , i ∈ N, the jump times of Zε

with T ε
0 = 0. Ẑε denotes the compensated version of the process Zε. F will

denote the filtration generated by N and an independent Brownian motion W

which will be used for the approximation of small jumps.
Furthermore, we denote by Σε the variance-covariance matrix of Rε

1:

Σε
ij =

∫

Rd

yiyjχ̄εν(dy),

and in the one-dimensional case (d = 1) we set σ2
ε := Σε

11. Note that due to the
previous assumptions on χε, we have that supε∈(0,1) ‖Σε‖ < ∞.

Sometimes we shall use the following technical assumption on (χε):

(A) ∀n ≥ 2, ∃Cn such that

∫

Rd

|z|n+1χ̄εν(dz) ≤ Cn

∫

Rd

|z|nχ̄εν(dz)

for ε sufficiently small.

This assumption, roughly, means that the approximation (χε) does not re-
move small jumps faster than large jumps, and it is clearly satisfied by χε(y) =
1|y|>ε, ε ≤ 1.

3 One-dimensional SDE

For our first scheme we take d = n = 1 and consider the ordinary differential
equation

dXt = h(Xt)dt, X0 = x. (2)

In the one-dimensional case, the solution to this equation can always be written:

Xt := θ(t; x) = F−1(t + F (x)),
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where F is the primitive of 1
h(x) . Therefore, we assume that 1

h(x) is a locally

integrable function. Alternatively, a high-order discretization scheme (such as
Runge-Kutta) can be used and is easy to construct (see Proposition 7).

We define inductively X̂(0) = X0 and for i ≥ 0,

X̂(T ε
i+1−) = θ

(
γε(T

ε
i+1 − T ε

i ) + σε(W (T ε
i+1) − W (T ε

i ))

− 1

2
h′ε(Xε

Ti
)σ2

ε(T ε
i+1 − T ε

i ); X̂(T ε
i )
)

(3)

X̂(T ε
i+1) = X̂(T ε

i+1−) + h(X̂(T ε
i+1−))∆Z(T ε

i+1). (4)

Similarly, for an arbitrary point t, we define

X̂(t) = θ
(
γε(t − ηt) + σε(W (t) − W (ηt)) −

1

2
h′(X̂(ηt))σ

2
ε(t − ηt); X̂(ηt)

)
, (5)

where we ηt is the discretization point immediately preceeding t: ηt := sup{T ε
i :

T ε
i ≤ t}. Here W denotes a one dimensional Brownian motion.

Therefore, the idea is to replace the original equation with an Asmussen-
Rosiński type approximation which is explicitly solvable between the times of
large jumps and is exact for all h if the driving process is deterministic, and for
affine h in all cases. The purpose of this construction becomes clear from the
following lemma.

Lemma 1. Let h ∈ C1(R). The process X̂ defined by (3)–(5) is the solution of
the stochastic differential equation

dX̂t = h(X̂t−)

{
dZε

t + σεdWt + γεdt +
1

2
(h′(X̂t) − h′(X̂η(t)))σ

2
εdt

}
.

Proof. It is enough to show that the process

Yt := θ(γεt + σεWt −
1

2
h′(x)σ2

ε t; x) (6)

is the solution of the continuous SDE

dYt = h(Yt)

{
σεdWt + γεdt +

1

2
(h′(Yt) − h′(x))σ2

εdt

}
.

This follows by an application of Itô formula to (6) using

∂θ(t; z)

∂t
= h(θ(t; z))

∂2θ(t; z)

∂t2
= h′(θ(t; z))h(θ(t; z)).

For the convergence analysis, we introduce two sets of conditions (parame-
terized by an integer number n):
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(Hn) f ∈ Cn
b , h ∈ Cn

b and
∫
|z|2nν(dz) < ∞.

(H′
n
) f ∈ Cn, h ∈ Cn

b , f (k) have at most polynomial growth for 1 ≤ k ≤ n and∫
|z|kν(dz) < ∞ for all k ≥ 1.

Theorem 2.

(i) Assume (H3) or (H′
3
) + (A). Then

|E[f(X̂1) − f(X1)]| ≤ C

(
σ2

ε

λε
(σ2

ε + |γε|) +

∫

R

|y|3χ̄εν(dy)

)
.

(ii) Assume (H4) or (H′
4
) + (A), let γε be bounded and let the measure ν

satisfy ∣∣∣∣
∫

y3χ̄εν(dy)

∣∣∣∣ ≤ C

∫
|y|4χ̄εν0(dy) (7)

for some measure ν0 and some posituve constant C independent of ε .
Then

|E[f(X̂1) − f(X1)]| ≤ C

(
σ2

ε

λε
(σ2

ε + |γε|) +

∫

R

|y|4χ̄ε(ν0 + ν)(dy)

)

and in particular,

|E[f(X̂1) − f(X1)]| ≤ C

(
σ2

ε

λε
+

∫

R

|y|4χ̄ε(ν0 + ν)(dy)

)
.

Remark 3. (i)Under the polynomial growth assumptions (H′
3
) or (H′

4
), the

constants in the above theorem may depend on the initial value x.
(ii) Condition (7) is satisfied, for example, if χε(y) = χε(−y) for all y and
ε and if ν is locally symmetric near zero. That is, ν(dy) = (1 + ξ(y))ν0(dy),
where ν0 is a symmetric measure satuisfying suitable integrability conditions and
ξ(y) = O(y) for y → 0.

Corollary 4 (Worst-case convergence rates). Let χε(x) = 1|x|>ε. Then, under
the conditions (H3) or (H′

3
) + (A),

|E[f(X̂1) − f(X1)]| ≤ o(λ
− 1

2
ε ),

and under the conditions of part (ii) of Theorem 2,

|E[f(X̂1) − f(X1)]| ≤ o(λ−1
ε ).

Proof. These worst-case bounds follow from the following estimates. First, for
every Lévy process, σε → 0 as ε → 0. By the dominated convergence theorem,
ε2λε → 0 as ε → 0. This implies

√
λε

∫

|y|≤ε

|y|3ν(dy) ≤
√

ε2λεσ
2
ε

ε→0−−−→ 0
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and similarly

λε

∫

|y|≤ε

|y|4ν(dy) ≤ ε2λεσ
2
ε

ε→0−−−→ 0.

Example 5 (Stable-like behavior). Once again, let χε(x) = 1|x|>ε, and assume
that the Lévy measure has an α-stable-like behavior near zero (α ∈ (0, 2)),
meaning that ν has a density ν(y) satisfying

ν(y) =
g(y)

|y|1+α
, (8)

where α ∈ (0, 2) and g has finite nonzero right and left limits at zero. This is
the case, for example, for the tempered stable process (CGMY) [6]. Then in
this case, we have that for k 6= α

∫

|y|≤ε

|y|kν(dy) = O(εk−α) and

∫

|y|≤ε

|y|αν(dy) = O(log(ε)).

Therefore in particular, we have that λε = O(ε−α), σ2
ε = O(λ

1− 2
α

ε ) and γε =

γ +
∫
|y|>1 ν(dy) + O(λ

1− 1
α

ε )

So that in general for α ∈ (0, 2)

|E[f(X̂1) − f(X1)]| ≤ O(λ
(1− 3

α )∨(− 2
α )

ε ).

By comparaison, in in the same setting, [21] obtains a convergence rate of only

O(λ
( 1
2− 1

α )∨(−1)
ε ). If the Lévy measure is locally symmetric near zero, our scheme

has the improved convergence rate

|E[f(X̂1) − f(X1)]| ≤ O(λ
− 2

α
ε )

for all α ∈ (0, 2).

Example 6 (Simulation using series representation). In this example we explain
why it can be useful to define truncation functions other than χε(x) = 1|x|>ε.

The gamma process has Lévy density ν(z) = ce−λz

z 1z>0. If one uses the trun-
cation function χε(x) = 1|x|>ε, one will need to simulate random variables with

law ce−λz

zν((ε,∞))1z>ε, which may be costly. Instead, one can use one of the many

series representations for the gamma process [20]. Maybe the most convenient
one is

Xt =
∞∑

i=1

λ−1e−Γi/cVi1Ui≤t,

where (Γi) is a sequence of jump times of a standard Poisson process, (Ui) is an
independent sequence of independent random variables uniformly distributed on

8



[0, 1] and (Vi) is an independent sequence of independent standard exponential
random variables. For every τ > 0, the truncated sum

Xτ
t =

∑

i:Γi<τ

λ−1e−Γi/cVi1Ui≤t,

defines a compound Poisson process with Lévy density

ντ (x) =
c

x

[
e−λx − e−λxeτ/c

]
1x>0,

and therefore this series representation corresponds to

χε(x) = 1 − e−λx(eτ/c−1),

where ε can be linked to τ , for example, by setting τ = 1
ε .

Discretization of the ODE The convergence rates given in Theorem 2 are
obtained under the assumption that the equation (2) is solved explicitly. In this
remark, we consider the situation when a discretization scheme (e.g. Runge-
Kutta) is used for (2) as well. Let θd(t; x) be the approximate solution of (2)
at time t with initial condition X0 = x obtained with one step of the ODE
approximation scheme of our choice. We assume that there exists q ≥ 1 and
C < ∞, such that

|θd(t; x) − θ(t; x)| ≤ C|t|q+1, ∀x, ∀t. (9)

For example, the classical Runge-Kutta scheme of order q satisfies the condi-
tion (9) provided that the function h and its derivatives of orders up to p are
bounded. We refer the reader to [11] for details on Runge-Kutta schemes and
the corresponding error estimates.

We introduce a discretization scheme using approximate solution of the ODE
by defining inductively X̂d(0) = X0 and for i ≥ 1,

X̂d(T ε
i+1−) = θd

(
γε(T

ε
i+1 − T ε

i ) + σε(W (T ε
i+1) − W (T ε

i ))

− 1

2
h′(X̂d(T ε

i ))σ2
ε(T ε

i+1 − T ε
i ); X̂d(T ε

i )
)

(10)

X̂d(T ε
i ) = X̂d(T ε

i −) + h(X̂d(T ε
i −))∆Z(T ε

i ). (11)

This means, that although we use an approximation scheme for the solution of
the ODE, we do not introduce additional discretization points between consec-
utive jump times of Zε. We shall see from the subsequent analysis that this is
not necessary if the ODE approximation scheme has sufficiently high order.

Similarly, for an arbitrary point t, we define

X̂d(t) = θd
(
γε(t − ηt) + σε(W (t) − W (ηt)) −

1

2
h′(X̂d(ηt))σ

2
ε(t − ηt); X̂

d(ηt)
)
.

(12)
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Finally, for technical reasons, we define an auxiliary discretization scheme X̂dc
t ,

which is defined in each interval [T ε
i , T ε

i+1] as follows. First, Xdc(T ε
i ) = X̂d(T ε

i ).
Next for t ∈ (T ε

i , T ε
i+1) we define Xdc by

X̂dc(t) = θ
(
γε(t − ηt) + σε(W (t) − W (ηt)) −

1

2
h′(X̂d(ηt))σ

2
ε(t − ηt); X̂

d(ηt)
)
.

(13)

Finally Xdc jumps at T ε
i+1 so that Xdc(T ε

i+1) = X̂d(T ε
i+1).

If the discretization scheme (10)–(11) is used instead of the exact ODE
solution, the analog of Theorem 2 takes the following form.

Proposition 7. (i) Assume (H3) and (9). Then

|E[f(X̂d
1 )−f(X1)]| ≤ C

(
σ2

ε

λε
(σ2

ε + |γε|) +

∫

R

|y|3χ̄εν(dy) +
|γε|q+1 + 1

λ
q
ε

+
σq+1

ε

λ
q−1
2

ε

)
.

(ii) Assume (H4) and (9), let γε be bounded and let the measure ν satisfy (7).
Then

|E[f(X̂d
1 )−f(X1)]| ≤ C

(
σ2

ε

λε
(σ2

ε + |γε|) +

∫

R

|y|4χ̄ε(ν0 + ν)(dy) +
1

λ
q
ε

+
σq+1

ε

λ
q−1
2

ε

)

and in particular,

|E[f(X̂d
1 ) − f(X1)]| ≤ C

(
σ2

ε

λε
+

∫

R

|y|4χ̄ε(ν0 + ν)(dy) +
1

λ
q
ε

+
σq+1

ε

λ
q−1
2

ε

)
.

Remark 8. The same result can be shown to be true under the conditions
(H′

3
) + (A) instead of (H3) or (H′

4
) + (A) instead of (H4) but we omit this

discussion to save space.

Remark 9. [Choice of the order of ODE discretization scheme] To understand
the effect of the order q of the discretization scheme used for the deterministic
ODE on the convergence rates in proposition 7, let us compute the rates for
stable-like Lévy measure (8). We denote by εc the upper bound on the error
given by Theorem 2 (part i. or ii., depending on the context), by εd the upper
bound on the additional error introduced by ODE discretization:

εd =
|γε|q+1 + 1

λ
q
ε

+
σq+1

ε

λ
q−1
2

ε

.

A simple computation then yields: εd = O(λ−q
ε ) for 0 < α < 1 and εd =

O(λ
1− q+1

α
ε ) for 1 < α < 2. In particular, to have the same worst-case conver-

gence rates for εd as for εc, one must take q ≥ 2 in the general case and q ≥ 3
in the locally symmetric case.
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The proofs Theorem 2 and Proposition 7 will be proved after a series of
lemmas.

Lemma 10. Let f : [0,∞) → [0,∞) be an increasing function. Then

E

[∫ 1

0

f(t − η(t))dt

]
≤ E[f(τ)],

where τ is an exponential random variable with intensity λε. In particular, for
p > 0, we have

E

[∫ 1

0

(t − η(t))pdt

]
≤ p!

λ
p
ε
.

Proof. Let kε = sup{k : T ε
k < 1}. Then

E

[∫ 1

0

f(t − η(t))dt

]
= E

[
kε∑

i=1

∫ T ε
i

T ε
i−1

f(t − T ε
i−1)dt +

∫ 1

T ε
kε

f(t − T ε
kε

)dt

]

= E

[
kε∑

i=1

∫ T ε
i

T ε
i−1

f(T ε
i − t)dt +

∫ 1

T ε
kε

f(1 − t)dt

]

≤ E

[
kε∑

i=1

∫ T ε
i

T ε
i−1

f(T ε
i − t)dt +

∫ 1

T ε
kε

f(T ε
kε+1 − t)dt

]

= E

[∫ 1

0

f(inf{T ε
i : T ε

i > t} − t)dt

]
= E[f(τ)].

The second statement of the lemma is a direct consequence of the first one.

Lemma 11 (Bounds on moments of X , X̂ and X̂dc). Assume

∫

R

|z|pν(dz) < ∞ for some p ≥ 2, (14)

and h ∈ C1
b (R). Then there exists a constant C > 0 (which may depend on p

but not on ε) such that

E[ sup
0≤s≤1

|Xs|p] ≤ C(1 + |x|p), (15)

E[ sup
0≤s≤1

|X̂s|p] ≤ C(1 + |x|p). (16)

Assume in addition that the discretization scheme used for defining X̂d and X̂dc

satisfies the condition (9). Then also

E[ sup
0≤s≤1

|X̂dc
s |p] ≤ C(1 + |x|p). (17)

11



Proof. We shall concentrate on the bound (17). The bound (16) will then follow
by taking θd ≡ θ and the bound (15) will follow from (16) by making ε go to
zero. The process X̂dc satisfies the stochastic differential equation (cf (6)):

dX̂dc
t = h(X̂dc

t ){γεdt +
1

2
(h′(X̂dc

t ) − h′(X̂d
ηt

))σ2
εdt + σεdWt}

+ h(X̂d
t−)dZε

t + (X̂d
t− − X̂dc

t−)dNε
t

= {h(X̂dc
t ) − h(X̂d

t )}γεdt + h(X̂d
t ){γ +

∫

|z|>1

zν(dz)}dt

+
1

2
h(X̂dc

t )(h′(X̂dc
t ) − h′(X̂d

ηt
))σ2

εdt + h(X̂dc
t )σεdWt

+ h(X̂d
t−)dẐε

t + (X̂d
t− − X̂dc

t−)dÑε
t + λε(X̂

d
t − X̂dc

t )dt,

where Ẑε and N̂ε are compensated versions of Zε and Nε. Using a predictable
version of the Burkholder-Davis-Gundy inequality [7, lemma 2.1] and the fact
that h′ is bounded, we then obtain for t ≤ 1 and for some constant C < ∞,
independent of ε and which may change from inequality to inequality

E[ sup
0≤s≤t

|X̂dc
s |p] ≤ CE

[
|x|p + |γε|p

∫ t

0

|h(X̂d
s ) − h(X̂dc

s )|pds

+

∫ t

0

(|h(X̂d
s )|p + |h(X̂dc

s )|p)ds + λp
ε

∫ t

0

|X̂d
s − X̂dc

s |pds

+

∫ t

0

|X̂d
s − X̂dc

s |pλεds +

(∫ t

0

|h(X̂d
s )|2

∫

R

|z|2χε(z)ν(dz)ds

)p/2

+

∫ t

0

|h(X̂d
s )|p

∫

R

|z|pχε(z)ν(dz)ds +

(∫ t

0

(X̂d
s − X̂dc

s )2λεds

)p/2

+

(∫ t

0

|h(X̂dc
s )|2σ2

εds

)p/2
]

Using Jensen’s inequality, the assumption (14) the Lipschitz property of h, and
the bound

|γε|2 ≤ C

(
λε

∫

R

z2χε(z)ν(dz) + 1

)
, (18)

the above inequality simplifies to

E[ sup
0≤s≤t

|X̂dc
s |p] ≤ CE

[
|x|p +

∫ t

0

|h(X̂dc
s )|pds + (1 + λp

ε)

∫ t

0

|X̂d
s − X̂dc

s |pds

]

≤ CE

[
1 + |x|p +

∫ t

0

|X̂dc
s |pds + (1 + λp

ε)

∫ t

0

|X̂d
s − X̂dc

s |pds

]
.

Let Gε be the sigma algebra generated by Zε. Using the bound (9), we get

|X̂d
s − X̂dc

s | ≤ |γε(s − ηs) + σε(W (s) − W (ηs)) −
1

2
h′(X̂d(ηs))σ

2
ε(s − ηs)|q+1

12



and therefore

E
[
|X̂d

s − X̂dc
s |p

]
= E

[
E
[
|X̂d

s − X̂dc
s |p

∣∣∣Gε
]]

≤ CE
[(

|γε|p(q+1) + 1
)

(s − ηs)
p(q+1) + (s − ηs)

p(q+1)
2

]
.

Using Lemma 10,

E

[
(1 + λp

ε)

∫ t

0

|X̂d
s − X̂dc

s |pds

]
≤ |γε|p(q+1) + 1

λ
qp
ε

+
1

λ
p(q−1)/2
ε

,

which is bounded uniformly on ε by the inequality (18). The bound (17) now
follows from Gronwall’s inequality.

Lemma 12 (Derivatives of the flow). Let p ≥ 2 and for an integer n ≥ 1
assume ∫

R

|z|npν(dz) < ∞,

h ∈ Cn
b (R). Then

E

[∣∣∣∣
∂k

∂xk
X

(t,x)
1

∣∣∣∣
p]

< ∞

for all k with 1 ≤ k ≤ n.

Proof. See the proof of lemma 4.2 in [19].

Lemma 13. Let u(t, x) := E(t,x)[f(X1)].

(i) Assume (Hn) with n ≥ 2. Then u ∈ C1,n ([0, 1]× R), ∂ku
∂xk are uniformly

bounded for 1 ≤ k ≤ n and u is a solution of the equation

∂u

∂t
(t, x) + γ

∂u

∂x
(t, x)h(x)

+

∫

|y|≤1

(
u(t, x + h(x)y) − u(t, x) − ∂u

∂x
(t, x)h(x)y

)
ν(dy)

+

∫

|y|>1

(u(t, x + h(x)y) − u(t, x)) ν (dy) = 0 (19)

u(1, x) = f(x).

(ii) Assume (H′
n
) with n ≥ 2. Then u ∈ C1,n ([0, 1] × R), u is a solution of

equation (19) and there exist C < ∞ and p > 0 with

∣∣∣∣
∂ku(t, x)

∂xk

∣∣∣∣ ≤ C(1 + |x|p)

for all t ∈ [0, 1], x ∈ R and 1 ≤ k ≤ n.

13



Proof. The derivative ∂u
∂x satisfies

∂u(t, x)

∂x
= E

[
f ′(X(t,x)

T )
∂

∂x
X

(t,x)
T

]
.

The interchange of the derivative and the expectation is justified using lemma 12.
The boundedness under (Hn) or the polynomial growth under (H′

n
) then follow

from lemmas 11 and 12. The other derivatives with respect to x are obtained by
successive differentiations under the expectation. The derivative with respect

to t is obtained from Itô’s formula applied to f(X
(t,x)
T ). In fact, note that since

Z is a Lévy process and h does not depend on t, E[f(X
(t,x)
T )] = E[f(X

(0,x)
T−t )]

and hence it is sufficient to study the derivative
∂E[f(X

(0,x)
t )]

∂t . The Itô formula
yields

E[f(Xt)] = f(x) + E

[∫ t

0

f ′(Xs−)h(Xs−)dZs

]

+ E

[∫ t

0

∫

R

{f(Xs− + h(Xs−)z) − f(Xs−) − f ′(Xs−)h(Xs−)z}N(dz, ds)

]
.

Denoting by Ẑ the martingale part of Z and by γ̃ := γ +
∫
|z|>1 zν(dz) the

residual drift, and using lemma 11, we get

E[f(Xt)] = f(x) + γ̃

∫ t

0

E[f ′(Xs)h(Xs)]ds

+

∫ t

0

E

[∫

R

{f(Xs + h(Xs)z) − f(Xs) − f ′(Xs)h(Xs)z}ν(dz)

]
ds,

and therefore

∂E[f(Xt)]

∂t
= γ̃E[f ′(Xt)h(Xt)]

+ E

[∫

R

{f(Xt + h(Xt)z) − f(Xt) − f ′(Xt)h(Xt)z}ν(dz)

]

= γ̃E[f ′(Xt)h(Xt)] +

∫ 1

0

dθE

[∫

R

(1 − θ)h2(Xt)z
2 ∂2f(Xt + θzh(Xt))

∂x2
ν(dz)

]
.

Now, once again, lemma 11 allows to prove the finiteness of this expression.
Finally, equation (19) is a consequence of Itô’s formula applied, this time, to
u(t, Xt).

14



Proof of Theorem 2. From Itô’s formula and lemmas 11 and 13,

E[f(X̂1) − f(X1)] = E[u(1, X̂1) − u(0, X0)]

=

∫ 1

0

dtE

[
1

2

∂2u(t, X̂t)

∂x2
σ2

εh2(X̂t)

−
∫

R

χ̄εν(dy)(u(t, X̂t + h(X̂t)y) − u(t, X̂t) −
∂u(t, X̂t)

∂x
h(X̂t)y)

]
(20)

+

∫ 1

0

dtE

[
1

2
σ2

ε

∂u(t, X̂t)

∂x
h(X̂t)(h

′(X̂t) − h′(X̂η(t)))

]
. (21)

Denote the expectation in (20) by At and the one in (21) by Bt. From lemmas
13 and 11, we then have, under the hypothesis (H3),

|At| ≤
∣∣∣∣∣E
[∫

R

1

2
y3h3(X̂t)χ̄ε

∫ 1

0

(1 − θ)2
∂3u(t, X̂t + θyh(X̂t))

∂x3
dθν(dy)

]∣∣∣∣∣

≤ CE[|h|3(X̂t)]

∫

R

|y|3χ̄εν(dy) ≤ C(1 + |x|3)
∫

R

|y|3χ̄εν(dy).

If, instead, the polynomial growth condition (H′
3
) is satisfied, then for some

p > 0,

At ≤ CE

[∫

R

|y|3(1 + |h|3(X̂t))(1 + |X̂t|p + |yh(X̂t)|p)χ̄εν(dy)

]

and once again, we use lemma 11 together with the assumption (A), because
the Lévy measure integrates any polynomial in y. Under the condition of part
(ii) and the hypothesis (H4),

|At| ≤
∣∣∣∣∣E
[

∂3u(t, X̂t)

∂x3
h3(X̂t)

∫

R

y3χ̄εν(dy)

]∣∣∣∣∣

+

∣∣∣∣∣E
[∫

R

1

24
y4h4(X̂t)

∫ 1

0

(1 − θ)3
∂4u(t, X̂t + θyh(X̂t))

∂x4
dθχ̄εν(dy)

]∣∣∣∣∣

≤ C(1 + |x|4)
∫

R

|y|4χ̄ε(ν0 + ν)(dy).

The case of (H′
4
) is treated as above. To analyze the term Bt, define

H(t, x) =
∂u(t, x)

∂x
h(x)

and assume, to fix the notation, that (H3) is satisfied. Note that η(t) is a
stopping time and then, once again by lemmas 13 and 11, Taylor formula and

15



the Cauchy-Schwartz inequality,

|Bt| ≤
1

2
σ2

ε

∣∣∣E[(H(t, X̂t) − H(t, X̂η(t)))(h
′(X̂t) − h′(X̂η(t)))]

∣∣∣

+
1

2
σ2

ε

∣∣∣E
[
H(t, X̂η(t))(h

′(X̂t) − h′(X̂η(t)))
]∣∣∣

≤ 1

2
σ2

ε

∣∣∣∣∣E
[
(X̂t − X̂η(t))

2

∫ 1

0

dθ
∂H

∂x
(X̂η(t) + θ(X̂t − X̂η(t)))

×
∫ 1

0

dθ′h′′(X̂η(t) + θ′(X̂t − X̂η(t)))

]∣∣∣∣∣

+
1

2
σ2

ε

∣∣∣E
[
H(t, X̂η(t))E

[
(h′(X̂t) − h′(X̂η(t)))|Fη(t)

]]∣∣∣

≤ Cσ2
εE[(X̂t − X̂η(t))

2(1 + |X̂t| + |X̂η(t)|)]

+
1

2
σ2

ε

∣∣∣E[H(t, X̂η(t))h
′′(X̂η(t))E[X̂t − X̂η(t)|Fη(t)]]

∣∣∣

+
1

2
σ2

εE

[
H(t, X̂η(t))(X̂t − X̂η(t))

2

∫ 1

0

dθ(1 − θ)h(3)(X̂η(t) + θ(X̂t − X̂η(t)))

]

≤ Cσ2
εE[(X̂t − X̂η(t))

4]1/2

+
1

2
σ2

ε

∣∣∣E[H(t, X̂η(t))h
′′(X̂η(t))E[X̂t − X̂η(t)|Fη(t)]]

∣∣∣ . (22)

Note that

X̂t − X̂η(t) =

∫ t

η(t)

h(X̂s)

{
σεdWs + γεds +

1

2
(h′(X̂s) − h′(X̂ηs))σ

2
εds

}
,

E[X̂t − X̂η(t)|Fη(t)] = E

[∫ t

η(t)

h(X̂s)

{
γεds +

1

2
(h′(X̂s) − h′(X̂ηs))σ

2
εds

}
|Fη(t)

]
.

The Burkholder-Davis-Gundy inequality and, the Cauchy-Schwartz inequality
and lemma 11 then give, under the hypothesis (H3):

E[(X̂t − X̂η(t))
4] ≤ CE




∣∣∣∣∣

∫ t

η(t)

h(X̂s)

{
γεds +

1

2
(h′(X̂s) − h′(X̂ηs))σ

2
εds

}∣∣∣∣∣

4




+ Cσ4
εE




(∫ t

η(t)

h2(X̂s)ds

)2




≤ C(|γε| + σ2
ε)4E[(t − η(t))4(1 + sup

s≤t
|X̂s|)4]

+ Cσ4
εE[(t − η(t))2(1 + sup

s≤t
|X̂s|)4]

≤ C(|γε| + σ2
ε)4E[(t − η(t))8]

1
2 + Cσ4

εE[(t − η(t))4]
1
2 .
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Similarly, for the second term in (22), we get

1

2
σ2

ε

∣∣∣E[H(t, X̂η(t))h
′′(X̂η(t))E[X̂t − X̂η(t)|Fη(t)]]

∣∣∣

≤ Cσ2
ε(|γε| + σ2

ε)E[(t − η(t))2]
1
2 .

Assembling together the estimates for the two terms in (22),

|Bt| ≤ Cσ2
ε((|γε|+σ2

ε)2E[(t−η(t))8]
1
4 +σ2

εE[(t−η(t))4]
1
4 +(|γε|+σ2

ε)E[(t−η(t))2]
1
2 )

Using the Jensen inequality and lemma 10, this is further reduced to

∫ 1

0

|Bt|dt ≤ Cσ2
ε

(
(|γε| + σ2

ε)2

λ2
ε

+
|γε| + σ2

ε

λε

)
.

From the Cauchy-Schwartz inequality we get

(∫

|y|≤1

|y|χεν(dy)

)2

≤ λε

∫

|y|≤1

y2χεν(dy) ≤ Cλε,

which implies that |γε| ≤ C
√

λε and finally |B| ≤ Cσ2
ε
|γε|+σ2

ε

λε
. Assembling these

estimates with the ones for A, we complete the proof under the assumptions
(H3) (or (H4)). Under the assumptions (H′

3
) or (H′

4
) the proof is done in a

similar fashion.

Proof of proposition 7. Recall the notation (T ε
i )i≥0 for the jump times of the

process Zε and (Nε
t )t≥0 for the Poisson process counting the jumps of Zε. We

17



also define T ε
0 = 0 and, abusing the notation, we set T ε

Nε
1+1 := 1. Then,

|E[f(X̂d
1 ) − f(X1)]| = |E[u(1, X̂d

1 ) − u(0, X0)]|

=

∣∣∣∣∣∣
E




Nε

1+1∑

i=1

{u(T ε
i , X̂d

T ε
i
) − u(T ε

i−1, X̂
d
T ε

i−1
)}





∣∣∣∣∣∣

=

∣∣∣∣∣E
[Nε

1∑

i=1

{u(T ε
i , X̂d

T ε
i
) − u(T ε

i , X̂d
T ε

i −)}

+

Nε
1+1∑

i=1

{u(T ε
i , X̂d

T ε
i −) − u(T ε

i , X̂dc
T ε

i −) + u(T ε
i , X̂dc

T ε
i −) − u(T ε

i−1, X̂
dc
T ε

i−1
)}
]∣∣∣∣∣

≤ CE




Nε

1+1∑

i=1

|X̂d
T ε

i − − X̂dc
T ε

i −|





+

∣∣∣∣∣E
[Nε

1∑

i=1

{u(Ti, X̂
d
T ε

i − + h(X̂d
T ε

i −)∆ZT ε
i
) − u(Ti, X̂

d
T ε

i −)}

+

∫ 1

0

dt
{∂u(t, X̂dc

t )

∂t
+

1

2

∂2u(t, X̂dc
t )

∂x2
σ2

εh2(X̂dc
t ) +

∂u(t, X̂dc
t )

∂x
γεh(X̂dc

t )

+
σ2

ε

2

∂u(t, X̂dc
t )

∂x
h(X̂dc

t )(h′(X̂dc
t ) − h′(X̂dc

ηt
))
}]∣∣∣∣∣

= CE




Nε

1+1∑

i=1

|X̂d
T ε

i − − X̂dc
T ε

i −|



+

∣∣∣∣∣E
[ ∫ 1

0

dt

∫

R

χεν(dy){u(t, X̂d
t + h(X̂d

t )y)

− u(t, X̂dc
t + h(X̂dc

t )y) + u(t, X̂d
t ) − u(t, X̂dc

t )}
]∣∣∣∣∣

+

∣∣∣∣∣E
[∫ 1

0

dt
{∂u(t, X̂dc

t )

∂t
+

1

2

∂2u(t, X̂dc
t )

∂x2
σ2

εh2(X̂dc
t ) +

∂u(t, X̂dc
t )

∂x
γεh(X̂dc

t )

+
σ2

ε

2

∂u(t, X̂dc
t )

∂x
h(X̂dc

t )(h′(X̂dc
t ) − h′(X̂dc

ηt
))

+

∫

R

χεν(dy){u(t, X̂dc
t + h(X̂dc

t )y) − u(t, X̂dc
t )}

}]∣∣∣∣∣ (23)

The third term above is exactly the same expression as in (20) and (21), with
X̂ replaced by X̂dc. Since lemma 11 also applies to X̂dc, the third term can be
estimated in the same way as in the proof of the theorem 2 and yields the same
error bound. It remains then to estimate the first and the second terms.

Let FJ := σ(Nε
t , 0 ≤ t ≤ 1) and FJ

t := Ft ∨ FJ . Then the first term in the
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right-hand side satisfies

E




Nε

1+1∑

i=1

|X̂d
T ε

i − − X̂dc
T ε

i −|



 = E




Nε

1+1∑

i=1

E
[
|X̂d

T ε
i − − X̂dc

T ε
i −|
∣∣FJ

T ε
i−1

]




≤ CE

[Nε
1+1∑

i=1

E
[
|γε(T

ε
i − T ε

i−1) + σε(WT ε
i
− WT ε

i−1
)

− 1

2
h′(X̂d

T ε
i−1

)σ2
ε(T ε

i − T ε
i−1)|q+1

∣∣FJ
T ε

i−1

]]

≤ CE




Nε

1+1∑

i=1

{
(|γε|q+1 + 1)(T ε

i − T ε
i−1)

q+1 + σq+1
ε (T ε

i − T ε
i−1)

q+1
2

}




≤ C(γq+1
ε + 1)E

[∫ 1

0

(t − ηt)
qdt

]
+ Cσq+1

ε E

[∫ 1

0

(t − ηt)
q−1
2 dt

]

≤ C
γq+1

ε + 1

λ
q
ε

+ C
σq+1

ε

λ
q−1
2

ε

,

where we used lemma 10 in the last line.
Finally, the second term in the right-hand side of (23) can be estimated from

above by:

CE

[∫ 1

0

dt

∫

R

χεν(dy)(1 + |y|)|X̂d
t − X̂dc

t |
]
≤ CλεE

[∫ 1

0

dt|X̂d
t − X̂dc

t |
]

,

and from now on one proceeds similarly to the estimation of the first term above
(and obtains the same bound).

4 Approximating multidimensional SDE using

expansions

In this section we propose an alternative approximation scheme, which yields
similar rates to the ones obtained in section 3 but has the advantage of being
applicable in the multidimensional case. On the other hand, it is a little more
difficult to implement. As before, we start by replacing the small jumps of Z

with a suitable d-dimensional Brownian motion W ε with covariance matrix Σε

independent of Z, yielding the SDE

dX̄t = h(X̄t−){γεdt + dW ε
t + dZε

t }. (24)

This process can also be written as

X̄(t) = X̄(ηt) +

∫ t

ηt

h
(
X̄(s)

)
dW ε(s) +

∫ t

ηt

h
(
X̄(s)

)
γεds,

X̄(T ε
i ) = X̄(T ε

i −) + h(X̄(T ε
i −))∆Z(T ε

i ).
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The idea now is to expand the solution of (24) between the jumps of Zε around
the solution of the deterministic dynamical system (2), treating the stochastic
term as a small random perturbation (see [9, Chapter 2]).

Assume that the coefficient h is Lipschitz and consider a family of processes
(Y α)0≤α≤1 defined by

Y α(t) = X̄(ηt) + α

∫ t

ηt

h (Y α(s)) dW ε(s) +

∫ t

ηt

h (Y α(s)) γεds

Our idea is to replace the process X̄ := Y 1 with its first-order Taylor approxi-
mation:

X̄(t) ≈ Y 0(t) +
∂

∂α
Y α(t)|α=0.

Therefore, the new approximation X̃ is defined by

X̃(t) = Y 0(t) + Y1(t), t > ηt,

X̃(T ε
i ) = X̃(T ε

i −) + h(X̃(T ε
i −))∆Z(T ε

i ),

Y 0(t) = X̃(ηt) +

∫ t

ηt

h(Y 0(t))γεds (25)

Y1(t) =

∫ t

ηt

∂h

∂xi

(
Y 0(s)

)
Y i

1 (s)γεds +

∫ t

ηt

h
(
Y 0(s)

)
dW ε(s)

where we used the Einstein convention for summation over repeated indices.
Note that the random vector Y1(t) conditioned on T ε

i , i ∈ N, t ∈ (T ε
j , T ε

j+1) and

X̃(T ε
j ) is a Gaussian random vector with conditional covariance matrix Ω(t)

which satisfies the (matrix) linear equation

Ω(t) =

∫ t

ηt

(Ω(s)M(s) + M⊥(s)Ω⊥(s) + N(s))ds (26)

where M⊥ denotes the transpose of the matrix M and

Mij(t) =
∂hjk(Y0(t))

∂xi
γk

ε and N(t) = h(Y0(t))Σ
εh⊥(Y0(t)).

Successive applications of Gronwall’s inequality yield the following bounds
for Y0 and Ω.

|Y0(t)| ≤
(
|X̃(ηt)| + C|γε|(t − ηt)

)
eC|γε|(t−ηt)

‖Ω(t)‖ ≤ C‖Σε‖(t − ηt)(1 + (|X̃(ηt)| + C|γε|(t − ηt))
2)e3C|γε|(t−ηt). (27)

Lemma 14. Under our standing assumptions ν(Rd) = ∞ and
∫
|y|>1

|y|ν(dy) <

∞,

lim
ε→0

|γε|2
λε

= 0.
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Proof. Left to the reader as an exercise.

To prove the result on weak convergence (Theorem 16), we need to generalize
lemmas 11, 12 and 13 to the multidimensional setting. While the generalization
of the last two lemmas is straightforward, the first one requires a little work,
because it needs to be adapted to the new discretization scheme.

Lemma 15 (Bounds on moments of X̃). Assume h ∈ C1
b (Rn) and

∫

z∈Rd

|z|pν(dz) < ∞ for some p ≥ 2.

Then there exists a constant C > 0 (which may depend on p but not on ε) such
that for all ε sufficiently small,

E[ sup
0≤s≤1

|X̃s|p] ≤ C(1 + |x|p). (28)

Proof. Denote ht := h(X̃t) and h̃t := h(Y0(t)). The SDE for X̃ can be rewritten
as

dX̃t = ht−dẐε
t + h̃tdW ε

t + htγ̃dt + (h̃t − ht)γεdt +
∂h

∂xi
(Y0(t)) Y i

1 (t)γεdt, (29)

where Ẑt =

∫ t

0

∫

|y|>ε

yN̂ε(dy, ds), γ̃ = γ +

∫

|y|>1

yν(dy).

By predictable Burkholder-Davis-Gundy inequality [7, lemma 2.1], we then have

E

[
sup

0≤s≤t
‖X̃s‖p

]
≤ CE

[
‖x‖p +

(∫ t

0

‖hs‖2

∫
|z|2χεν(dz)ds

)p/2

+

∫ t

0

‖hs‖pds

∫
|z|pχεν(dz) +

(∫ t

0

‖h̃s‖2‖Σε‖ds

)p/2

+

∫ t

0

‖hs‖p|γ̃|pds + |γε|p
∫ t

0

‖h̃s − hs‖pds + |γε|p
∫ t

0

‖Y1(s)‖pds

]

≤ CE

[
‖x‖p +

∫ t

0

‖hs‖pds + (1 + |γε|p)
∫ t

0

‖h̃s − hs‖pds + |γε|p
∫ t

0

‖Y1(s)‖pds

]
,

where the constant C does not depend on ε and may change from line to line.
Since h′ is bounded, we have

E

[
sup

0≤s≤t
‖X̃s‖p

]
≤ CE

[
‖x‖p +

∫ t

0

‖hs‖pds + (1 + |γε|p)
∫ t

0

‖Y1(s)‖pds

]
.

(30)
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Using (27), the last term can be estimated as

E

[
(1 + |γε|p)

∫ t

0

‖Y1(s)‖pds

]
= CE

[
(1 + |γε|p)

∫ t

0

E
[
‖Y1(s)‖p|Fη(s)

]
ds

]

≤ CE

[
(1 + |γε|p)

∫ t

0

‖Ω(s)‖p/2ds

]

≤ CE

[
(1 + |γε|p)

∫ t

0

(1 + ‖X̃η(s))‖p)‖Σε‖p/2(s − ηs)
p/2eC|γε|(1+|γε|)(s−ηs)ds

]

≤ CE

[
(1 + |γε|p)

∫ t

0

(1 + ‖X̃η(s))‖p)‖Σε‖p/2τp/2eC(1+|γε|)τds

]
,

where τ is an independent exponential random variable with parameter λε. Due
to Lemma 14, for ε sufficiently small, the expectation with respect to τ exists,
and computing it explicitly we obtain

E

[
(1 + |γε|p)

∫ t

0

‖Y1(s)‖pds

]
≤ CεE

[∫ t

0

(1 + ‖X̃η(s)‖p)ds

]
,

where Cε → 0 as ε → 0. Inequality (30) therefore becomes

E

[
sup

0≤s≤t
‖X̃s‖p

]
≤ CE

[
‖x‖p +

∫ t

0

‖hs‖pds + Cε

∫ t

0

(1 + ‖X̃η(s)‖p)

]

≤ CE

[
‖x‖p +

∫ t

0

‖hs‖pds + Cεt(1 + sup
0≤s≤t

‖X̃s‖p)

]
,

which implies that for ε sufficiently small,

E

[
sup

0≤s≤t
‖X̃s‖p

]
≤ CE

[
1 + ‖x‖p +

∫ t

0

‖hs‖pds

]
,

and we get (28) by Gronwall’s lemma.

Theorem 16.

(i) Assume (H3) or (H′
3
) + (A). Then

|E[f(X̂1) − f(X1)]| ≤ C

(‖Σε‖
λε

(‖Σε‖ + |γε|) +

∫

Rd

|y|3χ̄εν(dy)

)
.

(ii) Assume (H4) or (H′
4
)+ (A), let γε be bounded and suppose that for some

measure ν0 ∫

Rd

yiyjykχ̄εν(dy) ≤ C

∫

Rd

|y|4χ̄εν0(dy)

for all i, j, k and all ε sufficiently small. Then

|E[f(X̂1) − f(X1)]| ≤ C

(‖Σε‖
λε

+

∫

Rd

|y|4χ̄ε(ν0 + ν)(dy)

)
.
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Proof. By Itô formula and (29) we have

E[f(X̃1) − f(X1)] = E[u(1, X̃1) − u(0, X0)]

=

∫ 1

0

dtE

[
∂u(t, X̃(t))

∂xi

{
hij(Y

0(t)) +
∂hij(Y

0(t))

∂xk
Y k

1 (t) − hij(X̃(t))

}
γj

ε

(31)

+
1

2

∂2u(X̃(t))

∂xi∂xj
hik(Y0(t))Σ

kl
ε hjl(Y0(t)) (32)

−
∫

Rd

{
u(t, X̃(t) + h(X̃(t))y) − u(t, X̃(t)) − ∂u(t, X̃t)

∂xi
hij(X̃(t))yj

}
χ̄εν(dy)

]
.

(33)

Denote the expectation term in (31) by At and the sum of the terms in (32)
and (33) by Bt. The term At satisfies

|At| ≤ CE

[∣∣∣∣∣
∂u(t, X̃(t))

∂x

∣∣∣∣∣ |Y1(t)|2|γε|
]

Under the assumption (H4) or (H3), using (27), we have

|At| ≤ C|γε|E
[
|Y1(t)|2

]
≤ C|γε|E[‖Ω(t)‖]

≤ C‖Σε‖
{

E[e3C|γε|(t−ηt)(t − ηt)](1 + E[|X̃(ηt)|2])|γε|

+ C2|γε|2E[e3C|γε|(t−ηt)(t − ηt)
3]

}
.

Using Lemmas 10, 14 and 15, we then get
∫ 1

0

|At|dt ≤ C(1 + |x|2) ‖Σε‖λε|γε|
(λε − 3C|γε|)2

{
1 +

|γε|
(λε − 3C|γε|)2

}

≤ C(1 + |x|2)‖Σε‖
λε

{
1 +

|γε|
λ2

ε

}
|γε|

Under (H′
4
) or (H′

3
) this result can be obtained along the same lines.

Let us now turn to the term Bt. It is rewritten via

Bt = E

[
−
∫

Rd

{
u(t, X̃(t) + h(X̃(t))y) − u(t, X̃(t)) − ∂u(t, X̃(t))

∂xi
hij(X̃(t))yj

− ∂2u(t, X̃t)

∂xi∂xj
hik(X̃(t))hjl(X̃(t))ykyl

}
χ̄εν(dy)

+
∂2u(t, Y 0(t))

∂xi∂xj
Σkl

ε

{
hik(Y 0(t))hjl(Y

0(t)) − hik(X̃(t))hjl(X̃(t))
}

+

(
∂2u(t, X̃(t))

∂xi∂xj
− ∂2u(t, Y 0(t))

∂xi∂xj

)
Σkl

ε

{
hik(Y 0(t))hjl(Y

0(t)) − hik(X̃(t))hjl(X̃(t))
}]
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Denote the first two lines by B1(t), the third line by B2(t) and the fourth by
B3(t). Under the hypotheses (H4) or (H3), we get

|B1(t)|

≤ E

∣∣∣∣∣

∫

Rd

∂3u(t, X̃t + θh(X̃(t))y)

∂xi∂xj∂k
hil(X̃(t))hjm(X̃t)hkn(X̃(t))ylymynχ̄εν(dy)

∣∣∣∣∣

≤ CE[‖h(X̃t)‖3]

∫

Rd

|y|3χ̄εν(dy) ≤ C(1 + |x|3)
∫

Rd

|y|3χ̄εν(dy).

Let Fikjl(x) := hik(x)hjl(x). Using the fact that conditionally on Fηt , Y1(t) is
a centered Gaussian process,

|B2(t)| ≤ E

[∣∣∣∣∣
∂2u(t, Y 0(t))

∂xi∂xj
Σkl

ε E

{
Fikjl(Y

0(t)) − Fikjl(X̃(t))

/
Fηt

}∣∣∣∣∣

]

≤ E

[∣∣∣∣
∂2u(t, Y 0(t))

∂xi∂xj
Σkl

ε Y
p
1 (t)Y q

1 (t)

∫ 1

0

(1 − θ)
∂2Fikjl(Y

0(t) + θY1(t))

∂xp∂xq
dθ

∣∣∣∣
]

≤ C‖Σε‖E
[
|Y1(t)|2(1 + sup

s≤t
|X̃s|)

]
.

Using once again Lemmas 10, 14 and 15, we obtain

∫ 1

0

|B2(t)|dt ≤ C‖Σε‖2

λε
(1 + |x|)3

{
1 +

|γε|4
λ4

ε

}1/2

.

With a similar reasoning we obtain that B3 is also upper bounded as B2

The proof of the first part of the theorem under assumptions (H′
4
) or (H′

3
)

is done along the same lines.

5 Examples and applications

5.1 Example 1: Weak convergence for an SDE driven by

a NIG Lévy process

In our first example, we verify the theoretical results on a concrete example of
a SDE driven by a normal inverse Gaussian (NIG) Lévy process [2], which has
characteristic function

φt(u) := E[eiuZt ] = exp
{
−δt

(√
α2 − (β − iu)2 −

√
α2 − β2

)}
,

where α > 0, β ∈ (−α, α) and δ > 0 are parameters. The Lévy density is given
by

ν(x) =
δα

π

eβxK1(α|x|)
|x| ,
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where K is the modified Bessel function of the second kind. The NIG process has
stable-like behavior of small jumps with ν(x) ∼ const

|x|2 , x → 0, and exponential

tails with ν(x) ∼ const × |x|−3/2e−α|x|+βx, x → ±∞.
The NIG process can be represented as Zt = θYt + σWYt , where W is

a standard Brownian motion and Y is an inverse Gaussian subordinator: a
pure jump Lévy process with Lévy density ρ(x) = 1√

2πk
e− x

2κ

|x|3/2 . The parameters

(σ, θ, κ) are related to (α, β, δ) via

κ =
1

δ
√

α2 − β2
, θ =

βδ√
α2 − β2

, σ2 =
δ√

α2 − β2
.

Thanks to this representation, increments of the NIG process can be simulated
explicitly (see [6, algorithms 6.9 and 6.10]), which enables us to compare our
jump-adapted algorithms with the classical Euler scheme.

Since the Lévy density ν involves a special function, simulation from the

density
ν(x)1|x|>ε

R

|x|>ε
ν(x)dx

is rather intricate. We therefore propose another choice of

the truncation function χε which is based on the time-changed Brownian motion
representation of the NIG process and simplifies the simulation. Let pt be the
(Gaussian) density of θt + σWt. The Lévy density of the NIG process can be
represented as [22, Theorem 30.1]

ν(x) =

∫ ∞

0

pt(x)ρ(t)dt.

We first define the (finite) measure νε via

νε(x) :=

∫ ∞

ε

pt(x)ρ(t)dt,

and then the function χε as the ratio of the two densities

χε(x) :=
νε(x)

ν(x)
.

It is easy to check that this function satisfies the required conditions as well as
the assumption (A). The constants λε, γε and σε are computed as follows:

λε =

∫

R

νε(x)dx =

∫ ∞

ε

ρ(t)dt =

√
2√

πκε
e−

ε
2κ − 2

κ
N

(
−
√

ε

κ

)
,

γε = θ −
∫

R

xνε(x)dx = θ − θ

∫ ∞

ε

tρ(t)dt = θ − 2θN

(
−
√

ε

κ

)

σ2
ε =

∫

R

x2(ν(x) − νε(x))dx =

∫

R

x2

∫ ε

0

pt(x)ρ(t)dxdt =

∫ ε

0

(θ2t2 + σ2t)ρ(t)dt

= (σ2 + κθ2)

(
1 − 2N

(
−
√

ε

κ

))
−

√
2κε√
π

e−
ε
2κ
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where N(x) := 1√
2π

∫ x

−∞ e−
x2

2 dx is the standard normal CDF.

Random variables with density νε

λε
can be sampled using the following algo-

rith:

• First, sample a random variable Y with probability density ρ(x)1x>ε

λε
using

the rejection method (example 6.9 in [6]);

• Conditionally on Y , sample X with law pY .

For our numerical example we choose to solve the one-dimensional SDE

dXt = sin(aXt)dZt,

where Z is the NIG Lévy process (with drift adjusted to have E[Zt] = 0). The
solution of the corresponding deterministic ODE

dXt = sin(aXt)dt, X0 = x

is given explicitly by

Xt = θ(t; x) =
1

a
arccos

1 + cos(ax) − e2at(1 − cos(ax))

1 + cos(ax) + e2at(1 − cos(ax))

We compare the performance of the jump-adapted scheme of section 3 and
of the one-dimensional version of the scheme of section 4 with the classical Euler
scheme. In the one-dimensional setting, equation (26) simplifies and admits an
explicit solution

Ω(t) = σ2
εh2(Y 0

t )(t − ηt).

We compute the Monte Carlo estimator of E[f(X1)] with

f(x) = 2 − 2 cos(x − X0).

This choice was motivated by the desire to have a function similar to x2 but
with bounded derivatives.

Figure 1 presents the Monte Carlo estimator and the corresponding errors
obtained using the three schemes with parameter values σ = 0.5, θ = 0.4,
κ = 0.6, a = 5 and X0 = 1. The true value (obtained with a very large number
of simulations) is close to 0.13045 in this case. The estimators and errors are
plotted as function of the complexity parameter N which is equal to λε (that
is, the average number of discretization points) for the jump-adapted schemes
and to the number of discretization points for the Euler scheme. For given N ,
the computation using any of the jump-adapted schemes takes about 2.5 times
as much time as with the Euler scheme. We simulated 106 trajectories for each
point, leading to a Monte Carlo standard deviation of about 3× 10−4 for every
value (the standard deviation is almost independent from N).

Both jump-adapted schemes appear largely superior to the Euler scheme,
and the scheme of section 3 has a better performance than that of section 4. The
estimator obtained using the scheme of section 3 falls within the Monte Carlo
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Figure 1: Numerical comparison of the jump-adapted scheme of section 3, jump-
adapted scheme of section 4 and the classical Euler scheme. Left graph: the
Monte Carlo estimator of E[f(X1)]. The dotted line corresponds to the “true
value” computed with a very large number of simulations. Right graph: log-log
plot of absolute error. The dotted line corresponds to the logarithm of two
standard deviations of the MC estimator.

confidence bounds already for N = 3, and the estimator of section 4 converges
after N = 8, whereas the Euler scheme only converges at about N = 300. From
the log-log plot, one can clearly identify the usual convergence rate of 1

N for
the Euler scheme, whereas for the other two schemes, after a certain warm-up
period, the convergence is much faster than 1

N and looks more like 1
N2 . This

is consistent with the theoretical result of Theorems 2 which predicts a rate of
O(λ−2

ε ) (see example 5).

5.2 Example 2: A financial application: Libor market

model with jumps

In the example we treat in this Section, the theoretical resuts of this paper
establishing the convergence rate of the weak error cannot formally be applied
due to the non-smoothness of the function f . Nevertheless, the scheme itself can
be applied, and, as shown by numerical experiments, the weak error converges
to zero very quickly. This shows that the methodology we have introduced can
be applied with greater generality.

Stochastic models driven by Lévy processes are gaining increasing popularity
in financial mathematics, where they offer a much more realistic description of
the underlying risks than the traditional diffusion-based models. In this context,
many quantities of interest are given by solutions of stochastic differential equa-
tions which cannot be solved explicitly. One important example of a non-trivial
multidimensional SDE arises in the Libor market model, which describes joint
arbitrage-free dynamics of a set of forward interest rates. Libor market models
with jumps were considered among others by Jamshidian [13], Glasserman and
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Kou [10] and Eberlein and Özkan [8]. Let Ti = T1 + (i − 1)δ, i = 1, . . . , n + 1
be a set of dates called tenor dates. The Libor rate Li

t is the forward interest
rate, defined at date t for the period [Ti, Ti+1]. If Bt(T ) is the price at time t

of a zero-coupon bond, that is, a bond which pays to its holder 1 unit at date
T , the Libor rates can be computed via

Li
t =

1

δ

(
Bt(Ti)

Bt(Ti+1)
− 1

)

A Libor market model (LMM) is a model describing an arbitrage-free dynamics
of a set of Libor rates.

In this example, we shall use a simplified version of the general semimartin-
gale LMM given in [13], supposing that all Libor rates are driven by a d-
dimensional pure jump Lévy process. In this case, following [13], an arbitrage-
free dynamics of L1

t , . . . , L
n
t can be constructed via the multi-dimensional SDE

dLi
t

Li
t−

= σi(t)dZt −
∫

Rd

σi(t)z




n∏

j=i+1

(
1 +

δL
j
tσ

j(t)z

1 + δL
j
t

)
− 1



 ν(dz)dt. (34)

Here Z is a d-dimensional martingale pure jump Lévy process with Lévy measure
ν, and σi(t) are d-dimensional deterministic volatility functions.

Equation (34) gives the Libor dynamics under the so-called terminal mea-
sure, which corresponds to using the last zero-coupon bond Bt(Tn+1) as numéraire.
This means that the price at time t of an option having payoff H = h(L1

T1
, . . . , Ln

T1
)

at time T1 is given by

πt(H) = Bt(Tn+1)E

[
h(L1

T1
, . . . , Ln

T1
)

BT1(Tn+1)

∣∣∣∣∣Ft

]

= Bt(Tn+1)E

[
h(L1

T1
, . . . , Ln

T1
)

n∏

i=1

(1 + δLi
T1

)

∣∣∣∣∣Ft

]

=
Bt(T1)∏n

i=1(1 + δLi
t)

E

[
h(L1

T1
, . . . , Ln

T1
)

n∏

i=1

(1 + δLi
T1

)

∣∣∣∣∣Ft

]
(35)

The price of any such option can therefore be computed by Monte Carlo using
equation (34).

Introducing a n + 1-dimensional state process Xt with X0
t ≡ t and X i

t = Li
t

for 1 ≤ i ≤ n, a d + 1-dimensional driving Lévy process Z̃t = (t Zt)
⊥, and

a (n + 1) × (d + 1)-dimensional function h(x) defined by h11 = 1, h1j = 0 for
j = 2, . . . , d + 1, hi1 = f i(x) and hij = σi

j−1(x0) with

f i(x) := −
∫

Rd

σi(x0)z




n∏

j=i+1

(
1 +

δxjσ
j(x0)z

1 + δxj

)
− 1



 ν(dz),

we see that the equation (34) takes the homogeneous form dXt = h(Xt−)dZ̃t,
to which the discretization scheme of section 4 can be readily applied.
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Figure 2: Ratio of estimated to theoretical zero coupon bond price in Case 1
(left) and Case 2 (right) with 1 standard deviation bounds. 105 trajectories
were used for all points except the three points with the largest intensity in the
right graph, where 104 simulations were made to save time.

For the purposes of illustration, we simplify the model even further, taking
d = 1 and supposing that the functions σi(t) are constant: σi(t) ≡ 1. The
driving Lévy process Z is supposed to follow the CGMY model [6] which has
Lévy density

ν(x) =
Ce−λ−|x|

|x|1+α
1x<0 +

Ce−λ+|x|

|x|1+α
1x>0. (36)

No easy algorithm is available for simulating the increments of this process
(cf [15, 18]), however, it is straightforward to simulate random variables with
density

ν(x)1|x|>ε∫
|x|>ε ν(x)dx

using the rejection method [6, example 6.9].
We use two alternative sets of parameters: α = 0.5 and C = 1.5 in Case

1 and α = 1.8 and C = 0.01 in Case 2. In both cases, we take λ+ = 10 and
λ− = 20. The set of tenor dates for the Libor market model is {5, 6, 7, 8, 9, 10}
years, which corresponds to a stochastic differential equation in dimension 5.
The initial values of all forward Libor rates are all equal to 15%. This big a
value was taken to emphasize the non-linear effects in the simulation.

For the numerical implementation of the scheme of section 3, we solved the
equations (25) and (26) simultaneously using the classical 4-th order Runge-
Kutta scheme as described in Section 3.

As a sanity check, we first compute the price of a zero-coupon bond with ma-
turity T1, which corresponds to taking h ≡ 1 in equation (35). By construction
of the model, if the SDE is solved correctly, we must recover the input price
of the zero-coupon bond. Figure 2 shows the ratio of the zero coupon bond
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price estimated using the first-order scheme of section 3 to the input value. For
comparison, we also give the value computed using the 0-order approximation
Y 0 only. This illustrates the impact of using the Asmussen-Rosinski type ap-
proximation as compared to neglecting the small jumps completely. We do not
compare our results with the classical Euler scheme because this would require
us to simulate the increments of the CGMY process for which no standard
algorithm is available.

The graphs in Figure 2 show that already for the intensity of the approxi-
mating process equal to 1 jump per year, the true price of the zero coupon is
within the Monte Carlo confidence bounds for the 1st order scheme, on the other
hand, for the 0-th order scheme the convergence is very slow, especially in case
2. Recall that the theoretical convergence rates of Theorem 16 and Example 5
(which formally do not apply here) are of order of λ−4 in Case 1 and λ−1.11 in
Case 2.

This is consistent with the theoretical convergence rates which are of or-
der of λ−3 in Case 1 and λ−0.11 in Case 2 for 0-th order approximation and,
respectively, λ−7 and λ−1.22 for 1-st order approximation.

Next, we use our method to compute the price of the so-called receiver
swaption, which gives its holder the right but not the obligation to enter an
interest rate swap with fixed rate K at date T1. This means that its pay-off at
date T1 is equal to

h(L1
T1

, . . . , Ln
T1

) =

(
1 − BT1(Tn+1) − Kδ

n∑

i=1

BT1(Ti+1)

)+

=




n∏

i=1

(1 + δLi
T1

)−1 − 1 − Kδ

n∑

i=1

i∏

j=1

(1 + δLi
T1

)−1




+

.

Figure 3 shows the price of this product with K = 15% estimated using the
method of section 3, and compared once again to the 0-order scheme. The
theoretical value is not known in closed form in this case, but we see that
despite the fact that the pay-off function is not differentiable, the convergence
of the 1-st order scheme is achieved very quickly while the 0-th order scheme
takes a long time to converge.

Finally, Figure 4 shows the execution time for the 1-st order and the 0-th
order scheme as a function of the jump intensity λε (this dependence is very
similar in cases 1 and 2). These times were obtained on a standard (rather old)
Pentium-III PC using a very simple implementation of the scheme of section
3, without any code optimization or variance reduction which could accelerate
the computation. Despite the fact that for the same intensity, the 1-st order
scheme needs 5 times as much computational effort as the 0-th order scheme,
the improvement of convergence is such that even in Case 1 it is advantageous
to use the 1-st order scheme.
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Figure 3: Estimated price of an ATM receiver swaption with maturity 5 years in
Case 1 (left) and Case 2 (right) with 1 standard deviation bounds. The Monte
Carlo simulation was performed with 105 trajectories.
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