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Abstract

In this article we consider, under a Lévy process model for the stock price, the utility
optimization problem for an insider agent whose additional information is the final price of the
stock blurred with an additional independent noise which vanishes as the final time approaches.
Our main interest is establishing conditions under which the utility of the insider is finite.
Mathematically, the problem entails the study of a “progressive” enlargement of filtration with
respect to random measures. We study the jump structure of the process which leads to the
conclusion that in most cases the utility of the insider is finite and his optimal portfolio is
bounded. This can be explained financially by the high risks involved in models with jumps.
Keywords: Asymmetric markets, markets driven by Lévy processes, enlargement of filtrations.

1 Introduction

The problem of asymmetric markets in continuous time mathematical finance has been considered
since Karatzas-Pikovski [21]. They dealt with a financial market where the underlying follows
a geometric Brownian motion model. An insider is an agent that has additional information and
therefore his portfolio policies are adapted to a filtration which is bigger than the filtration generated
by the Wiener process. The additional information is characterized through a random variable. If
this random variable is the final price of the asset in some interval [0, T ] then the insider makes an
infinite amount of money and there is arbitrage in the model. This situation has been corroborated
in various other situations by various authors (see e.g. Imkeller [17], Amendiger et. al. [1], Imkeller
et. al. [18], Grorud and Pontier [13], Grorud [12]). Furthermore the optimal portfolio of the insider

is highly oscillating as it depends on the difference W (T )−W (s)
T−s , where W is a Brownian motion, T

is the final time and s is the current time.
In the financial economics literature, equilibrium models with insiders have been considered by

Back [3] which are mathematically different from the ones previously described. Notably these
models lead to a market where lawful insiders obtain a finite optimal utility.

Corcuera et al. [5] introduced a framework to study the behavior of an insider for markets
driven by a Wiener process where the information held by the insider changes dynamically through
time. Indeed the signal (or information) that the insider receives is biased by the addition of
an independent, time deformed Wiener process that disappears at time T . This incorporates an
additional realistic feature to the model as information that lawful insiders have is usually not perfect
and changes through time. In this case, the optimal portfolio strategy for the insider depends on

WT −Wt +W ′((T − t)α)

T − t+ (T − t)α
,
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where W ′ is a Wiener process independent of W . The authors proved that if the rate at which this
additional independent Wiener process disappears is slow enough (α < 1), then the market does not
allow for arbitrage and the optimal utility of the insider is finite in [0, T ]. Nevertheless one has the
undesirable characteristic that lim supt→T π

∗(t) = +∞ and lim inft→T π
∗(t) = −∞. That is, the

optimal portfolio for the insider oscillates from −∞ to +∞ due to the law of the iterated logarithm.
In this article, we consider a further extension of the setting considered in [5] that corrects this

feature. In fact, the present article is an extension of this problem where models of the asset prices
are given by Lévy processes and where additional information is given by the final value of the
underlying in the time interval [0, T ]. This interest is based on two reasons. First, to consider recent
extensions of models with jumps for stock prices (e.g. variance gamma models, hyperbolic diffusions
etc.). Second, to try to find models where the insider optimal portfolio is bounded a.s. and finally to
show that these optimal portfolios lead to finite optimal utility without having to add any additional
noise. The possibility of such a result can be understood from a financial point of view as follows.
Stochastic models for stock prices with jumps incorporate higher risks than the geometric Brownian
motion because of the existence of non-predictable jumps. Therefore, these jumps have an effect
in the future evolution of the underlying and are not known by the insider even if he/she knows
the final value of the price of the stock. If the size of such a jump is not known, then the only
possibility for the insider is to take a non-risky position investing only a percentage between 0% to
100% of his/her wealth in the stock. Therefore the insider is obliged to take a conservative behavior
expressed through his/her trading behavior and this will lead to a finite utility after appropriate
moment conditions.

Our mathematical discussion starts in Section 2 by setting up the main conditions on the enlarged
filtration, the semimartingale representation of the driving process in the enlarged filtration and by
rewriting the value process in logarithmic form.

In Section 3 we prove that if the portfolio values are in a bounded set then under enough moment
conditions utilities have to be bounded. We also prove that if jumps are all positive or all negative
in some random interval determined by stopping times in the enlarged filtration then the utility is
infinite. Similarly, if in any interval there are always positive and negative jumps then the utility
is finite. In this article, we consider exclusively the case of the logarithmic utility function from
Section 4 although some comments on the power utility function appear in Appendix 7.1.

From Section 4 on, we specialize our study to the case that the stock price is driven by a Lévy
process Z with Lévy measure ν, the extra information of the insider is given by the final price of
the stock in the time interval [0, T ] perturbed by a noise Z ′(g(T − ·)) where Z ′ is independent of Z
with the same Lévy measure and g is an increasing continuous function with g(0) = 0.

First, we verify that the hypothesis HI given in Section 2 is verified. In order to do this we have
to enlarge the filtration further as to include all jump sizes and then project into the filtration of
the insider. Then we conclude the section with two examples which show that the behaviour of the
Lévy measure around zero is crucial in order to determine if the maximal logarithmic utility is finite
or not.

In Section 5, we start studying the case where there is Wiener component in the Lévy process. We
show that if g−1 is an integrable function then the maximal logarithmic utility is finite. Otherwise
if g ≡ 0 then finite maximal logarithmic utility can be obtained if there are positive and negative
jumps in the Lévy process. Otherwise the maximal logarithmic utility is infinite.

In Section 6, we consider the case where there is no Wiener component in the Lévy process.
Although this case may be of restricted application, the results in this section help to understand
that the inner structure of the jumps (that is, the values in the support of the Lévy measure) in the
Lévy process play an important role in characterizing if the maximal logarithmic utility is finite or
not. First, we start in subsection 6.1 to study the particular example of a compound Poisson process
with positive jumps all of the same size and negative jumps all of the same size. In this particular
case, we find that one can characterize the optimal portfolio as the solution of a non-linear equation.
This equation can be solved explicitly in this particular case and a detailed analysis of the optimal
portfolio and its characteristics can be carried out. Furthermore we see that the determination
of finiteness of the logarithmic utility of the insider will be related to the following fundamental
algebraic property of the support of the underlying Lévy process: If the insider knows the final
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value of the Lévy process can he/she deduce that the only way to get this final price is through a
sequence of positive or negative jumps? If not, then the utility will be finite and optimal portfolios
will be bounded. Otherwise, there are possibilities that the utility will be infinite and the arbitrage
opportunity is usually obtained by trading on the jumps that happen throughout the time interval.

In the general case of a pure jump Lévy process the equation characterizing the optimal equation
can not be solved in general and we have to study the properties of the possible solutions in other
ways. This is done in subsection 6.2 for the case that the Lévy process has positive and negative
jumps. In order to better understand the structure of the results we present the statements of the
results in subsection 6.2 and the proofs in subsection 6.3. We close the article with the case of Lévy
processes with only negative or positive jumps.

From the above arguments, it is clear that many results could be stated in the full generality of
Poisson random measures. Nevertheless, we have preferred to state them in the Lévy process case
to avoid further technicalities and because this setting is more common in recent financial models.

In this article we will use the notations R+ = (0,∞), R− = (−∞, 0), R>a = (a,∞) and R<a =
(−∞, a). For a set A ⊂ Θ and ω ∈ Θ, either I(A)(ω), IA(ω) or IA denote the indicator function
of the set A. Ac denotes the complement of the set A. For the value of a stochastic process X at
time t ∈ [0, T ], we use the notation X(t) or Xt. #(A) stands for the cardinality of the set A. For a
measure ν, we denote ν+(·) = ν(· ∩R+) and ν−(·) = ν(· ∩R−). B(R) denotes the collection of Borel
subsets of R. Constants may change from one line to the next although the same symbol may be
used.

2 Market model, hypotheses and the wealth process

In this section we give the general set-up for utility optimization of insider agents in a market driven
by a Lévy process. The study of utility optimization for markets with Lévy driven asset prices is
well known and there are a number of references on the subject. Just to mention some, see Kunita
[23], Framstad et al.[9], Corcuera et al. [6] or Goll and Kallsen [10], [11].

Let (Ω,FT , P ) be a complete probability space with a right continuous increasing family of sub σ-
fields F = (Ft)t∈[0,T ] of FT such that all of them contain all the P -null sets. We denote by N(dx, dt)
and ν(dx)dt a stationary Poisson random measure on R × [0, T ] adapted to this filtration and its
compensator, i.e., EN(A,B) = ν(A)|B| for Borel sets A and B, where | · | denotes the Lebesgue

measure. For a Borel set A satisfying ν(A) <∞, we define Ñ(A, [0, t]) = N(A, [0, t])− ν(A)t, which
is a martingale. We assume that supp(ν) 6= ∅ and∫

R
|x| ∨ x2ν(dx) <∞. (1)

In general, the Lévy measure ν satisfies
∫
R 1∧x2ν(dx) <∞. The assumption (1) is slightly stronger.

Some of our results are valid under the assumption (1), while some others are valid under weaker
assumptions. We assume (1) in order to simplify the statements of our results but we retain the
following general definition of Lévy process so that the reader may easily realize which results can
be generalized. We also remark that ν({0}) = 0.

Let Z be a Lévy process defined by

Zt = cWt +

∫ t

0

∫
|x|≤1

xÑ(dx, ds) +

∫ t

0

∫
|x|>1

xN(dx, ds).

where c ≥ 0 and t ∈ [0, T ]. The stock price S is given by

St = S0 exp

((
b− c2

2

)
t+ Zt

)
, (2)

for b ∈ R and S0 > 0. We define µ := b−
∫
|x|≤1

xν(dx). Note that |µ| <∞ due to (1).

For more information about Poisson random measures and related details and notation, we refer
the reader to Ikeda-Watanabe [14], Chapter II, Section 4 or Applebaum [2], Chapter II, Section 2.7.
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The main objective of this article is to compute the optimal portfolio for the insider with infor-
mation characterized by a filtration G′ = (Gt)t∈[0,T ) satisfying the usual conditions and G′ ⊇ F ′ =
(Ft)t∈[0,T ). This insider is sometimes called the G′-investor. As a particular case, we will also ob-
tain results on the F-investor. Note that the reason for using the notation G′ is because we are
not considering the right end of the interval [0, T ]. Throughout the article we use the following
assumption

Hypothesis I (HI): We assume that there exist a filtration H′ = (Ht)t∈[0,T ) ⊇ G′ satisfying the
usual conditions, such that the following is satisfied
(i) There exists an H′-adapted σ-finite random measure Ft(·, ω), t ∈ [0, T ), ω ∈ Ω. That is, for
all t ∈ [0, T ) and a.s. ω ∈ Ω, A 7−→ Ft(A) is a σ-finite measure on (R,B(R)). Furthermore, for
A ∈ B0 := {A ∈ B(R) : E(Ft(A)) < ∞ for all t ∈ [0, T )}, F·(A) is a jointly measurable H′-adapted
process with right and left limits.
(ii) For A ∈ B0, define M(A, [0, t]) := N(A, [0, t]) −

∫ t
0
Fs(A)ds, t ∈ [0, T ). Then M(A, [0, ·]) is

an H′-martingale.
(iii)

∫ t
0

∫
|x|≤1

|x|Fs(dx)ds <∞ a.s. for all t ∈ [0, T ).

(iv) There exists an H′-adapted process {β(t); t ∈ [0, T )} with
∫ t

0
|β(s)|2ds <∞ a.s. for all t ∈ [0, T )

and B· = W· −
∫ ·

0
β(s)ds is an H′-martingale.

Note that under hypothesis HI, S is an H′-semimartingale. We also remark that the number of
discontinuities of the process F (A) is at most countable and therefore Lebesgue integrable. Now,
we briefly describe the allowed portfolio strategies for the G′-investor. For a general description of
portfolio strategies and their associated wealth processes, we refer the reader to part III of Cont-
Tankov [4].

Definition 1 We say that π is an admissible portfolio (π ∈ A ≡ A(H′,G′)) if π is a G′-predictable
real valued process such that there exists a unique solution, V π ≡ V , to the wealth equation

V πt = 1 +

∫ t

0

πs−V
π
s−

Ss−
dSs. (3)

which satisfies that for all t ∈ [0, T ), V πt > 0. Furthermore the following quantities are finite a.s.
for all t ∈ [0, T )

Aπ1 (t) :=

∫ t

0

|πs|2 ds <∞ a.s.,

Aπ2 (t) :=

∫ t

0

∫
R
| log(1 + (ex − 1)πs)|Fs(dx)ds <∞ a.s.,

Aπ3 (t) :=

∫ t

0

∫
|x|≤1

{log(1 + (ex − 1)πs)}2Fs(dx)ds <∞ a.s.,

and

Aπ4 (t) :=

∫ t

0

∫
|x|>1

| log(1 + (ex − 1)πs−)|N(dx, ds) <∞ a.s.

Note that in order that a portfolio π ∈ A under hypothesis HI, it is necessary that

P

(∫ T−

0

Fs({x : (ex − 1)πs ≤ −1})ds = 0

)
= 1

and

P

(∫ T−

0

∫
R
I({x : (ex − 1)πs ≤ −1})N(dx, ds) = 0

)
= 1.

The above definition needs some financial interpretation. We briefly give an informal discussion.
Let π0 and π1 be two R-valued G′-predictable processes which represent the quantities (in shares)
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invested in the bank account and the asset respectively where negative quantities are interpreted as
bank borrowing and short selling respectively. Without loss of generality, suppose that the interest
rate on the bank account is 0. Then the value process of the portfolio ~π = (π0, π1) is defined as
Vt := π0

t + π1
tSt. We say that ~π is self-financing if dVt = π1

t−dSt is satisfied.
Assume that the portfolio ~π is such that Vt > 0 for all t ∈ [0, T ) and let πt := π1

tSt/Vt denote the
proportion of total wealth invested in the underlying asset S. Note that π is a process taking values
in R where values bigger than 1 are interpreted as borrowing from the bank and values smaller than
0 are interpreted as short selling.

Then we have that (1−πt)Vt represents the total amount of money invested in the bank account
and πtVt represents the total amount of money invested in stocks where these quantities may be
negative.

In the above definition we have called π the portfolio process rather than ~π which will not be used
again. This procedure allows the reduction of the number of variables in the portfolio optimization
problem.

If the portfolio π is self-financing then we have that the equation describing the wealth process
is the one given by (3).

The reason why all the hypotheses are stated in [0, T ) will be clear in Section 4. In short, this
is done to adapt to the case of insiders whose information is related to an event that is completely
revealed at time T . Therefore the utility up to that time may explode which is related to the fact
that the above hypotheses are assumed on the interval [0, T ).

Next we prove the existence of an alternative expression for log(V (t)) that will be easier to
handle. This is obtained after applying Itô’s formula (see for example, [20], Chapters I and II) In
order to apply this formula we need to use the integral assumptions made in the definition of the
set of admissible portfolios A. Its proof is left to the reader.

Lemma 2 For π ∈ A we have that log(V πt ) = Rπ(t) ≡ R(t), t ∈ [0, T ) where

R(t) =

∫ t

0

cπsdBs +

∫ t

0

∫
R

log (1 + (ex − 1)πs−)M(dx, ds)

+

∫ t

0

{
(µ+ cβ(s))πs −

c2

2
π2
s

}
ds+

∫ t

0

∫
R

log ((1 + (ex − 1)πs)Fs(dx)ds.

This expression gives the semimartingale decomposition of the so-called “return process” R in
the filtration H′. This will be useful when calculating the utility.

In order to define the utility associated with admissible portfolios, we need to consider the
following sequence of localizing stopping times.

τn = inf{t; max{Aπi (t); i = 1, ..., 4} > n}.

It is standard to prove that if π ∈ A, then τn → T as n→∞.
The main objective of this article is to maximize u(t, π) = supn un(t, π) where un(t, π) =

E [U(Vt∧τn−)], U(x) = log(x) and π ∈ A and to determine whether the optimal logarithmic utility
is finite or infinite. Nevertheless many of the results can be expressed in a larger generality.

3 Finite and infinite utility

The goal of this section is to state under certain generality, conditions which ensure that the maximal
logarithmic utility is finite or infinite. In this section, the Lévy characteristics of the process Z are
not essential and only the support of the compensator Fs(dx) is used in order to characterize if
the maximal logarithmic utility is finite or infinite. Our first result states that if there exists the
possibility that the insider will view the price dynamics in a predictable random time interval as the
result of jumps of only positive or negative type, then there is a portfolio which uses this fact that
leads to a utility which may be as big as desired. Therefore the maximal utility will be infinite. This
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basic principle appears recurrently in our proofs. The discussion on finite utility will appear in and
after Corollary 5.

For this, we need to introduce the following hypothesis HIIk for k = 0, 1.
Hypothesis HIIk: There exist G′-stopping times 0 ≤ τ1 < τ2 < T and a G′-predictable non-
negative bounded process ΥB

s , s ∈ [0, T ) so that

E
[ ∫ τ2

τ1

∫
R

ΥB
s I{(−1)kx < 0}Fs(dx)ds

]
= 0,

E
[ ∫ τ2

τ1

∫
R

ΥB
s I{(−1)kx > 0}Fs(dx)ds

]
> 0.

Proposition 3 Assume HI and c = 0. Let U(x) = log(x) or U(x) = xα for α > 0. Then, we have
the following two results.
(1) Assume HII0 and that for every nonnegative constant π̄, the portfolio π(s) = π̄I(τ1,τ2](s)Υ

B
s is

admissible with E[U(V πT )] <∞. If µ ≥ 0 then the maximal utility of the G′-investor is infinite.
(2) Similarly, assume HII1 and that for every nonpositive constant portfolio π̄, the portfolio π(s) =
π̄I(τ1,τ2](s)Υ

B
s is admissible with E[U(V πT )] <∞. If µ ≤ 0 then the maximal utility of the G′-investor

is infinite.

Proof We will only do the proof of (1) as the proof of (2) is similar. First, we remark that in

this case there are no negative jumps in the interval [τ1, τ2]. In fact,
∫ t∧τ2

t∧τ1

∫
IR−(x)ΥB

s M(dx, ds) =∫ t∧τ2

t∧τ1

∫
IR−(x)ΥB

s N(dx, ds) is an increasing martingale, therefore equal to zero for almost all ω.
Note that, as c = 0, the return process can be written as

Rπ̄(t) =

∫ t∧τ2

t∧τ1

(
π̄ΥB

s µds+

∫
R+

log(1 + (ex − 1)π̄ΥB
s )M(dx, ds)

+

∫
R+

log(1 + (ex − 1)π̄ΥB
s )Fs(dx)ds

)
≥ 0.

From here, it is clear that the return process Rπ̄ is increasing in π̄ and Rπ̄t ↑ ∞ as π̄ ↑ ∞ for
t ∈ (τ1, τ2] with positive probability. We have by Itô’s formula that

u(T, π)

= E
[
U
(
exp(Rπ̄(T ))

)]
= U(1) + E

[∫ τ2

τ1

U ′(exp(Rπ̄(s))) exp(Rπ̄(s))π̄ΥB
s µds

+

∫ τ2

τ1

∫
R

(
U
((

1 + (ex − 1)π̄ΥB
s

)
exp(Rπ̄(s))

)
− U

(
exp(Rπ̄(s))

) )
Fs(dx)ds

]
.

Note that each of the above integrands is non-negative. Letting π̄ →∞ then for ΥB
s > 0, x > 0 and

U(x) = log(x) or U(x) = xα for α > 0 we have that as π →∞ then with positive probability

U
((

1 + (ex − 1)π̄ΥB
s

)
exp(Rπ̄(s))

)
− U

(
exp(Rπ̄(s))

)
→∞.

Finally using the hypothesis HII0, we obtain that u(T, π)→∞ by Fatou’s lemma. �

It is clear (by straighforward application of the definition of FLVR, see [7]) that the above proof
also proves the existence of a free lunch with vanishing risk.

We now give conditions which ensure that bounded portfolios have finite logarithmic utility. We
introduce the following hypothesis :

Hypothesis HIII : If c 6= 0, then we assume that E
[∫ T

0
|β(s)|ds

]
<∞.
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Proposition 4 Assume that HIII holds. Let U(x) = log(x) and π ∈ A be an admissible portfolio
such that there exists a positive constant M with |π(s)| ≤M for almost all (s, ω) ∈ [0, T ]×Ω. Then
the logarithmic utility u(t, π) < CM for all t ≤ T and some positive constant CM .

Proof First note that for the G-stopping time σn = inf
{
t;
∫ t

0

∫
|x|≤1

|x|Fs(dx)ds > n
}
,

E

[∫ T∧σn

0

∫
|x|≤1

|x|Fs(dx)ds

]
= E

[∫ T∧σn

0

∫
|x|≤1

|x|N(dx, ds)

]
<∞.

Taking monotone limits with respect to n ↑ ∞ we have that

E

[∫ T

0

∫
|x|≤1

|x|Fs(dx)ds

]
=

∫ T

0

∫
|x|≤1

|x|ν(dx)ds <∞.

Therefore, we also obtain that

E

[∫ T

0

∫
|x|≤1

|x|pFs(dx)ds

]
<∞ for any p ≥ 1.

In the following arguments we will use the inequalities

log(1 + (ex − 1)y) ≤ xy

for y ∈ (−∞, 0] ∪ [1,∞) and 1 + (ex − 1)y > 0, and

| log(1 + (ex − 1)y)| ≤ |x| (4)

for y ∈ [0, 1] and 1 + (ex − 1)y > 0. To prove the first inequality it is enough to find an upper
bound to the function f(x) = 1 + (ex − 1)y − exy and for the second, one uses the functions

fi(x) = 1 + (ex − 1)y − e(−1)i|x| for i = 1, 2.

Using HI and Definition 1, we have that E
[∫ t∧τn

0

∫
R log (1 + (ex − 1)πs)M(dx, ds)

]
= 0. There-

fore we bound the logarithmic utility, using Lemma 2, as follows,

un(t, π) = E

[∫ t∧τn

0

(
(µ+ cβ(s))πs −

c2

2
π2
s

)
ds

+

∫ t∧τn

0

∫
R
{log (1 + (ex − 1)πs)}Fs(dx)ds

]
(5)

≤ E

[∫ t∧τn

0

{(
(µ+ cβ(s))πs −

c2

2
π2
s

)
ds

+

∫
|x|>1

(xπs) ∨ |x|Fs(dx)ds+

∫
|x|≤1

(ex − 1)πsFs(dx)ds
}]

(6)

≤ CME

[∫ t

0

(
(|µ|+ c|β(s)|)ds+

∫
R
|x|Fs(dx)ds

)]
<∞

for all t ∈ [0, T ] where CM is a positive constant depending on M . The above sequence of inequalities
follow from (4), |ex − 1| ≤ c|x| for |x| ≤ 1, the hypothesis HIII and (1). Finally one takes the
supremum with respect to n. �

We will frequently use this Proposition in order to prove that the maximal logarithmic utility
for the G′-investor is finite. In fact, if all admissible portfolios are bounded by a uniform bound M ,
then as the utility is bounded by CM then the optimal logarithmic utility is bounded by CM and
therefore finite.
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Corollary 5 Assume HIII. Moreover, assume that there exists a constant a > 0 such that for all
s ∈ [0, T )

E

[∫
R
I{(−1)kx > a)}Fs(dx)

/
Gs
]
> 0 (7)

a.s. for k = 0, 1. Then the maximal logarithmic utility of the G′-investor is finite. That is,
supπ∈A(H′,G′)E [log(V πT )] <∞.

Proof Here is enough to note that under the above assumption (7), we have that any admissible
portfolio is bounded by a universal constant. In fact, for any π ∈ A, we have that E [Aπ2 (t ∧ τn)] <∞
for all t ∈ [0, T ) and assuming without loss of generality that for all s ∈ [0, T ) and any ε > 0,

E

[∫
R
I{a+ ε > (−1)kx > a)}Fs(dx)

/
Gs
]
> 0,

we obtain that (1− ea)−1 ≤ πs ≤ (1− e−a)−1 for almost all (s, ω). In fact, suppose by contradiction

that E
[∫ t

0
I{πs > (1− e−a)−1 − r}ds

]
> 0 for some t ∈ [0, T ) and consider for any sufficiently small

r > 0

E

[∫ t∧τn

0

I{πs > (1− e−a)−1 − r}
∫
R
| log(1 + (ex − 1)πs)|I{a+ ε > −x > a}Fs(dx)ds

]
≤ E

[∫ t∧τn

0

∫
R
| log(1 + (ex − 1)πs)|Fs(dx)ds

]
≤ n .

On the other hand, on the set {πs > (1− e−a)−1 − r} ∩ {a+ ε > −x > a}

| log(1 + (ex − 1)πs)| ≥ | log((1− e−a)r)|

goes to infinity as r → 0. Therefore

E

[∫ t∧τn

0

I{πs > (1− e−a)−1 − r}ds
]

= 0

which clearly goes to leads to a contradiction. Letting n → ∞ and r → 0, we obtain that πs ≤
(1 − e−a)−1 for almost all (s, ω). The other inequality is obtained in a similar fashion. Therefore
the result follows from Proposition 4. �

In particular, note that the above implies in particular that supπ∈A(G′,G′)E [log(V πT )] <∞. We
will see later in Theorem 13 an extension of Corollary 5 when a is replaced by a stochastic process
(or even a function of time). An example where a depends on time and the logarithmic utility is
infinite for the case that Z is an additive process exists1. For more results of the above type for
power utility functions, see Appendix 7.1. Now we state the above results in the particular case of
the small investor.

Corollary 6 For the small investor, i.e. G = F , the following assertions hold.
a) Assume that c = 0 and ∅ 6= supp(ν) ⊆ R+. Then the maximal logarithmic utility for the F-
investor is either infinite or finite according to µ ≥ 0 or µ < 0.
b) Assume that c = 0 and ∅ 6= supp(ν) ⊆ R−. Then the maximal logarithmic utility for the F-
investor is either infinite or finite according to µ ≤ 0 or 0 < µ ≤ ∞.
c) If supp(ν+) 6= ∅ and supp(ν−) 6= ∅ then the maximal logarithmic utility for the F-investor is
finite.

Proof Since Fs = ν and HIII is trivially satisfied then c) follows from Corollary 5. Now, we prove
a). Note that any constant π is admissible, therefore, by Proposition 3 (1) the maximal logarithmic
utility is infinite if µ ≥ 0.

1Please contact the authors if interested.
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Now, assume that µ < 0. Then the logarithmic utility for small investor is given by

un(t, π) = E

[∫ t∧τn

0

(
µπsds+

∫
R

(log(1 + (ex − 1)πs)ν(dx)ds

)]
.

We define the function f : [(1− ea+)−1,∞)→ [−∞,∞) by

f(y) = µy +

∫
R

log(1 + (ex − 1)y)ν(dx).

Then f is twice differentiable and we have

f ′(y) = µ+

∫
R

ex − 1

1 + (ex − 1)y
ν(dx) (8)

f ′′(y) = −
∫
R

(
ex − 1

1 + (ex − 1)y

)2

ν(dx) < 0

The last strict inequality comes from the assumption supp(ν) 6= ∅. Hence f ′ is strictly decreasing.
Denote by a+ = sup{supp(ν+)}.

Note that the above integrals in (8) are well defined in the case that a+ < ∞ and y ∈ ((1 −
ea+)−1,∞). In the case that a+ = ∞ these integrals are also well defined as

∣∣∣ ex−1
1+(ex−1)y

∣∣∣ ≤ y−1 for

|x| ≥ 1 and y > 0. Therefore the domain of definition of f and its derivatives include ((1−ea+)−1,∞).
At the point y = (1 − ea+)−1 there are two possibilities. Either the function is −∞ or it is finite.
Therefore, we interpret the domain of f as the domain of the extended function. A similar remark
applies to the derivatives.

Then the domain of f is given by (1 − ea+)−1 ≤ y < ∞. As µ < 0, then limy↑∞ f ′(y) = µ < 0.
Hence, f(y) has a maximum in [(1 − ea+)−1,∞), which is independent of ω. Hence the optimal
logarithmic utility is finite and equals max{f(y); (1− ea+)−1 ≤ y}. The proof of b) is similar to the
proof of a). �

4 A larger filtration and finite utility with blurred informa-
tion

In this section, we proceed to show explicit situations where the results in the previous section apply.
In particular, we will consider the case where a perturbation of the final value of the stock price is the
additional information of the insider. We consider the maximization problem under the logarithmic
utility function.

Throughout this section we assume that Z ′ is a Lévy process of the form

Z ′t = cW ′t +

∫ t

0

∫
|x|≤1

xÑ ′(dx, ds) +

∫ t

0

∫
|x|>1

xN ′(dx, ds)

independent of Z, where N ′ is a stationary Poisson random measure with compensator ν(dx)ds,

Ñ ′(dx, ds) = N ′(dx, ds) − ν(dx)ds and W ′ is a Wiener process. Furthermore, we assume that W ,
W ′, N and N ′ are mutually independent.

The above setting still allows the application of our results to most of the jump type models such
as the variance gamma model among others. Hence to avoid cumbersome statements we have not
pursued the greatest generality in some of the results to follow.

From now on, the insider at time t knows a perturbation of the value S(T ) or more explicitly,
Z(T ) + Z ′(g(T − s)); s ≤ t. Therefore we define

Gt = Ft ∨ σ(Z(T ) + Z ′(g(T − s)); s ≤ t)

where g is a positive continuous increasing function with g(0) = 0.

9



The filtration G is further enlarged using all the jump structure of the Poisson random measure
in Z(T ) + Z ′(g(T − s)) in the following way,

Ht = Ft ∨ σ(W (T ) +W ′(g(T − u));u ≤ t)
∨ σ(N(A, [0, T ]) +N ′(A, [0, g(T − u)]);A ∈ B(R), d(A, 0) > 0, u ≤ t).

Here, d(A, 0) is a distance between the set A and the origin 0. The reason for this further enlargement
is clear from the following Lemma where we verify that Hypothesis HI is satisfied. That is, we will
prove that Z is an H′-semimartingale and therefore by Stricker’s Theorem Z is a G′-semimartingale
and its semimartingale decomposition will be a projection of the corresponding one in H′.

Lemma 7 Hypothesis HI is satisfied with

βt =
W (T )−W (t) +W ′(g(T − t))

T − t+ g(T − t)
, (9)

M(dx, dt) = N(dx, dt)− Ft(dx)dt,

Ft(dx) =

∫ T
t
N(dx, du) +

∫ g(T−t)
0

N ′(dx, du)

T − t+ g(T − t)
. (10)

Proof The verification of HI(iv) for W can be found in Corcuera et al. [5], Example 1 (see also
Remark 9 below). Although the result for Z ′, which is not necessarily identical in law with Z, is
given in [22], we give the proof here in this simple case for the reader’s convenience.

Ft clearly satisfies (i) and (iii) (see Remark 8 below). We only need to check (ii). Let si = si
n for

i = 0, ..., n and {Aj}nj=1 with

Ai ∩Aj = ∅ for i 6= j, and d(Aj , 0) > 0 for j = 1, ..., n

and define

X = (Xj)
n
j=1 = (N(Aj , (0, T ]))nj=1,

Y = (Ysj )
n
j=1 = (N ′(Aj , (0, g(T − sj)]))nj=1.

Let φ(x1, . . . , xn) =
∏n
j=1 e

iθjxj , where θj ∈ R for j = 1, . . . , n and i =
√
−1. We have for

s ≤ u < t < T , C ∈ B(R) with d(C, 0) > 0 and any bounded Fs-measurable random variable hs,

E[φ(X + Y )hsN(C, (u, t])] (11)

= E[hs

n∏
j=1

exp
{
iθj
(
N(Aj , (0, u] ∪ (t, T ]) + Ysj +N(Cc ∩Aj , (u, t])

)}
]

× E

[ n∑
j=1

N(C ∩Aj , (u, t]) +N(C ∩ (∪nk=1Ak)c, (u, t])


×

n∏
j=1

exp{iθjN(C ∩Aj , (u, t])}

]
.

Using the Lévy-Khintchine formula and its derivative we obtain

E[φ(X + Y )hsN(C, (u, t])]

= (t− u)

 n∑
j=1

eiθjν(C ∩Aj) + ν(C ∩ (∪nk=1Ak)c)

E[φ(X + Y )hs],
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and similarly

E [φ(X + Y )hsN
′(C, [0, g(T − u)])]

= g(T − u)

 n∑
j=1

eiθjν(C ∩Aj) + ν(C ∩ (∪nk=1Ak)c)

E[φ(X + Y )hs].

Letting t = T in (11) and adding the two previous equations, we have

E [(N (C, (u, T ]) +N ′ (C, [0, g(T − u)]))φ(X + Y )hs]

= (T − u+ g(T − u))

 n∑
j=1

eiθjν(C ∩Aj) + ν(C ∩ (∪Aj)c))

E[φ(X + Y )hs].

Hence we have

E[φ(X + Y )hsN(C, (s, t])] = E

[∫ t

s

N(C, (u, T ]) +N ′(C, [0, g(T − u)])

T − u+ g(T − u)
duφ(X + Y )hs

]
.

Therefore, we have that

E[N(C, (s, t])/Hs] =

∫ t

s

E

[
N(C, (u, T ]) +N ′(C, [0, g(T − u)])

T − u+ g(T − u)

/
Hs

]
du.

Finally this proves that

N(C, [0, t])−
∫ t

0

N(C, (u, T ]) +N ′(C, [0, g(T − u)])

T − u+ g(T − u)
du

is an H′ martingale for all C ∈ B(R). �

Note that the measure Fs(dx) besides being a compensator also behaves like a jump measure on
F . This point is stressed in the following remarks.

Remark 8 For a given F-predictable process h, we have that for the positive increasing function g
with g(0) = 0, introduced at the beginning of Section 4 and any t ∈ [0, T )

a) If E
[∫ t

0

∫
R |h(x, s)| ν(dx)ds

]
<∞, then

E

[∫ t

0

∫
R
h(x, s)(Fs − ν)(dx)ds

]
= 0

and

E

[∣∣∣∣∫ t

0

∫
R
h(x, s)(Fs − ν)(dx)ds

∣∣∣∣] ≤ 2E

[∫ t

0

∫
R
|h(x, s)| ν(dx)ds

]
.

b) If E
[∫ t

0

∫
R |h(x, s)|2ν(dx)ds

]
<∞, then

E

[∫ t

0

(∫
R
h(x, s)(Fs − ν)(dx)

)2

ds

]
= E

[∫ t

0

∫
R

|h(x, s)|2

T − s+ g(T − s)
ν(dx)ds

]
,

and

E

[∫ t

0

(∫
R
h(x, s)Fs(dx)

)2

ds

]

= E

[∫ t

0

{∫
R

h(x, s)2

T − s+ g(T − s)
ν(dx)ds+

(∫
R
h(x, s)ν(dx)

)2
}
ds

]
. (12)
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Remark 9 β in Lemma 7 satisfies HIII since

E

[∫ T

0

|βs|pds

]
= C

∫ T

0

(T − s+ g(T − s))−p/2ds <∞

for 0 < p < 2.

5 Logarithmic utility in the case c 6= 0 (Lévy process with
non-zero Wiener component)

The next result is a general theorem which shows that the logarithmic utility is finite regardless of
the jump structure (i.e. supp(ν)) if the speed at which the blurring noise dissapears is slow enough.

Theorem 10 Assume that c 6= 0. If
∫ T

0
g(T − s)−1ds < ∞, then the maximal logarithmic utility

for the H′-investor is finite.

Proof As in Proposition 4, we define τn = inf{t; max{Aπi (t); i = 1, ..., 4} > n}. Then, using the
inequality log(1 + (ex − 1)y) ≤ x(1 + y) for x ≥ 0 and y > −(ex − 1)−1 and as in (5), we have that
for a H′-adapted admissible portfolio π the following inequality is satisfied.

un(t, π) ≤ E
[∫ t∧τn

0

(
(b+ cβ(s))πs −

c2

2
π2
s

)
ds

]
− E

[∫ t∧τn

0

πs

∫
|x|≤1

xν(dx)ds

]

+ E

[∫ t∧τn

0

πs

∫
x∈(−∞,0)∪(0,1]

(ex − 1)Fs(dx)ds

]
+ E

[∫ t∧τn

0

(1 + πs)

∫
x>1

xFs(dx)ds

]
=: u1

n(t, π).

u1
n(t, π) is a value function for H′-adapted portfolios which can be maximized explicitly for c 6= 0.

In fact, the optimal portfolio for the utility function u1
n(t, π) satisfies

πot =
1

c2

{
(b+ cβ(t))−

∫
|x|≤1

xν(dx)

+

∫
x∈(−∞,0)∪(0,1]

(ex − 1)Ft(dx) +

∫
x>1

xFt(dx)
}
. (13)

Now to prove that the utility supn u
1
n(t, πo) is finite, we use the moment hypothesis in our

statement. In fact, replacing (13) in u1
n, we have

sup
n
u1
n(T, πo) ≤ c2

2
E

[∫ T

0

(πos)2ds

]
+ E

[∫ T

0

∫
x>1

xFs(dx)ds

]
. (14)

For the last term in (14), using Remark 8, we have that∣∣∣∣∣E
[∫ T

0

∫
x>1

xFs(dx)ds

]∣∣∣∣∣ ≤ T
∫
|x|>1

|x|ν(dx) <∞.

Note that E
[∫ T

0
β(s)2ds

]
<∞ by the assumption

∫ T
0
g(T − s)−1ds <∞. Note also that

E

[∫ T

0

(∫
R
xFs(dx)

)2

ds

]

≤
∫ T

0

g(T − s)−1ds

∫
R
x2ν(dx) +

(
T

∫
R
|x|ν(dx)

)2

<∞
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because of (12). These estimates guarantee the finiteness of the first term in (14). �

In the case that
∫ T

0
g(T − s)−1ds = ∞, both finite and infinite maximal utility can happen.

The following two theorems treat each case. The next theorem also contains the case c = 0 but we
include it here.

Theorem 11 Define L(s) = Z(T ) − Z(s) + Z ′(g(T − s)). Assume that ν 6= 0 and that for any
s ∈ [0, T ), L(s) has a strictly positive density in R then the optimal logarithmic utility of the G′-
investor is finite for any g.

As the proof of the above theorem is quite related with the notation and ideas of Section 6.2, we
give its proof in section 6.3.

Theorem 12 Suppose that c 6= 0, g ≡ 0. Furthermore assume that either
(1) supp(ν−) = ∅ or
(2) supp(ν+) = ∅.
Then the maximal logarithmic utility of the G′-investor is infinite

Proof (1) Let Ans = {ω : 0 ≤ µ+ Z(T )−Z(s)
T−s ≤ n}. Define the following portfolio,

πns = γ

(
µ+

Z(T )− Z(s)

T − s

)
IAns

= γ (µ+ cβ(s) + ξ(s)) IAns

with 0 < γ <
(
c2 +A

)−1
, A :=

∫
R x

2ν(dx) ≥ 0 and ξ(s) = Z(T )−Z(s)
T−s − cβ(s). Then πn is non-

negative and G′-adapted. Furthermore as there are no negative jumps and 0 ≤ πns ≤ γn then πn ∈ A.

Furthermore, since
∫ 1

0
xν(dx) <∞, the utility (see (5)) can be written as

u(t, πn) =

∫ t

0

{
E

[
(µ+ cβ(s))πns −

c2

2
(πns )

2

]
+ E

[∫
R

log(1 + (ex − 1)πns )Fs(dx)

]}
ds. (15)

Using the inequality log(1 + (ex − 1)y) ≤ x(1 + y) for x, y > 0 (see (4)), we have that for fixed
n, u(t, πn) <∞ for 0 ≤ t < T . Also note that the last term in (15) is always positive.

Now we prove that limt↑T limn→∞ u(t, πn) = +∞. In fact, note first that

sup
n
u(t, πn) ≥ E

[∫ t

0

γ(µ+ cβ(s))2I{µ+cβ(s)≥0} − γ|µ+ cβ(s)| |ξ(s)| − c2γ2

2

(
µ+ cβ(s) + ξ(s)

)2

ds

]
.

Now it is enough to note that

lim
s↑T

(T − s)E
[
(µ+ cβ(s))2I{µ+cβ(s)≥0}

]
=
c2

2
> 0. (16)

The above follows as β(s) is a Gaussian random variable with mean zero and variance (T − s)−1.
Next, we have that for any ε > 0,

lim
s↑T

(T − s) 1
2 +εE[|µ+ cβ(s)| |ξ(s)|] = 0 (17)

This follows using the independence of the Brownian motion and the jump part of the Lévy process
and an explicit calculation with Gaussian densities and Remark 8. Similarly,

lim
s↑T

(T − s)E
[(
µ+ cβ(s) + ξ(s)

)2
]

= c2 +A,

In conclusion, we get that there exists ε > 0 so that

lim
s↑T

sup
n
u(t, πn) ≥ C +

∫ T

T−ε

γc2

2

(
1− γ

(
c2 +A

))
T − s

ds =∞.

13



Hence the conclusion follows. The proof of (2) is similar. �

In the next Theorem, we weaken the hypothesis of Corollary 5, to conclude that the insider’s
logarithmic utility is finite. In this extension, a is a bounded random process satisfying certain
moment properties. Although the result does not use the fact that c 6= 0, we include it here.

Theorem 13 Assume that for some ε ∈ (0, 1/2) and k = 0, 1 and for any s ∈ [0, T )

E

[∫
R
I{(−1)kx > as(T − s)1/2−ε}Fs(dx)

/
Gs
]
> 0 a.s. (18)

Here a is a bounded strictly positive G-predictable process satisfying sups∈[0,T ]E[a
−(2+δ)
s ] < ∞ for

some δ ∈ (0, 2ε( 1
2 − ε)

−1). Then the optimal logarithmic utility of the G′-investor is finite for any
function g.

Proof As in Corollary 5, we have that for any admissible portfolio process

(1− eas(T−s)
1/2−ε

)−1 ≤ π(s) ≤ (1− e−as(T−s)
1/2−ε

)−1, (19)

for almost all (s, ω). Therefore using the inequalities |1− e−x|−1 ≤ Cx−1 for x ∈ (0, C1) (here C > 1
and e−C1 − C−1 > 0) and (ex − 1)−1 ≤ x−1 for x > 0 and assuming without loss of generality that
as(T − s)1/2−ε ≤ C1, we have that there exists a positive constant CT such that

E

[∫ T

0

|π(s)|2+δds

]
≤ CT sup

s∈[0,T ]

E[a−(2+δ)
s ]

∫ T

0

(T − s)(2+δ)(ε− 1
2 )ds <∞ (20)

and

E

[∫ T

0

|βsπ(s)|ds

]
≤

(
E
[ ∫ T

0

|βs|pds
])1/p(

E
[ ∫ T

0

|πs|qds
])1/q

for p = 2+δ
1+δ , q = 2 + δ. We see that due to Remark 9 and (20), the above quantity is finite as p < 2.

To prove that the utility is finite we prove that each term in the expression (6) is finite. Consider for
example the last term in (6). This gives, after using Remark 8 and the inequality |ex−1| ≤ (e−1)|x|
for |x| ≤ 1 that there exists a positive constant C0 such that

E

[∣∣∣∣∣
∫ T

0

∫
|x|≤1

(ex − 1)πsFs(dx)ds

∣∣∣∣∣
]

≤ (e− 1)

∫ T

0

E

[
(as(T − s)1/2−ε)−1

∫
|x|≤1

|x|Fs(dx)

]
ds

≤ C0

 sup
s∈[0,T ]

E
[
a−2
s

] ∫ T

0

(T − s)2ε′−1dsE

∫ T

0

(
(T − s)ε−ε

′
∫
|x|≤1

|x|Fs(dx)

)2

ds

1/2

<∞

where, 0 < ε′ < ε. The previous to the last term in (6) is treated using the inequality (xπs) ∨ |x| ≤
|xπs|+ |x| and the first term is treated using (20). �

Note that if min{ν(0, ε), ν(−ε, 0)} > 0 for all ε > 0 then the condition (18) is satisfied (see the
proof of Theorem 17-1).

The results obtained in this section for the case of logarithmic utility for Lévy processes with
Wiener components are briefly summarized in the following table:

support of ν g ≡ 0 g(s) = sα small investor
supp(ν) ⊂ R+ =∞ <∞ <∞
supp(ν) ⊂ R− =∞ <∞ <∞
supp(ν) ∩ R+ 6= ∅
and <∞ <∞ <∞
supp(ν) ∩ R− 6= ∅
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The last column corresponds to the optimal logarithmic utility of the small investor. The first two
results are obtained through an analysis of (6) in this particular case. The last result in the last
column is a particular case of Theorem 11. The previous two correspond to the optimal logarithmic
utility of the insider first without blurring (g ≡ 0) and then with blurring. In this table one supposes
that there is a non-zero Wiener component in the Lévy process (i.e. c 6= 0) and α < 1. The case of
Lévy processes with no Wiener component is summarized in a table at the end of Subsection 6.2.

6 Logarithmic utility in the case c = 0 (Lévy process with no
Wiener component)

In this section, we assume that c = 0. Before going into the main results of this section, we will
describe the illustrative example of a compound Poisson process with two types of jumps. In this
case the calculation is explicit and shows that the values of the possible jumps (the so called “effect
of the jumps structure”) is an important issue to determine if the logarithmic utility is finite or not.

6.1 The example of a stock price driven by a compound Poisson process

Let us suppose that we are given two independent compound Poisson processes Z and Z ′ which
have only two types of jumps. One of size a+ > 0 and the other of size a− < 0.

Denote the intensity parameters for each type of jump by λ+ > 0 and λ− > 0, respectively.
As before, recall that N and N ′ denote the Poisson random measures associated with Z and Z ′

respectively. So,

Zt =
∑

p∈{+,−}

∫ t

0

apN({ap}, ds), Z ′t =
∑

p∈{+,−}

∫ t

0

apN
′({ap}, ds).

Then the stock price model is S(t) = S0 exp(bt + Zt). There is an insider in the market who
has information, at time t, about the final value of the stock in the form of ZT + Z ′g(T−t) where

g : [0, T ]→ [0, g(T )] is a continuous strictly increasing function with g(0) = 0.
Mathematically, this means that the insider has an additional information flow of the form

Gt = Ft ∨ σ(Z(T ) + Z ′(g(T − s)); s ≤ t). Then we define, as before

Ht = Ft ∨ σ(N({ap}, [0, T ]) +N ′p({ap}, [0, g(T − s)]); s ≤ t, p ∈ {+,−}).

Note that Gt ⊆ Ht.
The goal of this example is to show that if the insider has information about the number of

jumps left to happen in the future of the stock price then he can create an arbitrage in the market.
Otherwise, the optimal utility is finite and the optimal portfolio is bounded. In this section we
provide sketch of the proofs and no detailed calculations2. Furthermore given that there is no
need for compensation of Z or Z ′ the set-up is slightly different from other sections. The trivial
modification of replacing µ in the previous results by b in the present model with c = 0 (therefore
hypothesis HIII is not needed) yield the corresponding results for the model in this section.

We start with the following result which is satisfied when a+a
−1
− ∈ Q.

Result 14 The filtration H satisfies hypothesis HI. Furthermore assume that there exists k1, k2 ∈ N
such that k1a+ + k2a− = 0. Then the optimal logarithmic utility of the G′-investor is finite. In the
particular case when a− = log (2− ea+) with a+ ∈ (0, log 2), then the optimal portfolio is given by

π∗(s) =


y+(s) if b > 0,

B+−B−
B++B−

(s)(ea+ − 1)−1 if b = 0,

y−(s) if b < 0

2Please contact the authors if interested on detailed calculations.
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where for p ∈ {+,−}
yp = Gp(B+(s), B−(s)) ,

Gp(x, y) = −x+ y

2b
+ p

√(
x+ y

2b

)2

+
x− y

b(ea+ − 1)
+

1

(ea+ − 1)2
,

Bp ≡ Bp(s) = E

( ∫ T
s
N({ap}, du) +

∫ g(T−s)
0

N ′({ap}, du)

T − s+ g(T − s)

/
Gs

)
.

Proof By Lemma 7 one has that Hypothesis HI is verified. That is, for

N({x}, [0, t])−
∫ t

0

Fs({x})ds

is an H-martingale for x = a+, a− where

Fs({x}) =

∫ T
s
N({x}, du) +

∫ g(T−s)
0

N ′({x}, du)

T − s+ g(T − s)
.

Next, we will prove that for any x ∈ Na+ + Na− such that P (Z(T ) = x) > 0, we have

B+(s) > 0 and B−(s) > 0 for all s ∈ [0, T ) a.s.

In fact, the above follows from two assertions. The first is that if P (Z(T ) = x) > 0 then it means
that there exists k+,k− ∈ N such that k+a+ + k−a− = x (in fact, due to the hypothesis there exists
an infinite number of such pairs of natural numbers). Clearly, for the same k+, k− we have that as
the support of simple Poisson random variables is N ∪ {0} then

P (Z(T ) + Z ′(g(T − s)) = x) ≥
∏

p∈{+,−}

P (N ({ap}, [0, T ]) +N ′ ({ap}, [0, g(T − s)]) = kp) > 0.

Actually, one also sees that the support of Z(T ) and the support of Z(T ) + Z ′(g(T − s)) are the
same for all s ∈ [0, T ). The second assertion which has a similar proof, states that for all k ≤ kp we
have

P (N ({ap}, (s, T ]) +N ′ ({ap}, [0, g(T − s)]) = k;Z(T ) + Z ′(g(T − s)) = x) > 0.

Therefore for all s ∈ [0, T ), we have

E [N ({ap}, (s, T ]) +N ′ ({ap}, [0, g(T − s)])/Z(T ) + Z ′(g(T − s))] > 0.

Therefore, B+(s) > 0 and B−(s) > 0 for all s ∈ [0, T ) a.s.
Therefore by Corollary 5 (note that here c = 0, therefore HIII is not required), the maximal

logarithmic utility of the G′-investor is finite.
Finally to characterize the optimal portfolio one considers the expression for R in Lemma 2,

which conveniently modified for our case leads to the study of the function

fs(π) = bπ +

∫
R

log (1 + (ex − 1)π)E [Fs(dx)/Gs] .

Here
E [Fs(dx)/Gs] = B+(s)δ{a+}(dx) +B−(s)δ{a−}(dx),

where δ{y}(dx) denotes the point mass measure. Therefore

fs(π) = bπ +
∑

p∈{+,−}

log (1 + (eap − 1)π)E [Fs({ap})/Gs] .
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This function f satisfies that limπ→±(ea+−1)−1∓ fs(π) = −∞, therefore the optimal portfolio value
is the solution of f ′s(π) = 0. Then the equation characterizing the optimal portfolio is

b+B+(s)
(ea+ − 1)

1 + (ea+ − 1)y
+B−(s)

(1− ea+)

1 + (1− ea+)y
= 0. (21)

This equation reduces to a quadratic equation for b 6= 0 which has two solutions given by y+(s)
and y−(s). The restriction 1

ea+−1 > y > − 1
ea+−1 determines the optimal portfolio. The case b = 0

follows directly as the optimal equation (21) becomes a linear equation in y. �

There are various conclusions that one can directly obtain from the above result. We briefly
summarize them here without giving all the details.

1. Note that the existence of a+ such that there exists k1, k2 ∈ N with k1a+ + k2a− = 0 is
assured by the continuity of the function h(a) = −a−1 log(2− ea) for a ∈ (0, log 2).

2. The optimal logarithmic utility for the small trader is finite as the portfolio values are bounded
(which can be obtained from Proposition 4). The optimal logarithmic utility for the small
trader is given by

(bπ∗ + λ+ log(1 + (ea+ − 1)π∗) + λ− log(1 + (1− ea+)π∗))T.

This result is the analogous result of the classical Merton problem.

3. The optimal portfolio proportion invested in stocks is constant as long as the values of (B+, B−)
lie on the line B+ = mB− + c for some given constants m and c that depend on a+ and b.
That is, the value of the optimal portfolio is determined by the linear relation between expected
future positive and negative jumps. Furthermore, the portfolio value is an increasing function
of the slope m and decreasing or increasing in c depending on the sign of b. We remark that
in the particular case that b = 0 then c = 0.

4. In the classical Merton portfolio optimization problem the proportion of wealth invested in the
stock grows linearly with respect to the return parameter. In the jump case considered here,
the proportion of wealth invested in stocks is influenced by the effect of the risks represented
in the two limits π∗+ = (ea+ − 1)−1 and π∗− = −(ea+ − 1)−1. In fact, as the risks decrease
(a+ → 0), the distance between these two constants increases. Also as the return parameter b
increases to ∞ the optimal portfolio proportion approaches the value π∗+. Similar statement
is valid when b→ −∞.

Furthermore note that if b = 0 then limBp→+∞ π∗ = π∗p for p ∈ {+,−}. That is, as the number
of jumps of one type increases and the other remains constant the optimal portfolio tends to
the opposite risk jump values. This is natural because that risk will tend to disappear when
most of the jumps become only positive or negative. For other values of b a similar conclusion
follows.

Note also that if B+ > B− then the intersection of the Merton line with the π axis is positive
revealing again that there is less risk of negative jumps. .

5. The above analysis is valid as long as B+(s) > 0 and B−(s) > 0. Otherwise, if B−(s) = 0 as
noted in Proposition 3 the optimal utility is infinite if b ≥ 0. The case where a+a

−1
− /∈ Q (that

is, the insider can count the jumps in order to know when to use his advantage optimally) is
related to this case and leads to infinite logarithmic utility and therefore generate arbitrage in
the model as it is shown in the proof of the next Result.

Result 15 Suppose that g(t) = 0 and that there is no k1, k2 ∈ N such that k1a+ + k2a− = 0 then
the maximal logarithmic utility of the G′-investor is infinite.
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Proof Let x be such that P (Z(T ) = x) > 0. Then by the assumption a+a
−1
− /∈ Q, there is a

unique pair k+(x), k−(x) ∈ N such that k+(x)a+ + k−(x)a− = x. Therefore if Z(T ) = x, we have
for p ∈ {+,−} that N({ap}, [0, T ]) = kp(x) and

Bp(s) =
kp(x)−N({ap}, [0, s])

T − s
.

Now, we note that the hypotheses HII0 and HII1 are satisfied. In fact, note that

E
[ ∫ T

0

∫
R
I{N({ap}, [0, s)) = kp(Z(T ))}I{px > 0}Fs(dx)ds

]
= 0,

E
[ ∫ T

0

∫
R
I{N({ap}, [0, s)) = kp(Z(T ))}I{px < 0}Fs(dx)ds

]
> 0.

The first equality above is clear. As the jumps of one type are exhausted there are no jumps left and
therefore the expectation becomes zero. The second inequality follows because the event that once
after the jumps of one type are exhausted there still remains jumps of the other type has positive
probability.

Therefore no matter what is the sign of b by Proposition 3 it follows that the utility is infinite.
Alternatively, one can also repeat the proof of Proposition 3 using the portfolio

π(s) = c1I{N({a−}, [0, s)) = k−(Z(T ))} − c2I{N({a+}, [0, s)) = k+(Z(T ))}

with c1, c2 > 0. �

Remark 16 1. We recall that in the Wiener case considered in Corcuera et al. with g(t) = tα

played an important role in order to obtain finite logarithmic utility (if α < 1). In the case
that the price is driven by a Poisson process, it is clear that the extra noise N ′ does not play
the same role as in the Wiener case. Nevertheless, Theorem 10 also shows that there are cases
where this addition is still meaningful.

2. Studying the case where Z is a simple compound Poisson process of the type described above
shows why and how one needs to use a bigger filtration H′ in hypothesis HI. First, by doing
so, one obtains an explicit expression for optimal portfolios. Second, the projection on the
smaller filtration G′, is necessary in order to obtain finite utilities. In fact, one can prove that
the logarithmic utility of the H′-insider is infinite and leads to arbitrage in most cases. This
result follows because if the information flow of the insider is H′, then this agent knows at any
time how many positive and negative jumps are left in the rest of the time interval.

3. Note that the support of the measure Fs(dx) and the support of the conditioned measure
E[Fs(dx)/Gs] do not necessarily lead to the same conclusions. In fact, the first is the set
{a+, a−} while in the proof of Result 15 we see that the support of the second may be concen-
trated in one of the two points a+ or a−.

4. In this article we have decided to concentrate on the case where the information of the insider
is given by the final value of S. One can also do other examples such as the case of insider’s
filtrations with information about random times (see Kohatsu-Yamazato [22]).

In the next subsection we generalize these results to general Lévy processes satisfying (1).

6.2 General Lévy process without Wiener component

In this subsection we study the optimal logarithmic utility in the case where Z is composed of
positive and negative jumps without Wiener component (i.e. c = 0). As various quantities repeat
throughout the calculations we need to introduce some notations to simplify expressions.
Definitions and Notations
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1. For a > 0 we define the measures νa(·) := ν(·∩[a,∞)) and ν−a(·) := ν(·∩(−∞,−a]). Similarly,
recall that we defined ν+(·) := ν(· ∩ (0,∞)) and ν−(·) := ν(· ∩ (−∞, 0)), respectively.

2. For p ∈ {+,−}, λpa = νpa(R) and λp = νp(R). Furthermore, we let λ := λ+ + λ−.

3.

a∗ := a∗+ ∧ a∗−,
a∗+ := inf {supp (ν+)} ,
a∗− := − sup {supp (ν−)} .

We remark that a∗ > 0 implies that 0 /∈ supp (ν) which further implies that λ <∞.

4. We denote for A ∈ B(R) (when they can be defined)

Nt(A) :=

∫ T

t

N(A, ds) +

∫ g(T−t)

0

N ′(A, ds)

where N ′ is the Poisson random measure associated with the process Z ′.

5. Let X(t) :=
∫
R xNt(dx). The process X is called the jump part of the process L(t) :=

Z(T )− Z(t) + Z ′(g(T − t)).

6. We denote the distribution of a random variable Y by PY . Let νn∗ denote the n-th convolution
of the measure ν provided that λ <∞. Note that supp(PX(s)) = S where S := ∪∞n=0supp(νn∗)
if λ <∞ where ν0∗ = δ{0}.

7. Set S+ = S ∩ (0,∞) and S− = S ∩ (−∞, 0). Hence, S = S− ∪ {0} ∪ S+.

8. Define the following collection of Borel sets by

Ep = {A ∈ B(R) : A ⊂ Sp,∀n ≥ 1, νn∗(A) = νn∗p (A),∃n ≥ 1, νn∗(A) > 0}

for p ∈ {+,−}.

Most of the above definitions have a clear meaning. We only comment that intuitively, Ep is the
family of sets of points that can be reached only through a sequence of positive (p = +) or negative
(p = −) jumps. For example, Ep is the family of all nonempty subsets of {nap : n = 0, 1, 2, · · · } for
p ∈ {+,−} in the setting of Section 6.1.

The following two theorems study when the logarithmic utility in the case c = 0 is finite or
infinite. These results show that in this case, the existence of blurring noise (g 6= 0) does not affect
to the finiteness of the maximal logarithmic utility. Their proofs are given in subsection 6.3.

Theorem 17 Suppose that c = 0, supp(ν+) 6= ∅, supp(ν−) 6= ∅ and 0 /∈ supp(ν). Furthermore,
suppose that one of the following two conditions is satisfied.
1) There exists n ≥ 2 such that νn∗({0}) > 0 and either
(a) µ > 0 and E+ = ∅ or
(b) µ < 0 and E− = ∅ holds.
2) µ = 0, E+ = E− = ∅.
Then the maximal logarithmic utility of the G′-investor is finite for any function g.

Theorem 18 Suppose that c = 0 and λ < ∞. Furthermore, suppose that one of the following two
conditions is satisfied.
1) Either µ ≥ 0 and E+ 6= ∅ or µ ≤ 0 and E− 6= ∅.
2) Assume that µ 6= 0 and νn∗({0}) = 0 for all n ≥ 2.
Then the maximal logarithmic utility of the G′-investor is infinite for any function g.
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Remark 19 A. Some of the results introduced in this subsection and in Corollary 6 can be summa-
rized in table form. In this table, we only consider some of the pure jump cases with α < 1, c = 0,
supp(ν+) 6= ∅ and supp(ν−) 6= ∅.

λ µ support condition insider small investor
λ <∞ ≥ 0 E+ 6= ∅ =∞ <∞
0 /∈ supp(ν) > 0 E+ = ∅, ∃n ≥ 2, νn∗({0}) > 0 <∞ <∞
λ <∞ ≤ 0 E− 6= ∅ =∞ <∞
0 /∈ supp(ν) < 0 E− = ∅, ∃n ≥ 2, νn∗({0}) > 0 <∞ <∞
λ <∞ 6= 0 ∀n ≥ 2 νn∗({0}) = 0 =∞ <∞
0 /∈ supp(ν) = 0 E+ = E− = ∅ <∞ <∞

Case c = 0, supp(ν+) 6= ∅ and supp(ν−) 6= ∅
B. All the results of this section about finite utility can also be directly generalized to the case

of power utility functions under enough moment conditions. To prove that the power utility is finite
one uses Hölder’s inequality to obtain the result.

6.3 Proofs of Theorems in Subsection 6.2

For the proof of theorems 18 and 17, we start with a series of Lemmas that establish some estimates
on the number of jumps of the Lévy process given its value.

Lemma 20 Assume that λ <∞. For p ∈ {+,−}, the following properties are satisfied
(1) if A ∈ Ep and B is a Borel subset of A, then νn∗(B) = νn∗p (B) for all n ≥ 1,
(2) if A,B ∈ Ep, then A ∪B ∈ Ep,
(3) if {An} is an increasing sequence of sets in Ep, then A = ∪∞k=1Ak ∈ Ep,
(4) if Ep 6= ∅, then there exists A ∈ Ep such that no Borel subset of Ac ∩ Sp is contained in Ep.

Proof It is enough to prove the statements for p = +. Note that νn∗(A) =
∑n
k=0

(
n
k

)
νk∗+ ∗ν

(n−k)∗
− (A)

for A ∈ B(R).
To prove (1), let A ∈ E+. Then

0 = νk∗+ ∗ ν
(n−k)∗
− (A) ≥ νk∗+ ∗ ν

(n−k)∗
− (B)

for n ≥ 1 and k = 0, . . . , n− 1. That is, νn∗(B) = νn∗+ (B) for all n ≥ 1.
To prove (2), let A,B ∈ E+, then νn∗(A ∩B) = νn∗+ (A ∩B) for all n ≥ 1 by (1) and

νk∗+ ∗ ν
(n−k)∗
− (A ∪B)

= νk∗+ ∗ ν
(n−k)∗
− (A) + νk∗+ ∗ ν

(n−k)∗
− (B)− νk∗+ ∗ ν

(n−k)∗
− (A ∩B) = 0

for n ≥ 1 and k = 0, . . . , n − 1. Furthermore, by definition of E+, there exist n1, n2 ≥ 1 such that
νn1∗(A), νn2∗(B) > 0. Then, νn1∗(A ∪B), νn2∗(A ∪B) > 0. Hence A ∪B ∈ Ep.

Proof of (3) Since νn∗(Ak) = νn∗+ (Ak) for all n ≥ 1, νn∗(A) = νn∗+ (A) for all n ≥ 1. For Ak,
there is n ≥ 1 such that νn∗(Ak) > 0. Then νn∗(A) ≥ νn∗(Ak) > 0 and A ∈ E+.

To prove (4), define the probability measure

P ′(C) =

∞∑
n=0

νn∗(C)

n!
e−λ

for C ∈ B(R) and set a = supC∈E+
P ′(C). As E+ 6= φ then a > 0. Choose B1, B2, · · · ∈ E+

so that limn→∞ P ′(Bn) = a. Define An = ∪nk=1Bk and A = ∪∞n=1An. Then An ∈ E+ by (2)
and A ∈ E+ by (3). By the inequality P ′(Bn) ≤ P ′(An) ≤ P ′(A) ≤ a, we have P ′(A) = a.
Suppose that there exists B ⊂ Ac ∩ S+ such that B ∈ E+. Then, A ∪ B ∈ E+ by (2). We have
P ′(A∪B) = P ′(A)+P ′(B) > P ′(A) = a. This contradicts the definition of a. The proof is finished.

�
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Lemma 21 Assume that λ <∞ and c = 0. For A ∈ E+, s ∈ [0, T ),

P (Ns((0,∞)) > 0, X(s−) ∈ A) > 0, (22)

P (Ns((−∞, 0)) > 0, X(s−) ∈ A) = 0. (23)

Furthermore, if a∗+ > 0, then

E
[
Ns([a

∗
+,∞))/X(s−) = x

]
≤ x

a∗+
+ 1,

E [Ns((−∞, 0))/X(s−) = x] = 0

for PX(s−)-a.a. x ∈ A, s ∈ [0, T ). Similar conclusions hold for E−. In particular, for A ∈ E− and
a∗− < 0 we have

E
[
Ns((−∞, a∗−])/X(s−) = x

]
≤ |x|
a∗−

+ 1,

E [Ns((0,∞))/X(s−) = x] = 0

for PX(s−)-a.a. x ∈ A, s ∈ [0, T ).

Proof We fix s ∈ [0, T ) throughout the proof. We have that

P (Ns((0,∞)) = n,X(s−) ∈ A) = e−λ(T−s+g(T−s))(T − s+ g(T − s))n ν
n∗(A)

n!
(24)

for n ≥ 1. Since νn∗(A) > 0 for some n ≥ 1,

P (Ns((0,∞)) > 0, X(s−) ∈ A) > 0.

Similarly, as A ∈ E+, we also have that

P (Ns((−∞, 0)) > 0, X(s−) ∈ A) = 0.

Let x ∈ A and let Bε(x) = (x− ε, x+ ε) for 0 < ε < x. We have by (24) and Lemma 20 (1),

E
[
Ns([a

∗
+,∞)) : X(s−) ∈ A ∩Bε(x)

]
≤ dx+ ε

a∗+
ee−λ(T−s+g(T−s))

d x+ε
a∗
+
e∑

n=1

(T − s+ g(T − s))n ν
n∗(A ∩Bε(x))

n!

= dx+ ε

a∗+
eP (X(s−) ∈ A ∩Bε(x)).

Here dye denotes the minimum integer which exceeds y. Since, by Lemma 20, the above inequality
holds for any ε > 0 then

E
[
Ns([a

∗
+,∞))/X(s−) = x

]
≤ x

a∗+
+ 1

PX(s−)-a.s. for x ∈ A. �

Proof of Theorem 18 First, we prove the theorem under 1) with µ ≥ 0 and E+ 6= ∅. Let A ∈ E+.
In this case, we have, by (22) and (23) that

P (Ns((0,∞)) > 0, X(s−) ∈ A) > 0

and
P (Ns((−∞, 0)) > 0, X(s−) ∈ A) = 0
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for all s ∈ [0, T ). For 0 ≤ s < t ≤ T , set τ1 = s and τ2 = t. Then,

E
[ ∫ τ2

τ1

I(X(u−) ∈ A)
Nu((0,∞))

T − u+ g(T − u)
du
]
> 0,

E
[ ∫ τ2

τ1

I(X(u−) ∈ A)
Nu((−∞, 0))

T − u+ g(T − u)
du
]

= 0.

Therefore the conclusion follows from Proposition 3 (1) with ΥB
s = I(X(s−) ∈ A). Note that

π̄ΥB
s I(τ1 < s ≤ τ2) with π̄ > 0 is admissible due to the inequality 1 ≤ 1 + (ez − 1)π̄ ≤ zπ̄. The

proof under 1) with µ ≤ 0 and E− 6= ∅ is similar.
Now we suppose that νn∗({0}) = 0 for all n ≥ 2. That is, there is no combination of jumps that

generate the value 0 for X. Therefore

P (X(s−) = 0) = P (Ns((0,∞)) = 0, Ns((−∞, 0)) = 0, X(s−) = 0) = exp (−λ(T − s+ g(T − s))) .

Define for c > 0 the following portfolio πs = cI(X(s−) = 0)sgn(µ). Then π ∈ A and therefore

from (5), u(t, π) = c |µ|
∫ t

0
P (X(s−) = 0)ds > 0 then taking c → ∞ we obtain that the maximal

logarithmic utility of the G′-investor is infinite for any t > 0. �

In order to prepare for the proof of Theorem 17, we need some preliminary lemmas. The first
one is a generalization of Lemma 21 under the stronger assumption a∗ > 0.

Lemma 22 Assume that c = 0, a∗ > 0.
(1) If for some p ∈ {+,−} there exist a Borel set A ⊂ Sp such that PX(s−)(A) > 0 and no Borel
proper subset of A belongs to Ep, then

P (Ns([a
∗,∞)) > 0, Ns((−∞,−a∗]) > 0/X(s−) = x) > 0 (25)

for PX(s−)-a.a. x ∈ A.
(2) If there is n ≥ 2 such that νn∗({0}) > 0 then (25) holds for x = 0.

Proof (1) For any Borel set B ⊂ A satisfying PX(s−)(B) > 0, there is n ≥ 2 and 1 ≤ k ≤ n − 1

such that νk∗+ ∗ ν
(n−k)∗
− (B) > 0. Then

P (Ns([a
∗,∞)) > 0, Ns((−∞,−a∗]) > 0, X(s−) ∈ B) > 0. (26)

Hence
P (Ns([a

∗,∞)) > 0, Ns((−∞,−a∗]) > 0/X(s−) = y) > 0 (27)

for PX(s−)-a.a. y ∈ A. In fact, assume that there exists a Borel set C ⊂ Sp such that PX(s−)(C) > 0
and

P (Ns([a
∗,∞)) > 0, Ns((−∞,−a∗]) > 0/X(s−) = z) = 0

for z ∈ C. Then,
P (Ns[a

∗,∞)) > 0, Ns((−∞,−a∗]) > 0, X(s−) ∈ C) = 0.

By the definition of Sp, 0 /∈ C. As PX(s−)(C) > 0 then C ∈ Ep. This contradicts the assumption.

(2) If νn∗({0}) > 0, then exists 1 ≤ k ≤ n− 1 such that νk∗+ ∗ ν
(n−k)∗
− ({0}) > 0. Then we easily get

(25). �

Lemma 23 (1) Assume that µ > 0. Let π be a solution of

µ+ E
[ ∫

(−∞,−a∗]

ez − 1

1 + (ez − 1)π
Fs(dz)

/
X(s−) = x

]
= 0.

If π ≤ 0, then π satisfies

π ≥ 1− E(Ns((−∞,−a∗])|X(s−) = x)

µ(T − s+ g(T − s))
.
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(2) Assume that µ < 0. Let π be a solution of

µ+ E
[ ∫

[a∗,∞)

ez − 1

1 + (ez − 1)π
Fs(dz)

/
X(s−) = x

]
= 0.

If π ≥ 0, then π satisfies

π ≤ −E(Ns((−∞,−a∗])|X(s−) = x)

µ(T − s+ g(T − s))
.

Proof If π < 0 and z < 0, then the inequality −1
1−π ≤

ez−1
1+(ez−1)π holds, and if π > 0 and z > 0, then

the inequality 1
π ≥

ez−1
1+(ez−1)π holds. By these inequalities we easily get the conclusions. �

Proof of Theorem 17
First, note that due to the conditions of the Theorem, we have that a∗ > 0. Next, define

fs(π) = µπ + E
[ ∫

R
log(1 + (ez − 1)π)Fs(dz)

/
X(s−) = x

]
.

We start proving the theorem under hypothesis 2). Since E+ = E− = ∅, (25) holds for all x ∈
S+ ∪ S−. Hence by Lemma 22, we have

E [Ns([a
∗,∞))/X(s−) = x] > 0, (28)

E [Ns(−∞,−a∗])/X(s−) = x] > 0.

Therefore for any π ∈ A, we have that −(ea
∗−1)−1 ≤ πs ≤ −(e−a

∗−1)−1 for X(s−) = x ∈ S+∪S−.
Then, in this case any admissible portfolio is uniformly bounded (the bounds depend only on a∗)
and hence

sup
π∈A

∫ T

0

E [fs(πs) : X(s−) ∈ S+ ∪ S−] ds <∞

follows from the proof of Proposition 4 (note that as c = 0 hypothesis HIII is not needed).
In order to finish the proof under hypothesis 2) we need to study the case when X(s−) = 0.

This case is subdivided into two cases.
In the first case, assume that there exists n ≥ 2 such that νn∗({0}) > 0, then (25) holds for x = 0

then portfolios are again bounded and the same previous argument applies.
In the second case, assume that νn∗({0}) = 0 for all n ≥ 1, then

E [Ns([a
∗,∞))/X(s−) = 0] = 0,

E [Ns(−∞,−a∗])/X(s−) = 0] = 0.

Since µ = 0, then
∫ T

0
E [fs(πs) : X(s−) = 0] ds = 0. In conclusion, in any of the above two comple-

mentary cases, we have that

sup
π∈A

∫ T

0

E [fs(πs) : X(s−) = 0] ds <∞.

Hence the maximal logarithmic utility is finite under hypothesis 2).
Next, we prove the Theorem under hypothesis 1)− (a). Note that by Lemma 20(4), there exists

A ∈ E− such that B /∈ E− for all Borel sets B ⊂ Ac ∩ S−. Here again, we separate the proof in two
complementary cases. E− = ∅ is the first case.

As E− = ∅, therefore A = ∅. Again by Lemma 22, we have that (28) is satisfied for PX(s−)-a.a.
x ∈ S+ ∪ S− ∪ {0} as we are assuming that there exists n ≥ 2 such that νn∗({0}) > 0. Therefore
−(ea

∗ − 1)−1 ≤ πs ≤ −(e−a
∗ − 1)−1 for X(s−) ∈ S+ ∪ S− ∪ {0} for any π ∈ A. Then, as in the

proof under 2), any admissible portfolio is uniformly bounded and hence

sup
π∈A

∫ T

0

E [fs(πs) : X(s−) ∈ S+ ∪ S− ∪ {0}] ds <∞
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follows from Proposition 4.
Now, we consider the second case, E− 6= ∅. Therefore, A 6= ∅. Then, by Lemma 21,

E [Ns((−∞,−a∗])/X(s−) = x] ∈
(

0,
|x|
a∗

+ 1

]
, (29)

E[N([a∗,∞))/X(s−) = x] = 0

for PX(s−)-a.s. x ∈ A. Therefore we can rewrite fs(π) as

fs(π) = µπ + E
[ ∫

(−∞,−a∗]
log(1 + (ez − 1)π)Fs(dz)

/
X(s−) = x

]
for PX(s−)-a.s. x ∈ A. We now study some properties of fs(π). From (4) and as E

[∫
|z|Fs(dz)

]
=∫

|z|ν(dz) <∞, we have that

lim
π→−∞

π−1E
[ ∫

(−∞,−a∗]
log(1 + (ez − 1)π)Fs(dz)

/
X(s−) = x

]
= 0.

Therefore as µ > 0 then limπ→−∞ fs(π) = −∞.
We prove now that the derivative of fs(π) exists. In fact, for z < 0 and π < (e−a∗ − 1)−1 we

have for sufficiently small h that∣∣∣∣ log(1 + (ez − 1)(π + h))− log(1 + (ez − 1)π)

h

∣∣∣∣ ≤ 1

|h|

∣∣∣∣∣
∫ π+h

π

ez − 1

1 + (ez − 1)u
du

∣∣∣∣∣
≤ max{

(
1 + (e−a∗ − 1)(π + h)

)−1
,
(
1 + (e−a∗ − 1)π

)−1}.

Therefore the differentiability of fs(π) follows from the dominated convergence theorem.
Now, the optimality equation f ′s(π) = 0 becomes

µ+ E

[∫
(−∞,−a∗]

ez − 1

1 + (ez − 1)π∗s (x)
Fs(dz)

/
X(s−) = x

]
= 0. (30)

Therefore the optimal value that maximizes fs exists. This value denoted by π∗s is either (1 −
e−a

∗
)−1 or is a solution of f ′s(π) = 0. We study the solution of the equation (30).

We remark that fs(π) ≤ µπ for 0 ≤ π ≤ (1− e−a∗)−1. Next, if π∗s (x) < 0, then by Lemma 23

0 ∧
(

1− E [Ns((−∞,−a∗])/X(s−) = x]

µ(T − s+ g(T − s))

)
≤ π∗s (x) ≤ 0

for PX(s−)-a.s. x ∈ A and consequently, using (29), we obtain π∗s (x) ≥ 0∧(1−h(x, s)) for X(s−) = x,

where h(x, s) = |x|+a∗
a∗µ(T−s+g(T−s)) . Then, for z < 0 and X(s−) = x, we have

1 ≤ 1 + (ez − 1)π∗s (x) ≤ (1− π∗s (x)) ≤ 1 ∨ h(x, s).

We have using that π∗ ≤ (1− e−a∗)−1 and (29),∫ T

0

E [fs(π
∗
s (X(s−)));X(s−) ∈ A] ds

≤
∫ T

0

∫
A

E

[∫
(−∞,−a∗]

log(1 + (ez − 1)π∗s (x))Fs(dz)

/
X(s−) = x

]
P (X(s) ∈ dx)ds

+ µ(1− e−a
∗
)−1T

≤
∫ T

0

[ ∫
A

| log(1 ∨ h(x, s))||µ|h(x, s)P (X(s−) ∈ dx)
]
ds+ µ(1− e−a

∗
)−1T. (31)
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Since

P (X(s−) ∈ dx) =

∞∑
n=1

e−λ(T−s+g(T−s)) (T − s+ g(T − s))n

n!
νn∗(dx)

for x 6= 0 and X(s) has a second moment, the right-hand side of (31) is finite. Furthermore for
X(s−) ∈ (Ac ∩ S−) ∪ S+, we apply Lemma 20(4) and an argument similar to the proof under
hypothesis (2) to give that for any admissible portfolio −(ea

∗ − 1)−1 ≤ πs ≤ −(e−a
∗ − 1)−1 for

X(s−) ∈ (Ac ∩ S−)∪ S+. This gives that the logarithmic utility for any admissible portfolio on the
set {(s, ω);X(s−) ∈ (Ac ∩ S−) ∪ S+} is uniformly bounded for all admissible portfolios. A similar
argument (also used in the proof under hypothesis 2)) applies for the case X(s−) = 0. Consequently
the maximal logarithmic utility

u(t, π) = sup
π∈A

E

[∫ T

0

fs(πs)ds

]

≤ sup
π∈A

∫ T

0

E [fs(πs);X(s−) ∈ A] ds+ sup
π∈A

∫ T

0

E [fs(πs);X(s−) ∈ (Ac ∩ S−) ∪ S+] ds

+ sup
π∈A

∫ T

0

E [fs(πs);X(s−) = 0] ds

is uniformly bounded for π ∈ A and therefore the proof finishes.
Next we prove the theorem under 1) − (b). As the proof has many common points with the

previous case 1)-(a), we briefly give the main points in the proof. We treat the case that E+ 6= ∅.
Let A ∈ E+ with B /∈ E+ for all B ⊂ Ac ∩ S+. For X(s−) ∈ S− ∪ (Ac ∩ S+) ∪ {0}, the argument is
the same as in 1)− (a) and hence

sup
π∈A

∫ T

0

E [fs(πs) : X(s−) ∈ S− ∪ (Ac ∩ S+) ∪ {0}] ds <∞.

Note that 0 /∈ A. Using Lemmas 21 and 23, we have π∗s ≤ h(s, x) for PX(s−)-a.s. x ∈ A. Since
log(1 + (ez − 1)x) ≤ z + (log x) ∨ 0,

log(1 + (ez − 1)π∗s ) ≤ z +
(

log(h(s, x))
)
∨ 0

for z > 0, and as in the case 1)− (a) we have∫ T

0

∫
A

E

[∫
[a∗,∞)

log(1 + (ez − 1)π∗s )Fs(dz)/X(s−) = x

]
P (X(s−) ∈ dx)ds

≤
∫ T

0

[ ∫
[a∗,∞)

{x+ log(h(x, s))}|µ|h(x, s)P (X(s−) ∈ dx)
]
ds <∞.

The rest of the proof is similar to the case 1.a). Hence the maximal logarithmic utility is finite. �

The proof of Theorems 11 use the notation in Subsection 6.2. For this reason, we give it here.
Proof of Theorem 11

Without loss of generality, we assume that there exists a > 0 such that ν−a(·) = ν(·∩(−∞,−a]) 6=
0. Suppose that PL(s−)(B) = P (L(s−) ∈ B) > 0 for a Borel set B. Then, PL(s−)(B − y) > 0 for
all y by the absolute continuity and ν−a ∗PL(s−)(B) =

∫
PL(s−)(B − y)ν−a(dy) > 0. Let Qs be the

distribution of L(s−)−
∫

(−∞,−a]
xNs(dx). We have

E (Ns((−∞,−a]) : L(s−) ∈ B) = e−λ−a(T−s+g(T−s))
∞∑
n=1

νn∗−a ∗Qs(B)

(n− 1)!
(T − s+ g(T − s))n

= (T − s+ g(T − s))ν−a ∗ PL(s−)(B)

> 0.
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Then
E (Ns((−∞,−a])/L(s−) = x) > 0

for PL(s−)-a.a. x. In the same way,

E(Ns([a,∞))/L(s−) = x) > 0.

Therefore any admissible portfolio is in the interval (−(ea − 1)−1,−(e−a − 1)−1). Therefore the
conclusion follows from the proof of Proposition 4. This finishes the proof. �

Note that the previous proof applies as long as Qs has a strictly positive density in R. Other
conditions besides c 6= 0 for this property to be satisfied can be found in [25], Chapter 5.
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7 Appendices

7.1 Appendix A: Power utility functions

Now, we briefly discuss the case of utility functions satisfying the inequality U(x) ≤ C0x
α + C1 for

x > 0 and some positive constants C0, C1 with 0 < α < 1. This class of utility functions is related
to the class of power utility. In fact, we have that

u(t, π) ≤ C0E[V αt ] + C1 = C0E[exp(αRt)] + C1.

As before we define the class of admissible portfolios for power utility functions

Definition 24 We say that π is an admissible portfolio (π ∈ Aα) if π is a G′-predictable real valued
process such that there exists a unique solution to the wealth equation (3) which satisfies that for all
t ∈ [0, T ), V πt > 0. Furthermore the following quantities are finite a.s. for all t ∈ [0, T )

Bπ1 (t) :=

∫ t

0

|πs|2 ds <∞ a.s.,

Bπ2 (t) :=

∫ t

0

∫
R
|(1 + (ex − 1)πs)

α − 1|Fs(dx)ds <∞ a.s.,

Bπ3 (t) :=

∫ t

0

∫
|x|≤1

{(1 + (ex − 1)πs)
α − 1}2Fs(dx)ds <∞ a.s.

and

Bπ4 (t) :=

∫ t

0

∫
|x|>1

|(1 + (ex − 1)πs−)α − 1)|N(dx, ds) <∞ a.s.

Then we have the following Proposition.

Proposition 25 Let π ∈ Aα′ for 1 > α′ > α be an admissible portfolio such that there exists a
constant M > 1 with |π(s)| ≤M for almost all (s, ω) ∈ [0, T ]× Ω. Furthermore, assume that

E

[
exp

{{
cMα

(
1− α

α′

)−1
∫ T

0

|β(s)|ds + α
(

1 +
e

2

)(α′
α
− 1

)−1 ∫ T

0

∫
|x|≤1

|x|Fs(dx)ds

+

(
α′

α
− 1

)−1

(2M)α
′
∫ T

0

∫
|x|>1

exp(α′x) ∨ 1Fs(dx)ds

}}]
<∞. (32)

Then u(t, π) <∞ for all t ≤ T .
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Proof In order to prove that the utility is finite we perform a change of measure. For this, we
introduce the processes

Xt = cαp

∫ t

0

πsdBs +

∫ t

0

∫
R

((1 + (ex − 1)πs−)
αp − 1)M(dx, ds), (33)

Y t =

∫ t

0

(
αq(b+ cβ(s))πs −

c2

2
π2
sαq(1− αp)

)
ds

+
q

p

∫ t

0

∫
R

((1 + (ex − 1)πs)
αp − 1)Fs(dx)ds

−
∫ t

0

∫
|x|≤1

αqxπsν(dx)ds

for p−1 + q−1 = 1 with p = α′

α > 1 and q =
(
1− α

α′

)−1
. As in the proof of Proposition 4, we

introduce
τn = inf{t; max{Bi(t); i = 1, ..., 4} ≥ n}.

Then using Hölder’s inequality we have that

E[exp(αRt∧τn)] ≤
(
E
[
E(X)t∧τn

])1/p (
E
[
exp(Y t∧τn)

])1/q
. (34)

Here E(X) stands for the Doléans-Dade exponential of the process X. Note that since V π > 0
a.s., the integrand of the second term of the right hand side of (33) is greater than −1 a.s. Hence
the Doleans-Dade exponential E(X) is a positive local martingale and therefore its expectation is
bounded by 1 in the first expectation on the right side of (34). For the second expectation, one uses
the hypothesis (32) together with the following inequalities

(1 + (ex − 1)y)α − 1− αxy ≤ αeM |x|2

2
(35)

for α ∈ (0, 1), |x| ≤ 1, 1 + (ex − 1)y > 0 and |y| ≤M

(1 + (ex − 1)y)α − 1 ≤ (2M)
α

(eαx ∨ 1) (36)

for α > 0, |x| > 1, 1 + (ex − 1)y > 0 and |y| ≤M , M ≥ 1.
To prove (35) one considers the function f(y) = (1+(ex−1)y)α then using the Taylor expansion

of order 2 together with the inequality |ex − 1− x| ≤ ex2

2 for |x| ≤ 1 and f ′′(y) ≤ 0 we have

(1 + (ex − 1)y)α − 1− αxy = α(ex − 1− x)y +

∫ y

0

∫ z

0

f ′′(w)dwdz

≤ αeM |x|2

2
.

To prove (36), we divide the analysis in cases. First, in the case x > 1, we have that

(1 + (ex − 1)y)α ≤ (1− y + exM)
α ≤ (2Mex)

α
.

Also for x < −1 and −M < y < 0 we have that (1 + (ex − 1)y)α ≤ (2M)
α

. The other case has
trivial bounds that are always smaller than (2M)

α
(eαx ∨ 1) . �

This proposition is the starting point to obtain similar results as the ones we have obtained for
logarithmic utility in this article. For example, using this result as a base one can easily extend
Corollaries 5 and 6.
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7.2 Appendix B: Lévy driving processes with only positive jumps without
Wiener part

In this case (c = 0, supp(ν−) = ∅), according to the result in Corollary 6, the small investor has
finite maximal logarithmic utility if and only if µ < 0. In contrast with this result, the insider’s
maximal logarithmic utility can be infinite even if µ < 0. The following result treats a pure jump
case with g(T − s) = (T − s)α, 0 < α ≤ 1. The integrability assumption for ν near 0 is slightly
stronger than

∫
|x|≤1

|x|ν(dx) <∞. In this subsection we use the notation introduced in section 6.2.

Theorem 26 Assume that c = 0, µ < 0, supp(ν−) = ∅, supp(ν+) = R+ and g(T − s) = (T − s)α.
Furthermore, assume that either

1)
∫ 1

0
xβν(dx) <∞ for some 0 < β < 1 if α = 1 or

2)
∫ 1

0
xβν(dx) <∞ for β = α if α < 1.

Then the maximal logarithmic utility of the G′-investor is infinite.

Proof Since supp(ν−) = ∅, then E[Ns((y,∞))/X(s−) = y] = 0 for y > 0. Hence as supp(ν+) = R+,
then for any admissible process we have that πs ≥ −1

ey−1 if X(s−) = y > 0.

Define πs(y) = −1
2(ey−1) (T−sT )γ for X(s−) = y > 0, where γ = α

β − 1 ≥ 0. Next, we note that as∣∣∣∣12(ex − 1)πs(X(s−))

∣∣∣∣ ≤ 1

2
, Fs(dx) a.s.

then π·(X(·−)) ∈ A.
Now, we estimate each of the terms that will appear later in the utility function. First, using that
0 < ey − 1 ≤ 2y for y ∈ [0, 1] we have the following estimate∫ ∞

0

µπs(y)P (X(s−) ∈ dy) ≥ |µ|
2

∫ 1

0

1

ey − 1
(
T − s
T

)γP (X(s−) ∈ dy)

≥ |µ|
4

(
T − s
T

)γ
∫ 1

0

1

y
P (X(s−) ∈ dy).

To estimate the above integral, we use

E[(X(s−))−1I(X(s−) ≤ 1)]

= E
[(∫ 1

0

xNs(dx)

)−1

−
(∫ 1

0

xNs(dx)

)−1

I(
∫ 1

0

xNs(dx) > 1)
]

≥
(∫ ∞

0

E
[

exp{−θ
∫ 1

0

xNs(dx)}
]
dθ − 1

)
=

(∫ ∞
0

exp
{

(T − s+ g(T − s))
∫ 1

0

(e−θx − 1)ν(dx)
}
dθ − 1

)
≥
(
β−1Γ(β−1)

{
(T − s+ g(T − s))

∫ 1

0

xβν(dx)
}−1/β

− 1

)
.

Here, we have used the following inequality for θ > 0

−
∫ 1

0

1− e−θx

xβ
xβν(dx) ≥ −

∫ 1

0

(
1− e−θx

x
)βxβν(dx)

≥ −θβ
∫ 1

0

xβν(dx)

and
∫∞

0
e−θ

β

dθ = β−1Γ(β−1). Hence, in any of the two cases 1) or 2), we have∫ T

0

∫ ∞
0

µπs(y)P (X(s−) ∈ dy)ds =∞.
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On the other hand, we have ex−1
x ≤ ey−1

y for 0 < x < y, which in turn implies∣∣∣∣log

(
1− (ex − 1)

2(ey − 1)
(
T − s
T

)γ
)∣∣∣∣ ≤ x

y
(
T − s
T

)γ

for 0 < x < y. Therefore∣∣∣∣∫ +∞

0

E

[∫ y

0

log(1 + (ex − 1)πs)Fs(dx)/X(s−) = y

]
P (X(s−) ∈ dy)

∣∣∣∣
≤
∫ +∞

0

E

[∫ y

0

1

y
(
T − s
T

)γxFs(dx)/X(s−) = y

]
P (X(s−) ∈ dy)

=

∫ +∞

0

1

y
(
T − s
T

)γE

[
X(s−)

T − s+ g(T − s)
/X(s−) = y

]
P (X(s−) ∈ dy)

=

∫ +∞

0

(
T − s
T

)γ
P (X(s−) ∈ dy)

T − s+ g(T − s)
=

((T − s)/T )γ

T − s+ g(T − s)
.

Then ∫ T

0

∫ ∞
0

∣∣∣∣E[ ∫ y

0

log(1 + (ex − 1)πs)Fs(dx)|X(s−) = y
]∣∣∣∣P (X(s−) ∈ dy)ds

≤
∫ T

0

((T − s)/T )γ

T − s+ g(T − s)
ds <∞.

Hence putting these two estimates together, we obtain that

u(T, π) =

∫ T

0

E [µπs] ds+

∫ T

0

E

[
E

[∫ ∞
0

log(1 + (ex − 1)πs)Fs(dx)/Gs
]]
ds.

where the first term is infinite and the second is finite. Therefore the maximal logarithmic utility of
the G′-investor is infinite. �

If c = 0, µ ≥ 0, supp(ν+) 6= ∅ and supp(ν−) = ∅, then by Proposition 3(1), G-maximal logarithmic
utility is infinite.

The idea of the previous proof can be extended in a variety of ways. For example, the proof of
the following theorem is exactly the symmetric of the previous proof.

Theorem 27 Assume that c = 0, µ > 0, supp(ν+) = ∅, supp(ν−) = R− and g(T − s) = (T − s)α.
Furthermore, assume that either

1)
∫ 0

−1
|x|βν(dx) <∞ for some 0 < β < 1 with α = 1 or

2)
∫ 0

−1
|x|βν(dx) <∞ for β = α if α < 1.

Then the maximal logarithmic utility of the G′-investor is infinite.
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[25] Sato K. : Lévy processes and infinite divisible distributions. Cambridge University Press, Cam-
bridge (1999).

[26] Yor, M. : Grossissement de filtrations et absolute continuité de noyaux. In : Jeulin, T., Yor, M.
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