Strong consistency of the Bayesian estimator for
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Abstract In the accompanying paper Kohatsu-Higa et al. [9], we hatrediiced a
theoretical study of the consistency of a computation&risive parameter estima-
tion method for Markovian models. This method could be cbeisd as an approx-
imate Bayesian estimator method or a filtering problem apprated using particle
methods. We showed in [9] that under certain conditions weiplicitly relate the
number of data, the amount of simulations and the size of ¢neek window, one
obtains the rate of convergence of the method. In this fitstystthe conditions do
not seem easy to verify and for this reason, we show in thigiphpw to verify
these conditions in the toy example of the Ornstein-Uhlekipgocesses. We hope
that this article will help the reader understand the thmakbackground of our
previous studies and how to interpret the required hypethes

1 Introduction

One method to estimate parameters in a Markovian model iss¢oaufiltering

method (also known as the Bayesian method). In such a frarketlive estima-

tion is carried out using a least-square principle whicki$ga the calculation of the
conditional expectation of the unknownn density given tvelable data.
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This expression is somehow theoretical, so one option isécsimulation to ap-
proximate the value of the unknownn transition density ihedheoretical model is
proposed. This simulation procedure requires the choieevafiety of parameters.
The procedure of choosing these parameters “correctlyélisa tuning.

Recently, many computational statisticians have sucalggiroposed and stud-
ied several algorithms related with this idea, for exampging the Markov Chain
Monte-Carlo method (Roberts et al. [10]) between othersayMaapers have con-
firmed the rate of convergence of the proposed method to thieedevalue using
numerical experiments, but usually no mathematical pregirovided. In an ac-
companying paper [9], we adopt a particle method (detaits @her comments
about this method can be found in Bain et al. [2]) to approxérthe conditional
expectation and study theoretically the rate of convergexra the proper tuning
needed. This kind of filtering problem under discrete obstions were studied by
Del Moral et al. [4]. They prove weak consistency drfdconvergence. After that,
Cano et al. [3] studied the convergence of an approximatstegdor distribution,
which used the Euler-Maruyama approximation for stochakfierential equations
(SDE). Kohatsu-Higa et al. [9], gives the rate of convergeoftthe approximated
Bayesian estimator. In that set-up, the transition derfisitgtion of an observation
process is usually unknown, so that one approximates it ing ke kernel density
estimation method (KDE). As mentioned before, we remark tthere are several
new algorithms, which may work well on applications, but aljective was to
provide a theoretical mathematical framework thereforechv@ose the most basic
method available within particle methods. Our method ofysisiuses the Laplace
method to obtain the rate of convergenga/N, whereN is a number of data under
a strong hypothesis of convergence rate for the approxigatierage of likelihoods
(see Assumption (A) (6)-(a)).

In the second part of Kohatsu-Higa et al. [9], we gave an eitpklationship be-
tween number of data and approximation parameters, as twestigat Assumption
(A) (6)-(a) is satisfied. Here we have three approximatiompeeters: (i). the first
one is used to approximate the theoretical stochastic psese (ii). the second one
is to express the number of the Monte-Carlo simulations tmeithie approximating
process, (iii). the last one is a bandwidth size of the KDE.d#knect these three
approximation parameters and the number of data. We beheteur study is the
first that provides an explicit theoretical relationshigvibeen these parameters in
order to achieve a certain rate of convergence. It also shdwsa bad choice of
tunning parameters may lead to unreliable estimation tesul

Assumption (A) below states the needed hypothesis in ocdachieve the rate
of convergence announced previously. These hypothesesanecessarily easy to
understand/interpret. The objective of the present arigto consider an easy toy
example where the reader may see how these conditions cewierified and most
importantly what do they mean. In this paper, we consideffdlewing Ornstein-
Uhlenbeck process (OU process) as the parametrized olisargeocess:

dX = —0Xdt+dW,



(iii).
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whereW is a Brownian motion and is a parameter, which we want to estimate.
Then, we check the assumptions, that give the strong censistand the conver-
gence rate. Clearly this is a toy example as many elementsecdinectly computed
and there is no need to use simulations. Furthermore in éfiitg many other com-
peting statistical methods exist (see e.g. [1], [6], [7], [B1]).

We would like to emphasize again, that the main objective rstio show that the
general theory is applicable to a basic example. Cleagygthre still open problems
to be considered and in particular, how to apply the resoltsthier examples. We
hope that with this article, the reader may understand wherdael satisfies the
assumptions although verifying them may still require aylpnocedure.

This paper is constructed as follows: In Section 2, we gieegbéneral theorem
and the assumptions of Kohatsu-Higa et al. [9]. In Sectiome8¢check the assump-
tions with respect to the OU process. and the Euler-Maruysppeoximation of the
OU process. Finally in Section 4, we give some propertiesrtean and variance of
the OU process and its Euler-Maruyama approximation.

2 Framework and General Theorem

2.1 Framework

In this article, we consider the following problem: Léte © :=[6',6Y], (6' < 6Y)
be a parameter that we want to estimétec O, where@_denotes the interior
of the set© and©y = © — {6p}. Let (Q,.7,Py,), (Q,#,P) and (Q,.%,P) be
three probability spaces, where the probability mea&yyés parametrized by.

A > 0 is a fixed parameter that represents the time between elisers. The ob-
served Markov chain is defined on the probability spa@e.7 ,Pg,). The theoret-
ical Markov chain (with lawPy) and its approximation are defined 00,7 P).
Finally, simulations are defined di®2,.%, P), which will be used in est|mat|ng the

transition density of the theoretical Markov chain.

(i). (Observation process) et{Yia}i—o1.....n be asequence &f+ 1-observations of
a Markov chain having transition densiby, (y,2), y,z< R and invariant measure
Mg, This sequence is defined on the probability spae.7,Pg,). We write
Yi:=Yiapfori=0,1,--- N

(i). (Model process)Denote byXY(68) a random variable defined on the probability

spacgQ,.7, P) such that its law is given by (Y, 2).

Denote by(Q 3? P) the probability space where one generates the simulation

of the approximation to the proceXx¥.

(iv). (Approximating process)Denote b)b( ( ) the approximation tX¥(8), which

is defined on(Q, Z, P). m=m(N) is the parameter that determines the quality
of the approximation. Denote kyji Ty, z) = p} (y,z m(N)) the transition density
for the procesS((yrm (9).
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(v). (Approximated transition density) Let K € C3(R;R ) (usually called kernel),
which satisfies/ K(x)dx= 1. Denote byp}(y,z), the kernel density estimate of
P (v,2) based om = n(N) simulated i.i.d. copies 0>K<ym)(9) which are defined

on(Q,.#,P) and denoted by((yr;%k)(e,-), k=1,---,n; forh=h(N) >0,

(vi). For givenm, we introduce the “average” approximated transition dgrier all
trajectories with respect to the kerr€l

Py (v.2) == Py (y,zm(N),h(N)) := E [} (v.2)] .

whereE means the expectation with respecéto

As it can be deduced from the above set-up, we have preferigdte our prob-
lem in abstract terms without explicitly defining the dynasthat generat®¥(0)
or how the approximatiob((ym) (0) is defined. All the properties that will be required
for pg and p*g will be satisfied for an appropriate subclass of diffusioogasses.
Our objective in this article is to show that OU processesratkis class.

Remark 1 Without loss of generality, we can consider the product efdbove three
probability spaces so that all random variables are definetti® same probability
space. We do this without any further mentioning.

Our purpose is to estimate the posterior expectation foedamctionf € C1(0)
given the data;

J £(8)¢(Yg')11(6)de
En[f] :==Ep[f|Yo,---, W] ="
M Bl = g @ mgyae
where @ (YY) = @ (Yo, -, Yn) = o (Yo) |'|’J-\‘:1 Pe(Yj-1,Yj) is the joint density of

(YO;Ylv tU aYN)-
We propose to estimate this quantity on the basis of simiiliatgtances of the
process;

En rf. 4 1) (Y5)m(O)d6
N e () (e)de

where@) (') := pia (Yo) [17L1 B (Y-1.Y))-

2.2 General Theorem of Kohatsu-Higa et al. [9]

Assumption (A): We assume the following
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(1). (Observation process)Y; }i—o1...n iS ana-mixing process witho, = O(n*5).

(2). (The prior distribution) The prior distributionrt € C(©), and for all6 € O,
(@) > 0.

(3). (Density regularity) The transition densitieg, pN € C>%°(@ x R%,R ), and for
all 6 € ©,y,z€ R, we have that mifpg(y,2), pj (y.2)} > 0. And pg admits an
invariant measurg@ CS’O(O x R;R4), and for all@ € O, up(y) > 0 for every
yeR.

(4). (Identifiability) Assume that there exigt, ¢, : R — (0,) such that for all
06 €0,

mf/\qe ¥.2) — g, (v, 2)[dz> Gi(y)|6 — 6],

andCi(6o) := [ ci(y)?Hg,(y)dy € (0,+0) fori = 1,2 andg} = pg andg3 = pj.
(5). (Regularity of the log-density)We assume foglg = pg, Py,

12
SUpSUp//(de, Inge(y,z > Pa, (Y. 2) Ug, (Y)dydz< 40, fori=0,1,2, (1)
N 6e€6

supsup
N 6€O

0i
supsu —1In .z
Np%g//’ael de(¥:2)

0
where 25509 = de.
(6). (Parameter tuning)

ﬁ/ / (nao(.2)) BB (v Z)ue()(y)dyd% < oo, 0

Py (v 2)He, (y)dydz< +oo, fori=0,1, 3)

(a). We assume the following boundedness;

N-1

= 5 < 2 (YY) — lnp9<v.,v.+1>)

(b). Assume that for eachhz € R, there exist function€) (y,z) andc (y, z) such
that | pg, (¥,2) — By, (v, 2)| < CY(y,2)a1(N), where supC}'(y,2) < +e and
a1(N) — 0 asN — «, andC)(y,2)a1(N)v/N < ci(y,2), wherec; satisfies;
SUR\ SURsco | [ 155 1N BY (¥, 2)|Ca (Y, 2) g, (y) dydz< oo,

(c). There exist some functiog" : R? — R and constanay(N), which depends
onN, such that for aly, ze R,

supsup
N 6e€O

< 4o, a.s. (4)

esgg %ln pe(y,Z)fﬁln Pe(Y,2)| <197 (Y,2)|a2(N),

where sup Eg, [|gV (Yo, Y1)|*] < +e andaz(N) — 0 asN — .

Now we state the main result of the paper.
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Theorem 1. (Kohatsu-Higa et al. [9]) Under Assumption (A), there exisbme pos-
itive finite random variables; and =, such that

IEn[f] - (60)] < % as, and |ENn[f]—f(60)] < % as,

and thereforeEn|[f] — E [ f]| < El}N—:Z as.

2.3 Parameter Tuning for Assumption (A) (6)-(a)

All the conditions in Assumption (A) will be directly verifiewith the exception of
Assumption (A) (6)-(a) which requires a special treatm&hts section is devoted to
show that Assumption (A) (6)-(a) is satisfied under suffit@noothness hypothesis
on the random variables and processes that appear in tHeiprab well as a certain
parameter tuning. We recall that the objective is to find édmus that assure that
Assumption (A) (6)-(a) in Section 2.2 is satisfied.

Now m= m(N), n=n(N) andh = h(N) are parameters that dependNnn is
the number of Monte Carlo simulations used in order to egénttae density and
mis the generated random numbers used in the simulati()(x;gﬁ(e,-) andh is
the window associated to the kernel density estimation atetin this sense we
will always think of hypotheses in terms &f although we will drop them from
the notation and just use,n andh. The goal of this section is to prove that under
certain hypotheses, there is a choicemph andh that ensures that condition (4) is
satisfied.

We work in this section under the following hypotheses:

(H1). Assume that there exist some positive constgnts,, where ¢ is indepen-
dent of N and ¢, is independent oN and A, such that the following holds;

inf( g)can Py (X,Y) > 91 exp(—qbz‘%afz“), where sequences of a numiagrand a set
BN are defined byii) below.
(H2). Assume that the kern& is the Gaussian kernef(z) := \/%Texp(f%zz).

(H5). Assume that there exists some positive consignt 0 such that

|0xPg (%), 10,PB (x.Y)], |96 P5 (x,¥)| < Cs < +oo,

forallx,ye R, me Nandf € O. _
(H5"). Assume that there exists some positive congtgnt 0 such that

1008 P (,Y)], [0y P (X, Y)|, [95P (X, y)| < Cs < +00,

forallx,ye R, me Nandf € O.
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Remark 2We use the same hypothesis numbering as in Kohatsu-Higa[e} &r
easy reference. Some of the intermediate hypotheses dgpetiahere. For the
detailed explanations we refer to Kohatsu-Higa et al. [9].

We need to find now a sequence of valuesfandh such that all the hypothesis
in the previous Theorem are satisfied and that the upper hewmiformly bounded
in N. Now, we rewrite the needed conditions that are relatede@#rameters and
h. We assume stronger hypothesis that may help us understited the existence
of the right choice of parametensandh.

The proof of Assumption (A) (6)-(a) uses a series of Boret€hi lemmas for
which we need the following hypotheses. We will assume thistemxce of some
sequences of strictly positive numbers which we assume thlaigare bigger than
1.

(ii). (Borel-Cantelli forY;)
me, := E[e°M*] < 40 for some constant; > 0 and{a }nen C [8Y— 6', ) is
a sequence such that for the sarpe
¢ __ N
& o0()

And setBY = {(x,0) € R x O; ||x|| < an}, where| - || denotes the max-norm.
(iii). (Borel-Cantelli forZ{{(w))

< 0.

2[3
For somers > 0 and some sequenbgn > 1,Ne N, ¥5&_, (rﬁ%

3 < teeand
SUmen E[|Zan(+)]"3] < 4o for each fixedn € N, where

Zgy (@) :a.f( sup X6, w>|+1> sup [dpX (6, )|
(x,0)eBN (x,0)eBN

(iv). (Borel-Cantelli forzfl,L( w))
For somery > 0 and some sequentgn > 1, N € N, SR_ l*)ﬁ < oo and

SUen E[|Zan(+)]"™] < 4o for each fixedn € N, where

Z{ () :aa1< sup |3 (8;w)|+ sup [9eX(6; w>|>
(x,0)eBN (x,08)eBN

(vi). (Borel-Cantelli forZ{}, ())

For somers > 0 and some sequenbaN >1,NeN, Sao 1 by e ) < 4o and

SUR\eN E[|Z4’N(-)|r4] < +oo for each fixedn € N, where

2 (@) = agt(h sup 809X (6;w)[+h sup |3edeX i (6;a)]
’ (x,6)eBN (x,0)eBN
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+(ZiN+1) sup [deX >(e w)|>
(x,0)eBN

(viii). (Borel-Cantelli forZ¥) (w))

For someg > 0 and some sequence of positive numiters, S N=1 Tan < 400
’ 6.N

and sup E[|Zen(-)|"e] < oo for each fixedn € N, where

2§ () =ay* sup {10aXY (8; )|+ E[19gX(5i (6:)] }.
(x,08)eBN

(ix). For someds > 0, Gg > 1 andCs > 0, and some positive sequenge,

e )G
(MW’:INeXp< (HK’Hmb Naw )2 )) Snl+(:re

and supcy E[|Zsn(+)|%] < +oo.

Setay = v/C2InN for some positive constagh. Setn = ClN"l fora;,Cy >0

andh = C,N~92 for a,,C, > 0. And also sebg N = 03(’\'%’27“2"”\'

forys > 1, and
. . oA
bsn = (CsnNNY%) . Then we obtain the following result.

Theorem 2. (Kohatsu-Higa et al. [9]) Assume that the constants are ehaso as
to satisfy g > %

C 1 .
4ay+2 l+y6+m+—+ﬁ+ G > a1, (5)
o A 2
2 2 20,0, 2
<1——)>8az+1+ ¢“+—y3+ 2% ©6)
rs fe A rs I'e

Furthermore, assume that the moment conditions statéd jriii) , (iv), (vi), (viii)
and (ix) above are satisfied. If additionally, we assu(htl), (H2), (H5), (H5),
then Assumption (A) (§r) is satisfied.

Furthermore if all other conditions on Assumption (A) ardisféed then there
exist some positive finite random variabEgsand =, such that

[En[f]— f(60)| < == as and |ERm[f]—f(6)| < % as,

VN

and thereforgEn ] — EJ [ ]| < 51\}\‘52 as.

Remark Ji). In (6), r3 andrg represent moment conditions on the derivatives of

X(Xm)(e), ¢, * represents the variance )&e‘m)(e), A represents the length of the

time interval between observations. Finatly> 20;1 expresses a moment con-
dition onY;. In (5), recall thags determines a moment condition m;;n)(e)
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(ii). Roughly speaking, if3, fg anddg are big enough (which implies a conditions on
n), and we choose > 8ay + 1+ 2¢42°2, m= /N, h=CoN~% andn = C;N,
then Assumption (A) (6Ja) and (6){b) are satisfied. Then conditions contain

the main tuning requirements. (See Proposition 10)

3 The Ornstein-Uhlenbeck Process

We consider the following Ornstein-Uhlenbeck processhaiit loss of generality
for 6 € [a,B], where O0< o < 3 < 2,

dX = —0Xdt+dW, Xp=x, (7

whereW is a 1-dimensional Brownian motion. Then we can write thetsoh ex-
plicitly as X = Xse =9 4 [Le-0-Udw. As it is well known, the OU Process
has the following expectation, variance and covarianceskot,

H(Xs,t—S,0) i= Xsuu(t —s,0) 1= E[X| X = Xse 979,
1 1

o2 4(0) = Var(X|Xs) = 25~ %6729075)7
= i —0(t=s) _ i —0(t+s)
COV(X[’XS) = 29 299 )

From moment results for the normal distribution, momentthefOU Process can

also be bounded as follows
2] (k) [1-e2009\"
~ 2%k 0 '

-

Therefore in particular fos = 0, by using the Minkowski’s inequality,

E %] gck<<1229t>k+E [xng 8)

The conditional density of; givenXs is given by

E |:‘>([ o Xse—e(t—s) /t e—@(t—u)d\M

S

Po(Xs, X S.t) 1= (Xs, X U(t —5,0),02 4(0)) , 9)

_(zyw)?
whereq(y,z;p,0%) = —=—e 2?2 . Note thatps(Xs,y) = Po(Xs,y;$,S+4).
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3.1 The Euler-Maruyama Approximation of the OU process

Forme Nandi=1,---,m X'(6) := X (6) — 6X* | ,(8)At + Ai_1W, where
X3(0) =x, At =t —ti_y = & andAW =W, , —W,. SetXX (8) = XX (6). We

i+1 (m) h
will find an explicit expression for this approximation bydunction. In fact,

Xy = X(1— 0At) +W,,
for At = 4. Similarly for AW =W(ti-1) —W(t),
X, = (X(1— BAL) +AgW) (1 — BAL) + AW,
Therefore in general, we have that

m-1

X(Xm)(e) = Zm =X(1—06At)"+ Z) AW (1— eAt)m—l—i . (10)

From the above expression, we can easily find 1«?@}(9) follows the normal dis-
tribution with mearu(x, m, 8) and variances?(m, 6);

u(x,m 0) = xu(m,8) =x(1— %)@
2y~ L= w1
o?(m, 6) = 68 2

where we exclud% = 2. For example, if we tak@ < 2, then sincen € N, we
always hav% < 2for B € [a,B], where 0< a < 3 < 2. Then the transition density

f)g“) (x,y) = pi(x.y) is given as follows;
Bg” () = a(xy, 1(m,6),0%(m.6))
Next, we can writep} (x,y) as follows; setv= %,
i d _/oxa
BYy) = E |3 (xhX+y)] = P (X7 (8,) ~hX <y).

where X ~ N(0,1) is a random variable with the standard normal distribution.

_6Ay2m_
Now Xfﬁ%”(&-) ~ N(x(1 - 84)m (19('§)_2) ') and is independent oK. Then
(1 17%mzm,1
X(an) '(6,) —hX ~ N(x(1— 88)m, % +h?). Therefore

Py (x,y) = q(xy,1(m,8),0%(m,6,h)), (11)
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(1-42)°m-1

2
882 +he.

wherea?(m,6,h) =

Proposition 1. (Density conditions forp} (x,y)) pj(x,y) satisfies the hypotheses
(H1), (H5) and (H5).

The proof follows directly from Lemma 10 in Appendix. In fagt the OU pro-
_ 8B — 1
cess case, we can tag = - if 0 < 2aA <In2, andg; = AT where

C(0,4,a) is given in Lemma 10.

3.2 About Assumption (A) (1)~(5)

In this section, we will consider Assumption (A) €{5) for the OU process and
its Euler-Maruyama approximation. Assumption (A) (6) vk discussed in the
following sections.

Proposition 2. The OU process satisfies Assumption (A) (1).

Proof. From Proposition 3 in pp.115 of Doukhan [5], we obtain tha DU
process has the geometrically strong mixing property. Thep@cess satisfies As-
sumption (A) (1).0

Once we take a prior distributiom(6) as the uniform distribution 0®. It satis-
fies Assumption (A) (2).

Setpg(x) := \/gexp(—exz).

Lemma 1. tg(x) is the probability density function of the invariant meastor the
OU process (7).

Proposition 3. The OU process and its Euler-Maruyama approximation sas-
sumption (A) (3).

Proof. From the expression (9) of the transition density

Pe(Y;2) = Pa(¥,ZS,S+4)

of the OU process, and also, from the assumption of the ké¢nglg(y,z) and
52‘ (x,y) clearly satisfy Assumption (A) (3), that is, it is continigoim x,y and twice
continuously differentiable i 1 . And from Lemma 1, the OU process satisfies
Assumption (A) (3)O

Now we consider the identifiability condition fgrin Assumption (A) (4).

Proposition 4. The OU process satisfies Assumption (A) (4) for p.

1 Note that the solutioDK(Xm) (0) is twice continuously differentiable if, since from the definition

of the Euler-Maruyama approximation, the OU process is polyabmif and the kerneK(x) is
infinitely differentiable inx.
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Proof. First note that the identifiability condition fqris equivalent to

2
o> | (elgg /|p9 o ggo”>'dy) Hay (x> [ c(x)%}1g, ()l > 0.

By using the fundamental theorem of calculus and changirighlas; set

B=a6+(1—a)6p,

we have

dy>2ueo( x)dx

o >/(|nf '/ 96 Pa6+(1-a)8, (X Y)dQ
> /c(x) Mg, (X)dx > 0.

The integrability (upper estimation) is easily obtain@sis a normal density
function. That is, se®’ = argmax.g|Jde Pe(x,Y)|, then from (8) and using the in-
equalities(a+b)? < 2(a? + b?) and 2ab| < (a2 +b?),

2
/ (égf@/ ./Oldepaeﬂlfa)@o(xa)/)da dy) e, (X)dX
Y P aaye, %)
<2 [ [ =t
X <Mf+l6(t— 9)2(|y|*+ x4 + (y:%+ ) f) dadypg, (x)dx < co.

Here®’ = a6+ (1—a)6p andEg, [X2] = (4kT!)k' Therefore the above is finite.
Now pg,(x) > O for all x € R. Therefore it is enough to prove that

1
522_/|_/0 96 Pa6+(1-a)8, (X y)da|dy > 0,

for all x € R. We use proof by contradiction. We assume that

1
int [1 [ 96Pao 1 aa(xy)daridy=0

This is equivalent that for ak € R, there exists som&* = 6*(x) such that

1
/‘/0 99 Pa 6 +(1-a)6, (X Y)da |dy = 0.

Then for allx € R, there exists somé* = 6*(x) such that for ally € R,
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1
‘/0 9o Pao+(1-a)g (X Y)da| =

This means that for at € R, there exists som@* = 6*(x) such that for aly € R,
Pe+ (X,y) = Pg,(X,y). As both density functions are Gaussian then the point where
the maximum is taken has to be the same. Therefore the meaesvate equal.
Similarly if we takey equal to the common mean we obtain that the variances have
to be equal. Then analyzing the variance function, we haaeittis decreasing in
0, thereforef* = 6y. O

And by using the similar argument, we obtain the identifiapdondition for pN.
Proposition 5. The Euler-Maruyama approximation of the OU process satigie
sumption (A) (4) fopN.

Proof. SetB := [{infginfy f%dy}zueo( x)dx e (0,+0). As before,

it is easy to prove3 < +oo.
Here we also use proof by contradictionBf= 0, then from the assumption of

supue (X) = R, we have, for alk € R, |nf9|anf‘p9T2$dy_0 Then for

all x € R, there exists some sequertée= 6,(X) such that

AN X, _nN X,
i inf | P, (X%.Y) = Pg, (X.Y)]
e N 60— 6o

dy=0.

And also, for allx € R, there exists some sequerti;e= 6,(x) such that there exists

~Nn _ ANn _
some sequendd, = Np(X, 6,) such that lim_. [ Wdy: 0.

By using the mean-value theorem, we consider the following;

im [ ‘ / 0Pl 1_ayg, (< Y)dar| dy=0.
Then we obtain our conclusion. '
Note that from Lemma 1, we ha&X2¥] = (fé';ﬂ'k ., and from (8), we have

E )] <a ((Hz)_zm>k+e—k>. (12)

Proposition 6. For the OU process and its Euler-Maruyama approximatios, first
regularity conditions (1) of Assumption (A) (5) hold.

Proof. Using (12), we obtain
sup//(ln Po(¥:2))™ Pey (¥:2) e (y)dydz

0cO -
(Xa(60) —Xo<eo>e‘9A>2> ]

6o ZUAZ(G)

= SupE [(—; log (2r03(0)) —
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< C{suploglz (27.[%2(9)) + supajz“(e) [XA(QO)Z“—&—XO( )24 248A}} < 00,
6co 6co

(13)

Now 07 (8) = 55(1— e 2%4). Note thato3(6) > 55(1—e2%4) > 0 and also

02(-) € C([a,B]). Furthermore lem(8) = e %2, Note thatm(-) € CZ([a, B]).
Then by using similar arguments as in the above calculatiesobtain (1), for
0e = pPg andi = 1,2. We can also obtain our integrabilities fqy = pg.

Therefore, aQZ(Xr‘Tf)l)(Q, -) has the densitp}j(x,y) aty (see (11)) then

(1) (1-88)m—1 ‘ oA\ *m
E[\xml (e,.)|2'<} <Ck(<9(g1_2)+h2 + x (1—m> .

From Lemma 10 in Section 4.1, (12) and as (13), we have

supsup / / (109 B3 (%:2)) 2 pay (¥, 2) ey (y)dydz

12
1
< Csupsu log| —m—
h Npee£{< g( 2n02(m,9,h)>)

E[Xa (60)%] + E[Xo(60)**)u(m, 9)24} < 4o,

/
+C 212g24(m, 6, h)

And fori = 1,2, as in the above, we obtain (1) fqs = 5’5‘. Then we obtain our
conclusions

Now we check the second condition of the regularity of thedegsity (Assump-
tion (A) (5)).
Proposition 7. For the OU process and its Euler-Maruyama approximatiorg th
second regularity conditions (2) of Assumption (A) (5) hold

Proof. Forgqg = pg, we have
04
z—ye %)
// (—Iog 2mo; (0 ))—( 207(0) )630(y,2)ueo(y)dydz

a2(m, 69, h) + (260) * ((m, Bp) — e~ 04)?
20;(6) '

= —%Iog (2no;(0)) —

Therefore the result follows becausg(8) is twice continuously differentiable and
the above quantities are uniformly boundedhrin
Next we will check equation (2) fayg = 5’5‘, Then as before,

(y—xp(m,6))?
//{Iog( 2n02(m - h)) a2 o) }ﬁe“ow,z)ueo(y)dydz
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2mo?(m,6,h) ] 2

Therefore the property follows as in the previous case.
Next we consider the third regularity condition of Assuropt(A) (5).

Proposition 8. For the OU process and its Euler-Maruyama approximatiorg th
third regularity conditions (3) of Assumption (A) (5) hold.

Proof.Fori = 0,1, we have

5 | Z ye~ GA
// Eﬁlog (2ro5(0)) — 36 202(0) P, (¥ 2) g, (y)dydz

N ;;@ll og (203 (6)) — (aa;, 2021(9)> E [(x(_)“r; (6,-) — Xo&~ ea)z]

Elgr (X (80.1) — Xoe #4)7
ZUA(Q)

If we expand the last expectation in the above expressiciear that

s (K800 20| e [ (K @ )]

And therefore the last property of Assumption (A) (5) follfergg = pg. A similar
proof also applies in the casg = ﬁg‘. O

3.3 Assumption (A) (6)

3.3.1 Parameter Tuning of Assumption (A) (6)-(a)
If we choose (< ¢; < a, the moment hypothesis §if) in Section 2.3,
E[ecl‘Yl‘z} < oo,

is satisfied sinc&i has a normal distribution. Furthermore ag= \/c2InN with
c1 > % then condition(ii) is satisfied.

From the explicit expression (10) of the OU process, we haeefollowing
derivatives of the Euler-Maruyama approximation of the Qbicess.

AX(0) = (1— 8AD)™, (14)
m-2

o X[fy) (8) = —mxAt(1— 6AH)™ ! — At Z)(m_ 1-DAW(1— 6At)™ 2,
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06 0xX(iy (8) = —mAt(1—6AH)™
95X (5 (6) = m(m—1)At*(1— 6A)™ 2
m-3

+At? _Z)(m— 1—i)(m—2—i)AW (1—6at)™ 3

Lemma 2. Forany je N,

j
xd—(l— oAt)™

FTl < +oo,

sup  sup ay’
m>jV(64) (x,8)eBN

Proof. From the definition oBN, it is clear that SUR 6)cBN aytx < 1.
Next, we have

ij(lfem)m = (fl)jl(lf1)~~~(17E)Aj(179At)m‘j
00i m m
. m- |
<A (1—9A> )
m

Sety = — 4. Foranymandj so thatm> j v (84), we have
. 6A(m—j)
m—] YY" m m—j
(1_ ‘M) _ {(1+1) } <e ™ <1, (15)
m y

where we use Lemma 9. Hence we obtain our conclusion.
For some differentiable functiom 6,t), setU (8) := /& h(8,s)dWs. Then

Lemma 3. We assume that there exists some positive constant @hich depends
onA, such thatzjlzosupgg[a_m |0L9'Jh(6,t)\ < C(A). Then, for p= N, we have
te[0.4]

E l sup U(9)|2P] <C(2)?*AP(1+(B —a>2P>(2—'?>!.
6<(a,p] p!

Proof. Note thatU (6) =U (a) +f0?U’(p)dp a.s. From the Eider’s inequality
and Fubini’s theorem, we have

E[ sup U(B)ZP]

oc(ap]

<2 (E[UE@P]+B-a ["E V). o
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Now note thatJ (8) andU’(8) have normal distribution with mean 0 and variance
ij h(8,s)?dsand foA(a"—eh(e,s))zds each other. Then from moment properties of
Gaussian distribution. We have that

p

EUUWNR]:<AAMGg¥d§ 20! < (cayay 2,
A 2 p

o - ([ o) o) By <coror 2y

Finally we have(16) < (C(4)%4)" (Zpﬁ’)! (1+ (B — a)?P). Hence we obtain our con-
clusion.O _
We note thaty ™ AW (1 — 0A)™ 11 = [ hyy(8,5)dW, where

hm(6,t) = (1— 6At)™ 11,

fort € [t;,ti11) andi = 0,1,---,m— 1. Also we have

:—ehm(e,t) = (m—1—i)(—At)(1— 6At)™ 2,

fort € [ti,tiy1), 1 =0,1,---,m—2 and=0 fort € [ty_1,tm], i = m— 1. Note that
from (15), we have, fom> 6A,

mﬁams1am]ahaaﬂSA

oo

Next we consider that

m-2 ) A

> At(m- 1AW (- oAt)™ 2 :/ hY (6, s)dW,
i= 0

where

hd (0,t) = At(m—1—i)(1—0At)™ 27 fort € [ti,tis1), i =0,1,---,m—2,
maAs =0, fort € [tm-1,tm].

And also we have

P —At2(m—1—i)(m—2—i)(1—8At)™ 3,
%hﬁﬁ)(e,t) = fort e [t,ti11),1i=0,1,---.m—3,
=0, fort € [tm-2,tm|.

Then as before, from (15), we have, for> 6A,

h(8,t) <4 and ’(fehﬁ%’(e,t)’ <42
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As above, we consider

m-3

20 At?(m—1—i)(m—2—)AW(1—0At)™ 3" = /OA h2)(0,s)dW,

where

forte [ti7ti+1)a [ 20717"'am_37

@ At(m—1—i)(m—2-i)(1-6A)™ >,
(6,t) =
{ =0, fort € [tm_2,tm].

And also we have

—At3(M—1—i)(m—2—i)(m—3—i)(1—8At)™ 41
%hm( t) = fort € [ti,tir1), i =0,1,---,m—4,
=0, fort € [tm_3,tm).

Then as before, from (15), we have, for> 64,

Ih2(6,t)] <A? and ‘hm et)‘gﬁ.

Lemma 4. For Hy(0,t) = hm(0,t), h,(%)(e,t), hﬁﬁ)(e,t), we have, for E N,

[

Proof. From the calculations before the lemma, we have foundHhpsatisfies
the assumption of Lemma 3 as we t&k@ ) = 1V A%. Then we apply Lemma 3.

sup / Hm(
o<la.B]

The right hand side does not dependmnanThen we take sup with respectrioc N
for the left hand side and we have our conclusion.

From the above lemmas and the explicit formulas (14), weiolke following
two results.

< +o00.

meN 0<la.pB]

SUpE [ sup

] <c@?ara+(p-ay®) 2.

Lemma 5. For all p > 1 and ke N, we have
p
%K)/ g.
Vi <9")‘>

1(8;00) = X (6;0), 3 XN (8; ), 00X (6; ), 9p X (6; ),

<+,

SupE [(a,\,l sup
(

NeN x,0)eBN

for V<m>

92X (8; ).
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Proposition 9. (Moment conditions dffii), (iv), (vi), (viii) and(ix) in Section 2.3)
For all p > 1, we havesupycn E[|Tn(+)[P] < oo, for Ty(w) = Zan(w), Zan(w),
ZiN(w), Zsn(W).

- From the above result, we obtain enough integrability Zgg (w), Zan(w),
Z4N(w), Zsn(w). Therefore, we can takes, fg,Ge big enough so as (5) and (6)
are satisfied.

Proposition 10. (Parameter conditions of (5) and (6))df, > 8a>+ 1+ 2¢A2°2, then
there exist somesrfg, Us, ¥3, V6 Such that (5) and (6) are satisfied.

3.3.2 Parameter Tuning of Assumption (A) (6)-(b)

In this section, we consider the parameter tun{by of Assumption (A) (6).
_(zyw?
Setq(y,z u,02) = \/27117(3 202" Then we can denotpg,(y,2) and py (v,2) as

a(y, z Ha(60), 03(6o)) andq(y, z, (m, 6p), a?(m, 6, h)) each other, where

Ha (6o) = e %4,

Then applying the mean value theorem and Lemma 8, we obtain
[Py (¥:2) — Py, (¥ 2)]
< |1a(60) — p(m, 90)|/01 |91 (¥: 2 YHa (60) + (1 y) (M, 60), 03 (60)) | dy
+|03(60) — g?(m, 6o, h)|
X /Ol|z902q(y,z,u(m7 60), Y04 (60) + (1—y)a?(m, 6,h)) | dy
<Cla..8) % [10,0(02 yin(B) + (1 Yu(m &) GF(@)|dy  (7)
+C(a,B,4) <§]+h2>
x f\dazq(y,z,u(m 60). Y07 (60) + (1 Y)o*(m, 6o,h)) | dy.
Next we consider derivatives gfwith respect tqu, 2. Assume that
0 < Umin < U < phmax and 0< 02, < 02 < 024

From Lemma 6, we have, far> 1,

_ IyZ+ Y2 2 (c- 1><umaxy>2>

|0ua(y, 1, 0°)| L expf -
o B O-r%in 1/27'[02. 2ar%ax
min
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and

2
|0,20(y. 2 1, 0%)| < {1 1 +4(22+y2umax) 1 }

2. )2
20 \/ 2Tro—r%in Z(Gmin) \/ ZITG%m

Xexp<_c-clz2< 1) (Hmay) )

zamax

Next for 0< y < 1, we have

YHA(60) + (1— y)p(m, Bp) < ye~ %2 1 (1 y)e=®A < g%

and
1
ﬁu—e*‘”) < yo3(6o) + (1—y)a?(m, 6o, h)
1 —2BA
< —(1—
720[(1 e P8y rCckA,a)+1,

where the constar@(k,A, a) is a constant which is defined in (18). Therefore we
take as follows;

_ 1 _
Hmax = € eoA’ Gr%inzi(l_e 201A)7

2p
1
0Py = o (1—e*2‘m> +C(kA,a)+1.

Then we have

(17) < C(a, B.4)—— {'yz'”z“max ! 22+y2umax>}

+ +
2 2 2
/2710[% R o, 20, 2(o,

min min mm)

oo (_ Cclz2—(20mai(umaxy) ) ( +h2>

Then we need the following parameter tuning conditi@hyr h2) VN < C, whereC
is a constant. Note that= C,N~ %2 therefore we require that, > % Furthermore,
m > +/N. Finally we check the following integrability condition.

lyZ +y Pmax | 1 | AZ+YUaa
sup sup //'Inp (y,2) { + +
N 6<(a,p] 06 ¢ m|n 2O-r%ln 2(Ur%1|n)2

y exp< 7~ (0~ 1) (Hmay)?

2
Zamax

) ey (y)dydz< +eo.
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Note thatug(y) is the density ofN(O, %) law and that we have the explicit expres-
sion ford"—e In ﬁg‘(y, z), which is a second degree polynomialjiz. As the parame-
ters,0?(m, 8,h) and u(m, 8) satisfy Lemma 10. The above integrability condition
is satisfied.

Finally from the above calculations, we obtain

Proposition 11.In the OU process and its Euler-Maruyama approximation ¢ase
for a, > 3 and n(N) > /N, Assumption (A) (6)-(b) holds.

3.3.3 Parameter Tuning of Assumption (A) (6)-(c)

Now we consider the parameter tunif@) of Assumption (A) (6). Note that in order
to verify this condition, we can concretely calcul@g In pi (y,2) — 2 In pa(y, 2)|.
From this difference we need to analyze separately each daedruse Lemma 8
together with Lemma 10. Then we have some polynomial fungitfy, z) = g(y, 2)
with respect tg, z, Assumption (A) (6)c) is satisfied. In particular, No andY; have
a normal distribution, it is clear that the integrabilitynctition E[|g(Yo, Y1)[*] < +oo

is satisfied. Then we have

Proposition 12.1n the OU process and its Euler-Maruyama approximation case
Assumption (A) (6)-(c) holds.
Recall® =[a,B] (0<a < B <2),n=CiN%, h=C;N"? and

inf pl(xy) > (c\/20+AN%)*1,
(x,0)eBN

whereBN = {(x,y,0); |(x,y)| < v/c2InN}. And we take a prior density function
so thatrr(6) > 0 on©® and a kernel functioi as the Gaussian kernel. Finally, we
obtain the following theorem for the OU process and its EMaruyama approxi-
mation.

Theorem 3.Assumer; > 8ay + 1+ 4¢A2C2, ap > 3 and m> /N. Then there exist

some positive finite random variabl&s and =» such that for fe Cl(@), we have

|EN[f]—f(60)|§% as and |E,{‘,7m[f}—f(90)|§% as.,

and therefor%EN[f} —Eﬂ,m[f]‘ < E?N_:Z a.s.
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4 Appendix
. 0/ (1 oA )Zm 1
4.1 Study of the function (1—=2)™ and _G'U—)

Here we give some lemmas which are used in the parametegtsaations.
Lemma 6. For ¢ > 1, we have

() (x+y)? < &+ e,

(ii). 2+ (c—1y? < (x—y)2
The proofs are based on Young's lemma.

Lemma 7. For m> 2BA, we have(1— %4)M_ e=04| < g=04(BA)2 L

After simple calculations, we can obtain this lemma. Froms liBmma, we obtain

Lemma 8. For k= 0,1 and m> 23A, we have the following estimations;
. k

(). |7 (02(6) — 0?(m,8,h))| < C(a,B,A){ 5 +h?1(k=0)},

- k

(ii). |75 (€% — u(m 8))| <C(a,B,4) 7,

where Ga, 3,4) is some positive constant.

BA\M _ 64
Lemma 9. For m> BA, we have(1— 22)" < e 04,

Proof. Setf (x) = (1+ 1)*. Thenf (x) is an increasing function foreo < x < —1
and lim,_ f(X) = e The proof follows O

Lemma 10.We have the following: For & NU {0},
oK o oA
IJ(mﬁ)‘ = sup  sup|oa(l-—)"
06k mzmax(l?(,BA)eee 06k m

< (28)43%P8 < foo,

(). sup  sup
m>max ¥ ga) 0€O

k

(i). sup  sup sup a—kaz(m,e,h)
Oﬁhﬁlmzmax(g,BA)eE@ 20
6
0k ( _ﬁA)Zm_l

= sup sup  sup|—=—
Oghglmme(gﬁA)BEG
<C(kA,a)+1< 4o,

(iii). _inf inf inf |o(m, 6,h)|
0<h<1m>max( Ba) 6o

RS A———— P
96 g8z k)

: : o (1-84)am_q 2(1—e 204
= inf inf inf %Jrh2 >Ae ™) o,
0<h<im>maxk,84)6<@ 6(m -2 3B

where some positive constantiCA, a) is defined in the proof.
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Proof. Now p(m, 8) = (1— 94)™ and seD = 2. Note that from Lemma 9,
we have 0< u(m, 8) < e 94 <supje 94 =g 94 Note that

DXu(m, 8) = (2m)(2m—1)---(2m— (k— 1)) (1_ enf)zm_ <_A>k.

Then

D™ u(m. 6)
—(k+1) k+1
— (2m)(2m—1)---(2m— (k—1))(2m—K) (L?ﬁ) <_A) .

And for 2m > k, we have

k
supsupDlyu(m, 6) < sup{ ) 1+ M)?'"-k} < (20)g.
m 6 m mk m

Hence we obtaiffi).

Remember that?(m, 8) = 9(;122) From the Leibnitz’s formula, we have
ID§a?(m. )|
k _ .
<'S Cyisupsup|Dy ((m, 6)?)| supsup| DY + supsup| D5 ————| .
i;) isu 9| o (H( ))|m o | © 9(%_) o 99(%_2)

From the above and the Leibnitz's formula, we haveifer 0,1, --- k, from the

binomial theorem,
o/
1_7 2m—i ( )
2 \
i .
< plg 98 (') < oo,
2\

And for alli =0,1,---,k, we have, from the binomial theorem,

supsup|Dy (1 (m, 8)%)| < supsup|A
m 6 m 6

supsup| Dl
m 6

— <
6(2-2)
Then we have

sup sup ’D'éoz(m,e)’
m Ge[a Bl

<chk {Ae MJZK )}{Zock IJaLl(kz—kil—Jj)!}



24 Arturo Kohatsu-Higa, Nicolas Vayatis and Kazuhiro Yasuda

_' |
+Z)ija]+l = J) =:C(k,A,q) < 0. (18)

Therefore we obtaifi) .
Finally form> BA, we have

o%(m,8) > ﬂ _2 (1—e*29A) > 2 (1—e*2"A) > 0.

6(2—5) 30 3p
We obtain(ii).
Here form> BA, 0< (1— %A)m <e 9 <9 Andform> BA,
~ 0
2(1—e24) < (1—%)2m—1§ 1
3B 8(% -2 a(2—pB)

Therefore we obtaifiv) and finish the proof
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