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Abstract In the accompanying paper Kohatsu-Higa et al. [9], we have introduced a
theoretical study of the consistency of a computational intensive parameter estima-
tion method for Markovian models. This method could be considered as an approx-
imate Bayesian estimator method or a filtering problem approximated using particle
methods. We showed in [9] that under certain conditions which explicitly relate the
number of data, the amount of simulations and the size of the kernel window, one
obtains the rate of convergence of the method. In this first study, the conditions do
not seem easy to verify and for this reason, we show in this paper how to verify
these conditions in the toy example of the Ornstein-Uhlenbeck processes. We hope
that this article will help the reader understand the theoretical background of our
previous studies and how to interpret the required hypotheses.

1 Introduction

One method to estimate parameters in a Markovian model is to use a filtering
method (also known as the Bayesian method). In such a framework the estima-
tion is carried out using a least-square principle which leads to the calculation of the
conditional expectation of the unknownn density given the available data.
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This expression is somehow theoretical, so one option is to use simulation to ap-
proximate the value of the unknownn transition density if some theoretical model is
proposed. This simulation procedure requires the choice ofa variety of parameters.
The procedure of choosing these parameters “correctly” is called tuning.

Recently, many computational statisticians have successfully proposed and stud-
ied several algorithms related with this idea, for example,using the Markov Chain
Monte-Carlo method (Roberts et al. [10]) between others. Many papers have con-
firmed the rate of convergence of the proposed method to the desired value using
numerical experiments, but usually no mathematical proof is provided. In an ac-
companying paper [9], we adopt a particle method (details and other comments
about this method can be found in Bain et al. [2]) to approximate the conditional
expectation and study theoretically the rate of convergence and the proper tuning
needed. This kind of filtering problem under discrete observations were studied by
Del Moral et al. [4]. They prove weak consistency andL2-convergence. After that,
Cano et al. [3] studied the convergence of an approximated posterior distribution,
which used the Euler-Maruyama approximation for stochastic differential equations
(SDE). Kohatsu-Higa et al. [9], gives the rate of convergence of the approximated
Bayesian estimator. In that set-up, the transition densityfunction of an observation
process is usually unknown, so that one approximates it by using the kernel density
estimation method (KDE). As mentioned before, we remark that there are several
new algorithms, which may work well on applications, but ourobjective was to
provide a theoretical mathematical framework therefore wechoose the most basic
method available within particle methods. Our method of analysis uses the Laplace
method to obtain the rate of convergence 1/

√
N, whereN is a number of data under

a strong hypothesis of convergence rate for the approximating average of likelihoods
(see Assumption (A) (6)-(a)).

In the second part of Kohatsu-Higa et al. [9], we gave an explicit relationship be-
tween number of data and approximation parameters, as to ensure that Assumption
(A) (6)-(a) is satisfied. Here we have three approximation parameters: (i). the first
one is used to approximate the theoretical stochastic processes, (ii). the second one
is to express the number of the Monte-Carlo simulations usedfor the approximating
process, (iii). the last one is a bandwidth size of the KDE. Weconnect these three
approximation parameters and the number of data. We believethat our study is the
first that provides an explicit theoretical relationship between these parameters in
order to achieve a certain rate of convergence. It also showswhy a bad choice of
tunning parameters may lead to unreliable estimation results.

Assumption (A) below states the needed hypothesis in order to achieve the rate
of convergence announced previously. These hypotheses arenot necessarily easy to
understand/interpret. The objective of the present article is to consider an easy toy
example where the reader may see how these conditions could be verified and most
importantly what do they mean. In this paper, we consider thefollowing Ornstein-
Uhlenbeck process (OU process) as the parametrized observation process:

dXt = −θXtdt+dWt ,
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whereWt is a Brownian motion andθ is a parameter, which we want to estimate.
Then, we check the assumptions, that give the strong consistency and the conver-
gence rate. Clearly this is a toy example as many elements canbe directly computed
and there is no need to use simulations. Furthermore in that setting many other com-
peting statistical methods exist (see e.g. [1], [6], [7], [8], [11]).

We would like to emphasize again, that the main objective here is to show that the
general theory is applicable to a basic example. Clearly, there are still open problems
to be considered and in particular, how to apply the results in other examples. We
hope that with this article, the reader may understand when amodel satisfies the
assumptions although verifying them may still require a long procedure.

This paper is constructed as follows: In Section 2, we give the general theorem
and the assumptions of Kohatsu-Higa et al. [9]. In Section 3,we check the assump-
tions with respect to the OU process. and the Euler-Maruyamaapproximation of the
OU process. Finally in Section 4, we give some properties themean and variance of
the OU process and its Euler-Maruyama approximation.

2 Framework and General Theorem

2.1 Framework

In this article, we consider the following problem: Letθ0 ∈Θ := [θ l ,θ u], (θ l < θ u)
be a parameter that we want to estimateθ0 ∈ Θ̇ , whereΘ̇ denotes the interior
of the setΘ andΘ0 = Θ − {θ0}. Let (Ω ,F ,Pθ0), (Ω̄ ,F̄ , P̄) and (Ω̂ ,F̂ , P̂) be
three probability spaces, where the probability measurePθ0 is parametrized byθ0.
∆ > 0 is a fixed parameter that represents the time between observations. The ob-
served Markov chain is defined on the probability space(Ω ,F ,Pθ0). The theoret-
ical Markov chain (with lawPθ ) and its approximation are defined on(Ω̄ ,F̄ , P̄).
Finally, simulations are defined on(Ω̂ ,F̂ , P̂), which will be used in estimating the
transition density of the theoretical Markov chain.

(i). (Observation process)Let{Yi∆}i=0,1,···,N be a sequence ofN+1-observations of
a Markov chain having transition densitypθ0(y,z), y,z∈R and invariant measure
µθ0. This sequence is defined on the probability space(Ω ,F ,Pθ0). We write
Yi := Yi∆ for i = 0,1, · · · ,N.

(ii). (Model process)Denote byXy(θ) a random variable defined on the probability
space(Ω̄ ,F̄ , P̄) such that its law is given bypθ (y,z).

(iii). Denote by(Ω̂ ,F̂ , P̂) the probability space where one generates the simulation
of the approximation to the processXy.

(iv). (Approximating process)Denote byXy
(m)

(θ) the approximation toXy(θ), which

is defined on(Ω̄ ,F̄ , P̄). m= m(N) is the parameter that determines the quality
of the approximation. Denote by ˜pN

θ (y,z) = p̃N
θ (y,z;m(N)) the transition density

for the processXy
(m)

(θ).
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(v). (Approximated transition density) Let K ∈C2(R;R+) (usually called kernel),
which satisfies

∫

K(x)dx= 1. Denote by ˆpN
θ (y,z), the kernel density estimate of

p̃N
θ (y,z) based onn≡ n(N) simulated i.i.d. copies ofXy

(m)
(θ) which are defined

on (Ω̂ ,F̂ , P̂) and denoted byXy,(k)
(m)

(θ , ·), k = 1, · · · ,n; for h≡ h(N) > 0,

p̂N
θ (y,z) :=

1
n(N)h(N)

n(N)

∑
k=1

K





Xy,(k)
(m(N))

(θ , ω̂)−z

h(N)



 .

(vi). For givenm, we introduce the “average” approximated transition density over all
trajectories with respect to the kernelK;

p̄N
θ (y,z) := p̄N

θ (y,z;m(N),h(N)) := Ê
[

p̂N
θ (y,z)

]

,

whereÊ means the expectation with respect toP̂.

As it can be deduced from the above set-up, we have preferred to state our prob-
lem in abstract terms without explicitly defining the dynamics that generateXy(θ)
or how the approximationXy

(m)
(θ) is defined. All the properties that will be required

for pθ and p̃N
θ will be satisfied for an appropriate subclass of diffusion processes.

Our objective in this article is to show that OU processes arein this class.

Remark 1.Without loss of generality, we can consider the product of the above three
probability spaces so that all random variables are defined on the same probability
space. We do this without any further mentioning.

Our purpose is to estimate the posterior expectation for some function f ∈C1(Θ)
given the data;

EN[ f ] := Eθ [ f |Y0, · · · ,YN] :=

∫

f (θ)φθ (YN
0 )π(θ)dθ

∫

φθ (YN
0 )π(θ)dθ

,

whereφθ (YN
0 ) = φθ (Y0, · · · ,YN) = µθ (Y0)∏N

j=1 pθ (Yj−1,Yj) is the joint density of
(Y0,Y1, · · · ,YN).

We propose to estimate this quantity on the basis of simulated instances of the
process;

Ên
N,m[ f ] :=

∫

f (θ)φ̂N
θ (YN

0 )π(θ)dθ
∫

φ̂N
θ (YN

0 )π(θ)dθ
,

whereφ̂N
θ (YN

0 ) := µθ (Y0)∏N
j=1 p̂N

θ (Yj−1,Yj).

2.2 General Theorem of Kohatsu-Higa et al. [9]

Assumption (A): We assume the following
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(1). (Observation process){Yi}i=0,1,···,N is anα-mixing process withαn = O(n−5).
(2). (The prior distribution) The prior distributionπ ∈ C(Θ), and for allθ ∈ Θ ,

π(θ) > 0.
(3). (Density regularity) The transition densitiesp, p̄N ∈C2,0,0(Θ ×R2;R+), and for

all θ ∈Θ , y,z∈ R, we have that min
{

pθ (y,z), p̄N
θ (y,z)

}

> 0. And pθ admits an

invariant measureµ ∈C0,0
b (Θ ×R;R+), and for allθ ∈ Θ , µθ (y) > 0 for every

y∈ R.
(4). (Identifiability) Assume that there existc1, c2 : R → (0,∞) such that for all

θ ∈Θ ,

inf
N

∫

|qi
θ (y,z)−qi

θ0
(y,z)|dz≥ ci(y)|θ −θ0|,

andCi(θ0) :=
∫

ci(y)2µθ0(y)dy∈ (0,+∞) for i = 1,2 andq1
θ = pθ andq2

θ = p̄N
θ .

(5). (Regularity of the log-density)We assume forqθ = pθ ,p̄N
θ ,

sup
N

sup
θ∈Θ

∫ ∫

(

∂ i

∂θ i lnqθ (y,z)

)12

pθ0(y,z)µθ0(y)dydz< +∞, f or i = 0,1,2, (1)

sup
N

sup
θ∈Θ

∣

∣

∣

∣

∂ 2

∂θ 2

∫ ∫

(lnqθ (y,z)) p̄N
θ0

(y,z)µθ0(y)dydz

∣

∣

∣

∣

< +∞, (2)

sup
N

sup
θ∈Θ

∫ ∫

∣

∣

∣

∣

∂ i

∂θ i lnqθ (y,z)

∣

∣

∣

∣

p̄N
θ0

(y,z)µθ0(y)dydz< +∞, f or i = 0,1, (3)

where ∂ 0

∂θ0 qθ = qθ .
(6). (Parameter tuning)

(a). We assume the following boundedness;

sup
N

sup
θ∈Θ

∣

∣

∣

∣

∣

1√
N

N−1

∑
i=0

(

∂
∂θ

ln p̂N
θ (Yi ,Yi+1)−

∂
∂θ

ln p̄N
θ (Yi ,Yi+1)

)

∣

∣

∣

∣

∣

< +∞, a.s. (4)

(b). Assume that for eachy,z∈ R, there exist functionsCN
1 (y,z) andc1(y,z) such

that |pθ0(y,z)− p̄N
θ0

(y,z)| ≤ CN
1 (y,z)a1(N), where supNCN

1 (y,z) < +∞ and

a1(N) → 0 asN → ∞, andCN
1 (y,z)a1(N)

√
N < c1(y,z), wherec1 satisfies;

supN supθ∈Θ
∫ ∫ | ∂

∂θ ln p̄N
θ (y,z)|c1(y,z)µθ0(y)dydz< +∞.

(c). There exist some functiongN : R2 → R and constanta2(N), which depends
onN, such that for ally,z∈ R,

sup
θ∈Θ

∣

∣

∣

∣

∂
∂θ

ln p̄N
θ (y,z)− ∂

∂θ
ln pθ (y,z)

∣

∣

∣

∣

≤ |gN(y,z)|a2(N),

where supN Eθ0[|gN(Y0,Y1)|4] < +∞ anda2(N) → 0 asN → ∞.

Now we state the main result of the paper.
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Theorem 1. (Kohatsu-Higa et al. [9]) Under Assumption (A), there exists some pos-
itive finite random variablesΞ1 andΞ2 such that

|EN[ f ]− f (θ0)| ≤
Ξ1√

N
a.s., and

∣

∣Ên
N,m[ f ]− f (θ0)

∣

∣≤ Ξ2√
N

a.s.,

and therefore|EN[ f ]− Ên
N,m[ f ]| ≤ Ξ1+Ξ2√

N
a.s.

2.3 Parameter Tuning for Assumption (A) (6)-(a)

All the conditions in Assumption (A) will be directly verified with the exception of
Assumption (A) (6)-(a) which requires a special treatment.This section is devoted to
show that Assumption (A) (6)-(a) is satisfied under sufficient smoothness hypothesis
on the random variables and processes that appear in the problem as well as a certain
parameter tuning. We recall that the objective is to find conditions that assure that
Assumption (A) (6)-(a) in Section 2.2 is satisfied.

Now m≡ m(N), n≡ n(N) andh≡ h(N) are parameters that depend onN. n is
the number of Monte Carlo simulations used in order to estimate the density and

m is the generated random numbers used in the simulation ofXy,(1)
(m)

(θ , ·) andh is
the window associated to the kernel density estimation method. In this sense we
will always think of hypotheses in terms ofN although we will drop them from
the notation and just usem,n andh. The goal of this section is to prove that under
certain hypotheses, there is a choice ofm,n andh that ensures that condition (4) is
satisfied.

We work in this section under the following hypotheses:

(H1). Assume that there exist some positive constantsϕ1,ϕ2, whereϕ1 is indepen-
dent of N and ϕ2 is independent ofN and ∆ , such that the following holds;

inf(x,θ)∈BN p̄N
θ (x,y) ≥ ϕ1exp(−ϕ2a2

N
∆ ), where sequences of a numberaN and a set

BN are defined by(ii) below.
(H2). Assume that the kernelK is the Gaussian kernel;K(z) := 1√

2π exp
(

−1
2z2
)

.
(H5). Assume that there exists some positive constantC5 > 0 such that

|∂x p̄N
θ (x,y)|, |∂yp̄N

θ (x,y)|, |∂θ p̄N
θ (x,y)| ≤C5 < +∞,

for all x,y∈ R, m∈ N andθ ∈Θ .
(H5’). Assume that there exists some positive constantĊ5 > 0 such that

|∂x∂θ p̄N
θ (x,y)|, |∂y∂θ p̄N

θ (x,y)|, |∂ 2
θ p̄N

θ (x,y)| ≤ Ċ5 < +∞,

for all x,y∈ R, m∈ N andθ ∈Θ .
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Remark 2.We use the same hypothesis numbering as in Kohatsu-Higa et al. [9] for
easy reference. Some of the intermediate hypotheses do not appear here. For the
detailed explanations we refer to Kohatsu-Higa et al. [9].

We need to find now a sequence of values forn andh such that all the hypothesis
in the previous Theorem are satisfied and that the upper boundis uniformly bounded
in N. Now, we rewrite the needed conditions that are related to the parametersn and
h. We assume stronger hypothesis that may help us understand better the existence
of the right choice of parametersn andh.

The proof of Assumption (A) (6)-(a) uses a series of Borel-Cantelli lemmas for
which we need the following hypotheses. We will assume the existence of some
sequences of strictly positive numbers which we assume wlogthat are bigger than
1.

(ii). (Borel-Cantelli forYi)
mc1 := E[ec1|Y1|2] < +∞ for some constantc1 > 0 and{aN}N∈N ⊂ [θ u−θ l ,∞) is
a sequence such that for the samec1,

∞

∑
N=1

N

exp(c1a2
N)

< +∞.

And setBN = {(x,θ) ∈ R2×Θ ; ‖x‖ < aN}, where‖ · ‖ denotes the max-norm.

(iii). (Borel-Cantelli forZ(k)
3,N(ω))

For somer3 > 0 and some sequenceb3,N ≥ 1, N ∈ N, ∑∞
N=1

na
2r3
N

(h2b3,N)r3
< +∞ and

supN∈N E[|Z3,N(·)|r3] < +∞ for each fixedm∈ N, where

Z(k)
3,N (ω) := a−2

N

(

sup
(x,θ)∈BN

|Xx,(k)
(m)

(θ ,ω)|+1

)

sup
(x,θ)∈BN

|∂θ Xx,(k)
(m)

(θ ,ω)|.

(iv). (Borel-Cantelli forZ(k)
4,N(ω))

For somer4 > 0 and some sequenceb4,N ≥ 1, N ∈ N, ∑∞
N=1

n
(b4,N)r4 < +∞ and

supN∈N E[|Z4,N(·)|r4] < +∞ for each fixedm∈ N, where

Z(k)
4,N(ω) := a−1

N

(

sup
(x,θ)∈BN

|∂xX
x,(k)
(m)

(θ ;ω)|+ sup
(x,θ)∈BN

|∂θ Xx,(k)
(m)

(θ ;ω)|
)

.

(vi). (Borel-Cantelli forŻ(k)
4,N (ω))

For some ˙r4 > 0 and some sequenceḃ4,N ≥ 1, N ∈ N, ∑∞
N=1

n
(ḃ4,N)ṙ4

< +∞ and

supN∈N E[|Ż(k)
4,N(·)|ṙ4] < +∞ for each fixedm∈ N, where

Ż(k)
4,N(ω) := a−1

N

(

h sup
(x,θ)∈BN

|∂x∂θ Xx,(k)
(m)

(θ ;ω)|+h sup
(x,θ)∈BN

|∂θ ∂θ Xx,(k)
(m)

(θ ;ω)|
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+(Ż(k)
4,N +1) sup

(x,θ)∈BN
|∂θ Xx,(k)

(m)
(θ ;ω)|

)

.

(viii). (Borel-Cantelli forŻ(k)
6,N(ω))

For some ˙r6 > 0 and some sequence of positive numbersḃ6,N, ∑∞
N=1

n
(ḃ6,N)ṙ6

< +∞

and supN E[|Ż6,N(·)|ṙ6] < +∞ for each fixedm∈ N, where

Ż(k)
6,N(ω) := a−1

N sup
(x,θ)∈BN

{

|∂θ Xx,(k)
(m)

(θ ;ω)|+E[|∂θ Xx,(1)
(m)

(θ ; ·)|]
}

.

(ix). For someα̇6 > 0, q̇6 > 1 andĊ6 > 0, and some positive sequenceηN,

(

ηNh2

(‖K′‖∞ḃ6,N)2aN
exp

(

− (ηN)2

2( ‖K′‖∞
h2 ḃ6,NaN)2

))q̇6

≤ Ċ6

n1+α̇6

and supN∈N E[|Ż6,N(·)|q̇6] < +∞.

SetaN :=
√

c2 lnN for some positive constantc2. Setn = C1Nα1 for α1,C1 > 0

andh = C2N−α2 for α2,C2 > 0. And also setb3,N = C3(Nγ3n)
1
r3 c2 lnN

h2 for γ3 > 1, and

ḃ6,N = (Ċ6nNγ̇6)
1
ṙ6 . Then we obtain the following result.

Theorem 2. (Kohatsu-Higa et al. [9]) Assume that the constants are chosen so as
to satisfy c1 > 2

c2
,

(

4α2 +2
α1 + γ̇6

ṙ6
+

ϕ2c2

∆
+

1
2

+
γ3

r3
+

α1

r3

)

q̇6 > α1, (5)

α1

(

1− 2
r3

− 2
ṙ6

)

> 8α2 +1+
2ϕ2c2

∆
+

2γ3

r3
+2

γ̇6

ṙ6
. (6)

Furthermore, assume that the moment conditions stated in(ii) , (iii) , (iv), (vi), (viii)
and (ix) above are satisfied. If additionally, we assume(H1), (H2), (H5), (H5’) ,
then Assumption (A) (6)-(a) is satisfied.

Furthermore if all other conditions on Assumption (A) are satisfied then there
exist some positive finite random variablesΞ1 andΞ2 such that

|EN[ f ]− f (θ0)| ≤
Ξ1√

N
a.s. and

∣

∣En
N,m[ f ]− f (θ0)

∣

∣≤ Ξ2√
N

a.s.,

and therefore|EN[ f ]−En
N,m[ f ]| ≤ Ξ1+Ξ2√

N
a.s.

Remark 3.(i). In (6), r3 and ˙r6 represent moment conditions on the derivatives of
Xx

(m)(θ), ϕ−1
2 represents the variance ofXx

(m)(θ), ∆ represents the length of the

time interval between observations. Finallyc2 > 2c−1
1 expresses a moment con-

dition onYi . In (5), recall that ˙q6 determines a moment condition onXx
(m)(θ).
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(ii). Roughly speaking, ifr3, ṙ6 andq̇6 are big enough (which implies a conditions on
n), and we chooseα1 > 8α2 +1+ 2ϕ2c2

∆ , m=
√

N, h = C2N−α2 andn = C1Nα1,
then Assumption (A) (6)-(a) and (6)-(b) are satisfied. Then conditions contain
the main tuning requirements. (See Proposition 10)

3 The Ornstein-Uhlenbeck Process

We consider the following Ornstein-Uhlenbeck process; without loss of generality
for θ ∈ [α,β ], where 0< α < β < 2,

dXt = −θXtdt+dWt , X0 = x, (7)

whereWt is a 1-dimensional Brownian motion. Then we can write the solution ex-
plicitly as Xt = Xse−θ(t−s) +

∫ t
s e−θ(t−u)dWu. As it is well known, the OU Process

has the following expectation, variance and covariance: For s< t,

µ(Xs, t −s,θ) := Xsµ(t −s,θ) := E[Xt |Xs] = Xse
−θ(t−s),

σ2
t−s(θ) := Var(Xt |Xs) =

1
2θ

− 1
2θ

e−2θ(t−s),

Cov(Xt ,Xs) :=
1

2θ
e−θ(t−s)− 1

2θ
e−θ(t+s).

From moment results for the normal distribution, moments ofthe OU Process can
also be bounded as follows

E

[

∣

∣

∣Xt −Xse
−θ(t−s)

∣

∣

∣

2k
]

= E

[

∣

∣

∣

∣

∫ t

s
e−θ(t−u)dWu

∣

∣

∣

∣

2k
]

=
(2k)!
22kk!

(

1−e−2θ(t−s)

θ

)k

.

Therefore in particular fors= 0, by using the Minkowski’s inequality,

E
[

X2k
t

]

≤Ck

(

(

1−e−2θ t

θ

)k

+E
[

X2k
0

]

)

. (8)

The conditional density ofXt givenXs is given by

pθ (Xs,x;s, t) := q
(

Xs,x; µ(t −s,θ),σ2
t−s(θ)

)

, (9)

whereq(y,z; µ ,σ2) = 1√
2πσ2 e

− (z−yµ)2

2σ2 . Note thatpθ (Xs,y) = pθ (Xs,y;s,s+∆).
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3.1 The Euler-Maruyama Approximation of the OU process

For m∈ N andi = 1, · · · ,m, Xx
i,m(θ) := Xx

i−1,m(θ)−θXx
i−1,m(θ)∆ t +∆i−1W, where

Xx
0(θ) = x, ∆ t = ti − ti−1 = ∆

m and∆iW = Wti+1 −Wti . SetXx
(m)(θ) = Xx

m,m(θ). We
will find an explicit expression for this approximation by induction. In fact,

X̄t1 = x(1−θ∆ t)+Wt1,

for ∆ t = ∆
m. Similarly for ∆iW = W(ti+1)−W(ti),

X̄t2 = (x(1−θ∆ t)+∆0W)(1−θ∆ t)+∆1W.

Therefore in general, we have that

Xx
(m)(θ) = X̄tm = x(1−θ∆ t)m+

m−1

∑
i=0

∆iW (1−θ∆ t)m−1−i . (10)

From the above expression, we can easily find thatXx
(m)(θ) follows the normal dis-

tribution with meanµ(x,m,θ) and varianceσ2(m,θ);

µ(x,m,θ) = xµ(m,θ) = x(1− θ∆
m

)m,

σ2(m,θ) =
(1− θ∆

m )2m−1

θ( θ
m −2)

,

where we excludeθ
m = 2. For example, if we takeβ < 2, then sincem∈ N, we

always haveθ
m < 2 for θ ∈ [α,β ], where 0< α < β < 2. Then the transition density

p̃(m)
θ (x,y) ≡ p̃N

θ (x,y) is given as follows;

p̃(m)
θ (x,y) = q

(

x,y,µ(m,θ),σ2(m,θ)
)

.

Next, we can write ¯pN
θ (x,y) as follows; setw = z−y

h ,

p̄N
θ (x,y) = E

[

p̃(m)
θ (x,hX+y)

]

=
d
dy

P
(

Xx,(1)
(m)

(θ , ·)−hX ≤ y
)

,

where X ∼ N(0,1) is a random variable with the standard normal distribution.

Now Xx,(1)
(m)

(θ , ·) ∼ N(x(1− θ∆
m )m,

(1− θ∆
m )2m−1

θ( θ
m−2)

) and is independent ofX. Then

Xx,(1)
(m)

(θ , ·)−hX ∼ N(x(1− θ∆
m )m,

(1− θ∆
m )2m−1

θ( θ
m−2)

+h2). Therefore

p̄N
θ (x,y) = q

(

x,y,µ(m,θ),σ2(m,θ ,h)
)

, (11)
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whereσ2(m,θ ,h) =
(1− θ∆

m )2m−1

θ( θ
m−2)

+h2.

Proposition 1. (Density conditions forp̄N
θ (x,y)) p̄N

θ (x,y) satisfies the hypotheses
(H1), (H5) and(H5’) .

The proof follows directly from Lemma 10 in Appendix. In fact, in the OU pro-
cess case, we can takeϕ2 = 6β

α if 0 < 2α∆ ≤ ln2, andϕ1 = 1√
2π(C(0,∆ ,α)+1)

, where

C(0,∆ ,α) is given in Lemma 10.

3.2 About Assumption (A) (1)∼(5)

In this section, we will consider Assumption (A) (1)∼(5) for the OU process and
its Euler-Maruyama approximation. Assumption (A) (6) willbe discussed in the
following sections.

Proposition 2. The OU process satisfies Assumption (A) (1).

Proof. From Proposition 3 in pp.115 of Doukhan [5], we obtain that the OU
process has the geometrically strong mixing property. The OU process satisfies As-
sumption (A) (1).⊓⊔

Once we take a prior distributionπ(θ) as the uniform distribution onΘ . It satis-
fies Assumption (A) (2).

Setµθ (x) :=
√

θ
π exp(−θx2).

Lemma 1. µθ (x) is the probability density function of the invariant measure for the
OU process (7).

Proposition 3. The OU process and its Euler-Maruyama approximation satisfy As-
sumption (A) (3).

Proof.From the expression (9) of the transition density

pθ (y,z) = pθ (y,z;s,s+∆)

of the OU process, and also, from the assumption of the kernelK, pθ (y,z) and
p̄N

θ (x,y) clearly satisfy Assumption (A) (3), that is, it is continuous inx,y and twice
continuously differentiable inθ 1 . And from Lemma 1, the OU process satisfies
Assumption (A) (3).⊓⊔

Now we consider the identifiability condition forp in Assumption (A) (4).

Proposition 4. The OU process satisfies Assumption (A) (4) for p.

1 Note that the solutionXx
(m)(θ) is twice continuously differentiable inθ , since from the definition

of the Euler-Maruyama approximation, the OU process is polynomial in θ and the kernelK(x) is
infinitely differentiable inx.
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Proof.First note that the identifiability condition forp is equivalent to

∞ >
∫

(

inf
θ∈Θ

∫

∣

∣pθ (x,y)− pθ0(x,y)
∣

∣

|θ −θ0|
dy

)2

µθ0(x)dx≥
∫

c(x)2µθ0(x)dx> 0.

By using the fundamental theorem of calculus and changing variables; set

β = αθ +(1−α)θ0,

we have

∞ >
∫

(

inf
θ∈Θ

∫

∣

∣

∣

∣

∫ 1

0
∂θ pαθ+(1−α)θ0

(x,y)dα
∣

∣

∣

∣

dy

)2

µθ0(x)dx

≥
∫

c(x)2µθ0(x)dx> 0.

The integrability (upper estimation) is easily obtain aspθ is a normal density
function. That is, setθ ′ = argmaxθ∈Θ |∂θ pθ (x,y)|, then from (8) and using the in-
equalities(a+b)2 ≤ 2(a2 +b2) and 2|ab| ≤ (a2 +b2),

∫

(

inf
θ∈Θ

∫

∣

∣

∣

∣

∫ 1

0
∂θ pαθ+(1−α)θ0

(x,y)dα
∣

∣

∣

∣

dy

)2

µθ0(x)dx

≤ 2
∫ ∫ ∫ 1

0

p2
αθ+(1−α)θ0

(x,y)

m2
0

×
(

M2
1 +16(t −s)2(|y|4 + |x|4)+

32
(

y4 +x4
)

m2
0

M2
1

)

dαdyµθ0(x)dx< ∞.

Hereθ ′ = αθ +(1−α)θ0 andEθ0

[

X2k
0

]

= k!
(4θ)k . Therefore the above is finite.

Now µθ0(x) > 0 for all x∈ R. Therefore it is enough to prove that

inf
θ∈Θ

∫

|
∫ 1

0
∂θ pαθ+(1−α)θ0

(x,y)dα|dy> 0,

for all x∈ R. We use proof by contradiction. We assume that

inf
θ∈Θ

∫

|
∫ 1

0
∂θ pαθ+(1−α)θ0

(x,y)dα|dy= 0.

This is equivalent that for allx∈ R, there exists someθ ∗ = θ ∗(x) such that

∫

∣

∣

∣

∣

∫ 1

0
∂θ pαθ∗+(1−α)θ0

(x,y)dα
∣

∣

∣

∣

dy= 0.

Then for allx∈ R, there exists someθ ∗ = θ ∗(x) such that for ally∈ R,
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∣

∣

∣

∣

∫ 1

0
∂θ pαθ∗+(1−α)θ0

(x,y)dα
∣

∣

∣

∣

= 0.

This means that for allx∈ R, there exists someθ ∗ = θ ∗(x) such that for ally∈ R,
pθ∗(x,y) = pθ0(x,y). As both density functions are Gaussian then the point where
the maximum is taken has to be the same. Therefore the mean values are equal.
Similarly if we takey equal to the common mean we obtain that the variances have
to be equal. Then analyzing the variance function, we have that it is decreasing in
θ , thereforeθ ∗ = θ0. ⊓⊔

And by using the similar argument, we obtain the identifiability condition for p̄N.

Proposition 5. The Euler-Maruyama approximation of the OU process satisfies As-
sumption (A) (4) forp̄N.

Proof.SetB :=
∫ {infθ infN

∫ |p̄N
θ (x,y)−p̄N

θ0
(x,y)|

|θ−θ0| dy}2µθ0(x)dx∈ (0,+∞). As before,
it is easy to proveB < +∞.

Here we also use proof by contradiction. IfB = 0, then from the assumption of

suppµθ (x) = R, we have, for allx∈ R, infθ infN
∫ |p̄N

θ (x,y)−p̄N
θ0

(x,y)|
|θ−θ0| dy= 0. Then for

all x∈ R, there exists some sequenceθn = θn(x) such that

lim
n→∞

inf
N

∫ |p̄N
θn

(x,y)− p̄N
θ0

(x,y)|
|θn−θ0|

dy= 0.

And also, for allx∈ R, there exists some sequenceθn = θn(x) such that there exists

some sequenceNn = Nn(x,θn) such that limn→∞
∫ |p̄Nn

θn
(x,y)−p̄Nn

θ0
(x,y)|

|θn−θ0| dy= 0.
By using the mean-value theorem, we consider the following;

lim
n→∞

∫

∣

∣

∣

∣

∫ 1

0
∂θ p̄Nn

αθn+(1−α)θ0
(x,y)dα

∣

∣

∣

∣

dy= 0.

Then we obtain our conclusion.⊓⊔
Note that from Lemma 1, we haveE[X2k

0 ] = (2k)!

(4θ)kk!
, and from (8), we have

E
[

X2k
t

]

≤Ck

(

(

1−e−2θ t

θ

)k

+θ−k

)

. (12)

Proposition 6. For the OU process and its Euler-Maruyama approximation, the first
regularity conditions (1) of Assumption (A) (5) hold.

Proof.Using (12), we obtain

sup
θ∈Θ

∫ ∫

(ln pθ (y,z))12 pθ0(y,z)µθ0(y)dydz

= sup
θ∈Θ

E





(

−1
2

log
(

2πσ2
∆ (θ)

)

−
(

X∆ (θ0)−X0(θ0)e−θ∆)2

2σ2
∆ (θ)

)12



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≤C

{

sup
θ∈Θ

log12(2πσ2
∆ (θ)

)

+ sup
θ∈Θ

σ−24
∆ (θ)E

[

X∆ (θ0)
24+X0(θ0)

24e−24θ∆
]

}

< ∞.

(13)

Now σ2
∆ (θ) = 1

2θ (1− e−2θ∆ ). Note thatσ2
∆ (θ) ≥ 1

2β (1− e−2α∆ ) > 0 and also

σ2
∆ (·) ∈ C∞

b ([α,β ]). Furthermore letm(θ) = e−θ∆ . Note thatm(·) ∈ C∞
b ([α,β ]).

Then by using similar arguments as in the above calculations, we obtain (1), for
qθ = pθ andi = 1,2. We can also obtain our integrabilities forqθ = pθ .

Therefore, as̄Xx,(1)
(m)

(θ , ·) has the density ¯pN
θ (x,y) aty (see (11)) then

E
[

|X̄x,(1)
(m)

(θ , ·)|2k
]

≤Ck





(

(1− θ∆
m )2m−1

θ( θ
m−2)

+h2

)k

+x2k
(

1− θ∆
m

)2km


 .

From Lemma 10 in Section 4.1, (12) and as (13), we have

sup
N

sup
θ∈Θ

∫ ∫

(

log p̄N
θ (y,z)

)12
pθ0(y,z)µθ0(y)dydz

≤Csup
N

sup
θ∈Θ







(

log

(

1
√

2πσ2(m,θ ,h)

))12

+C′ E[X∆ (θ0)
24]+E[X0(θ0)

24]µ(m,θ)24

212σ24(m,θ ,h)

}

< +∞.

And for i = 1,2, as in the above, we obtain (1) forqθ = p̄N
θ . Then we obtain our

conclusions.⊓⊔
Now we check the second condition of the regularity of the log-density (Assump-

tion (A) (5)).

Proposition 7. For the OU process and its Euler-Maruyama approximation, the
second regularity conditions (2) of Assumption (A) (5) hold.

Proof.For qθ = pθ , we have

∫ ∫

(

−1
2

log
(

2πσ2
∆ (θ)

)

−
(

z−ye−θ∆)2

2σ2
∆ (θ)

)

p̄N
θ0

(y,z)µθ0(y)dydz

= −1
2

log
(

2πσ2
∆ (θ)

)

− σ2(m,θ0,h)+(2θ0)
−1(µ(m,θ0)−e−θ∆)2

2σ2
∆ (θ)

.

Therefore the result follows becauseσ2
∆ (θ) is twice continuously differentiable and

the above quantities are uniformly bounded inm.
Next we will check equation (2) forqθ = p̄N

θ , Then as before,

∫ ∫

{

log

(

1
√

2πσ2(m,θ ,h)

)

− (y−xµ(m,θ))2

2σ2(m,θ ,h)

}

p̄N
θ0

(y,z)µθ0(y)dydz
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= log

(

1
√

2πσ2(m,θ ,h)

)

− 1
2
.

Therefore the property follows as in the previous case.⊓⊔
Next we consider the third regularity condition of Assumption (A) (5).

Proposition 8. For the OU process and its Euler-Maruyama approximation, the
third regularity conditions (3) of Assumption (A) (5) hold.

Proof.For i = 0,1, we have

∫ ∫

(

−1
2

∂ i

∂θ i log
(

2πσ2
∆ (θ)

)

− ∂ i

∂θ i

(

z−ye−θ∆)2

2σ2
∆ (θ)

)

p̄N
θ0

(y,z)µθ0(y)dydz

= −1
2

∂ i

∂θ i log
(

2πσ2
∆ (θ)

)

−
(

∂ i

∂θ i

1

2σ2
∆ (θ)

)

E

[

(

X̄X0,(1)
(m)

(θ0, ·)−X0e−θ∆
)2
]

−
E[ ∂ i

∂θ i (X̄
X0,(1)
(m)

(θ0, ·)−X0e−θ∆ )2]

2σ2
∆ (θ)

.

If we expand the last expectation in the above expression, itis clear that

∂ i

∂θ i E

[

(

X̄X0,(1)
(m)

(θ0, ·)−X0e−θ∆
)2
]

= E

[

∂ i

∂θ i

(

X̄X0,(1)
(m)

(θ0, ·)−X0e−θ∆
)2
]

.

And therefore the last property of Assumption (A) (5) follows forqθ = pθ . A similar
proof also applies in the caseqθ = p̄N

θ . ⊓⊔

3.3 Assumption (A) (6)

3.3.1 Parameter Tuning of Assumption (A) (6)-(a)

If we choose 0< c1 < α, the moment hypothesis of(ii) in Section 2.3,

E[ec1|Y1|2] < ∞,

is satisfied sinceY1 has a normal distribution. Furthermore asaN =
√

c2 lnN with
c1 > 2

c2
, then condition(ii) is satisfied.

From the explicit expression (10) of the OU process, we have the following
derivatives of the Euler-Maruyama approximation of the OU process.

∂xX
x
(m)(θ) = (1−θ∆ t)m, (14)

∂θ Xx
(m)(θ) = −mx∆ t(1−θ∆ t)m−1−∆ t

m−2

∑
i=0

(m−1− i)∆iW (1−θ∆ t)m−2−i ,
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∂θ ∂xX
x
(m)(θ) = −m∆ t(1−θ∆ t)m−1,

∂ 2
θ Xx

(m)(θ) = m(m−1)∆ t2(1−θ∆ t)m−2

+∆ t2
m−3

∑
i=0

(m−1− i)(m−2− i)∆iW (1−θ∆ t)m−3−i .

Lemma 2. For any j∈ N,

sup
m≥ j∨(θ∆)

sup
(x,θ)∈BN

a−1
N

∣

∣

∣

∣

x
∂ j

∂θ j (1−θ∆ t)m

∣

∣

∣

∣

< +∞.

Proof.From the definition ofBN, it is clear that sup(x,θ)∈BN a−1
N |x| ≤ 1.

Next, we have
∣

∣

∣

∣

∂ j

∂θ j (1−θ∆ t)m

∣

∣

∣

∣

=

∣

∣

∣

∣

(−1) j1(1− 1
m

) · · ·(1− j −1
m

)∆ j(1−θ∆ t)m− j

∣

∣

∣

∣

≤ ∆ j
(

1− θ∆
m

)m− j

.

Sety = − m
θ∆ . For anym and j so thatm≥ j ∨ (θ∆), we have

(

1− θ∆
m

)m− j

=

{(

1+
1
y

)y}− θ∆(m− j)
m

≤ e−
θ∆(m− j)

m ≤ 1, (15)

where we use Lemma 9. Hence we obtain our conclusion.⊓⊔
For some differentiable functionh(θ , t), setU(θ) :=

∫ ∆
0 h(θ ,s)dWs. Then

U ′(θ) =
∫ ∆

0

∂
∂θ

h(θ ,s)dWs.

Lemma 3. We assume that there exists some positive constant C(∆), which depends

on ∆ , such that∑1
j=0supθ∈[α,β ]

t∈[0,∆ ]

| ∂ j

∂θ j h(θ , t)| ≤C(∆). Then, for p∈ N, we have

E

[

sup
θ∈[α,β ]

|U(θ)|2p

]

≤C(∆)2p∆ p(1+(β −α)2p)
(2p)!

p!
.

Proof. Note thatU(θ) = U(α)+
∫ θ

α U ′(ρ)dρ a.s. From the Ḧolder’s inequality
and Fubini’s theorem, we have

E

[

sup
θ∈[α,β ]

|U(θ)|2p

]

≤ 2p
(

E
[

|U(α)|2p]+(β −α)2p−1
∫ β

α
E
[

|U ′(ρ)|2p]dρ
)

. (16)
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Now note thatU(θ) andU ′(θ) have normal distribution with mean 0 and variance
∫ ∆

0 h(θ ,s)2ds and
∫ ∆

0 ( ∂
∂θ h(θ ,s))2ds each other. Then from moment properties of

Gaussian distribution. We have that

E
[

|U(α)|2p
]

=

(

∫ ∆

0
h(α,s)2ds

)p
(2p)!
2pp!

≤
(

C(∆)2∆
)p (2p)!

2pp!
,

E
[

∣

∣U ′(ρ)
∣

∣

2p
]

=

(

∫ ∆

0

(

∂
∂θ

h(ρ,s)

)2

ds

)p
(2p)!
2pp!

≤
(

C(∆)2∆
)p (2p)!

2pp!
.

Finally we have(16)≤
(

C(∆)2∆
)p (2p)!

p!

(

1+(β −α)2p
)

. Hence we obtain our con-
clusion.⊓⊔

We note that∑m−1
i=0 ∆iW(1−θ∆ t)m−1−i =

∫ ∆
0 hm(θ ,s)dWs, where

hm(θ , t) = (1−θ∆ t)m−1−i ,

for t ∈ [ti , ti+1) andi = 0,1, · · · ,m−1. Also we have

∂
∂θ

hm(θ , t) = (m−1− i)(−∆ t)(1−θ∆ t)m−2−i ,

for t ∈ [ti , ti+1), i = 0,1, · · · ,m− 2 and= 0 for t ∈ [tm−1, tm], i = m− 1. Note that
from (15), we have, form≥ θ∆ ,

|hm(θ , t)| ≤ 1 and

∣

∣

∣

∣

∂
∂θ

hm(θ , t)

∣

∣

∣

∣

≤ ∆ .

Next we consider that

m−2

∑
i=0

∆ t(m−1− i)∆iW (1−θ∆ t)m−2−i =
∫ ∆

0
h(1)

m (θ ,s)dWs,

where

h(1)
m (θ , t) =

{

∆ t(m−1− i)(1−θ∆ t)m−2−i , for t ∈ [ti , ti+1), i = 0,1, · · · ,m−2,
= 0, for t ∈ [tm−1, tm].

And also we have

∂
∂θ

h(1)
m (θ , t) =







−∆ t2(m−1− i)(m−2− i)(1−θ∆ t)m−3−i,
for t ∈ [ti , ti+1), i = 0,1, · · · ,m−3,

= 0, for t ∈ [tm−2, tm].

Then as before, from (15), we have, form≥ θ∆ ,

|h(1)
m (θ , t)| ≤ ∆ and

∣

∣

∣

∣

∂
∂θ

h(1)
m (θ , t)

∣

∣

∣

∣

≤ ∆ 2.
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As above, we consider

m−3

∑
i=0

∆ t2(m−1− i)(m−2− i)∆iW(1−θ∆ t)m−3−i =
∫ ∆

0
h(2)

m (θ ,s)dWs,

where

h(2)
m (θ , t) =







∆ t2(m−1− i)(m−2− i)(1−θ∆ t)m−3−i,
for t ∈ [ti , ti+1), i = 0,1, · · · ,m−3,

= 0, for t ∈ [tm−2, tm].

And also we have

∂
∂θ

h(2)
m (θ , t) =







−∆ t3(m−1− i)(m−2− i)(m−3− i)(1−θ∆ t)m−4−i,
for t ∈ [ti , ti+1), i = 0,1, · · · ,m−4,

= 0, for t ∈ [tm−3, tm].

Then as before, from (15), we have, form≥ θ∆ ,

|h(2)
m (θ , t)| ≤ ∆ 2 and

∣

∣

∣

∣

∂
∂θ

h(2)
m (θ , t)

∣

∣

∣

∣

≤ ∆ 3.

Lemma 4. For Hm(θ , t) = hm(θ , t), h(1)
m (θ , t), h(2)

m (θ , t), we have, for p∈ N,

sup
m∈N

E

[

sup
θ∈[α,β ]

∣

∣

∣

∣

∫ ∆

0
Hm(θ ,s)dWs

∣

∣

∣

∣

2p
]

< +∞.

Proof. From the calculations before the lemma, we have found thatHm satisfies
the assumption of Lemma 3 as we takeC(∆) = 1∨∆ 3. Then we apply Lemma 3.

E

[

sup
θ∈[α,β ]

∣

∣

∣

∣

∫ ∆

0
Hm(θ ,s)dWs

∣

∣

∣

∣

2p
]

≤C(∆)2p∆ p(1+(β −α)2p)
(2p)!

p!
.

The right hand side does not depend onm. Then we take sup with respect tom∈ N
for the left hand side and we have our conclusion.⊓⊔

From the above lemmas and the explicit formulas (14), we obtain the following
two results.

Lemma 5. For all p ≥ 1 and k∈ N, we have

sup
N∈N

E

[(

a−1
N sup

(x,θ)∈BN

∣

∣

∣
Vx,(k)

(m)
(θ ; ·)

∣

∣

∣

)p]

< +∞,

for Vx,(k)
(m)

(θ ;ω) = Xx,(k)
(m)

(θ ;ω),∂xX
x,(k)
(m)

(θ ;ω),∂θ Xx,(k)
(m)

(θ ;ω),∂θ ∂xX
x,(k)
(m)

(θ ;ω),

∂ 2
θ Xx,(k)

(m)
(θ ;ω).
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Proposition 9. (Moment conditions of(iii) , (iv), (vi), (viii) and (ix) in Section 2.3)
For all p ≥ 1, we havesupN∈N E[|TN(·)|p] < +∞, for TN(ω) = Z3,N(ω), Z4,N(ω),
Ż4,N(ω), Ż6,N(ω).

From the above result, we obtain enough integrability forZ3,N(ω), Z4,N(ω),
Ż4,N(ω), Ż6,N(ω). Therefore, we can taker3, ṙ6, q̇6 big enough so as (5) and (6)
are satisfied.

Proposition 10. (Parameter conditions of (5) and (6)) Ifα1 > 8α2 +1+ 2ϕ2c2
∆ , then

there exist some r3, ṙ6, q̇6,γ3, γ̇6 such that (5) and (6) are satisfied.

3.3.2 Parameter Tuning of Assumption (A) (6)-(b)

In this section, we consider the parameter tuning(b) of Assumption (A) (6).

Setq(y,z; µ ,σ2) = 1√
2πσ2 e

− (z−yµ)2

2σ2 . Then we can denotepθ0(y,z) and p̄N
θ0

(y,z) as

q(y,z,µ∆ (θ0),σ2
∆ (θ0)) andq(y,z,µ(m,θ0),σ2(m,θ0,h)) each other, where

µ∆ (θ0) = e−θ0∆ .

Then applying the mean value theorem and Lemma 8, we obtain

|pθ0(y,z)− p̄N
θ0

(y,z)|

≤ |µ∆ (θ0)−µ(m,θ0)|
∫ 1

0

∣

∣∂µq
(

y,z,γµ∆ (θ0)+(1− γ)µ(m,θ0),σ2
∆ (θ0)

)∣

∣dγ

+
∣

∣σ2
∆ (θ0)−σ2(m,θ0,h)

∣

∣

×
∫ 1

0

∣

∣∂σ2q
(

y,z,µ(m,θ0),γσ2
∆ (θ0)+(1− γ)σ2(m,θ0,h)

)∣

∣dγ

≤C(α,β ,∆)
1
m

∫ 1

0

∣

∣∂µq
(

y,z,γµ∆ (θ0)+(1− γ)µ(m,θ0),σ2
∆ (θ0)

)∣

∣dγ (17)

+C(α,β ,∆)

(

1
m

+h2
)

×
∫ 1

0

∣

∣∂σ2q
(

y,z,µ(m,θ0),γσ2
∆ (θ0)+(1− γ)σ2(m,θ0,h)

)∣

∣dγ.

Next we consider derivatives ofq with respect toµ ,σ2. Assume that

0 < µmin ≤ µ ≤ µmax and 0< σ2
min ≤ σ2 ≤ σ2

max.

From Lemma 6, we have, forc > 1,

∣

∣∂µq(y,z; µ ,σ2)
∣

∣≤ |yz|+y2µmax

σ2
min

1
√

2πσ2
min

exp

(

−
c−1

c z2− (c−1)(µmaxy)2

2σ2
max

)
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and

∣

∣∂σ2q(y,z; µ ,σ2)
∣

∣≤







1

2σ2
min

1
√

2πσ2
min

+
4(z2 +y2µ2

max)

2(σ2
min)

2

1
√

2πσ2
min







×exp

(

−
c−1

c z2− (c−1)(µmaxy)2

2σ2
max

)

.

Next for 0< γ < 1, we have

γµ∆ (θ0)+(1− γ)µ(m,θ0) ≤ γe−θ0∆ +(1− γ)e−θ0∆ ≤ e−θ0∆

and

1
2β

(1−e−2α∆ ) ≤ γσ2
∆ (θ0)+(1− γ)σ2(m,θ0,h)

≤ 1
2α

(1−e−2β∆ )+C(k,∆ ,α)+1,

where the constantC(k,∆ ,α) is a constant which is defined in (18). Therefore we
take as follows;

µmax = e−θ0∆ , σ2
min =

1
2β

(

1−e−2α∆
)

,

σ2
max =

1
2α

(

1−e−2β∆
)

+C(k,∆ ,α)+1.

Then we have

(17) ≤ C(α,β ,∆)
1

√

2πσ2
min

{ |yz|+y2µmax

σ2
min

+
1

2σ2
min

+
4(z2 +y2µ2

max)

2(σ2
min)

2

}

×exp

(

−
c−1

c z2− (c−1)(µmaxy)2

2σ2
max

)

(

1
m

+h2
)

.

Then we need the following parameter tuning condition;
(

1
m +h2

)√
N≤C, whereC

is a constant. Note thath = C2N−α2 therefore we require thatα2 ≥ 1
2. Furthermore,

m≥
√

N. Finally we check the following integrability condition.

sup
N

sup
θ∈[α,β ]

∫ ∫

∣

∣

∣

∣

∂
∂θ

ln p̄N
θ (y,z)

∣

∣

∣

∣

{ |yz|+y2µmax

σ2
min

+
1

2σ2
min

+
4(z2 +y2µ2

max)

2(σ2
min)

2

}

×exp

(

−
c−1

c z2− (c−1)(µmaxy)2

2σ2
max

)

µθ0(y)dydz< +∞.
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Note thatµθ (y) is the density ofN(0, 1
2θ ) law and that we have the explicit expres-

sion for ∂
∂θ ln p̄N

θ (y,z), which is a second degree polynomial iny,z. As the parame-
ters,σ2(m,θ ,h) andµ(m,θ) satisfy Lemma 10. The above integrability condition
is satisfied.

Finally from the above calculations, we obtain

Proposition 11. In the OU process and its Euler-Maruyama approximation case,
for α2 ≥ 1

2 and m(N) ≥
√

N, Assumption (A) (6)-(b) holds.

3.3.3 Parameter Tuning of Assumption (A) (6)-(c)

Now we consider the parameter tuning(c) of Assumption (A) (6). Note that in order
to verify this condition, we can concretely calculate| ∂

∂θ ln p̄N
θ (y,z)− ∂

∂θ ln pθ (y,z)|.
From this difference we need to analyze separately each termand use Lemma 8
together with Lemma 10. Then we have some polynomial function gN(y,z) = g(y,z)
with respect toy,z, Assumption (A) (6)-(c) is satisfied. In particular, ifY0 andY1 have
a normal distribution, it is clear that the integrability conditionE[|g(Y0,Y1)|4] < +∞
is satisfied. Then we have

Proposition 12. In the OU process and its Euler-Maruyama approximation case,
Assumption (A) (6)-(c) holds.

RecallΘ = [α,β ] (0 < α < β < 2), n = C1Nα1, h = C2N−α2 and

inf
(x,θ)∈BN

p̄N
θ (x,y) ≥ (c

√
2c+∆N

4cc2
∆ )−1,

whereBN =
{

(x,y,θ); |(x,y)| ≤
√

c2 lnN
}

. And we take a prior density function
so thatπ(θ) > 0 onΘ and a kernel functionK as the Gaussian kernel. Finally, we
obtain the following theorem for the OU process and its Euler-Maruyama approxi-
mation.

Theorem 3.Assumeα1 > 8α2 + 1+ 4ϕ2c2
∆ , α2 ≥ 1

2 and m≥
√

N. Then there exist
some positive finite random variablesΞ1 andΞ2 such that for f∈C1(Θ), we have

|EN[ f ]− f (θ0)| ≤
Ξ1√

N
a.s. and

∣

∣Ên
N,m[ f ]− f (θ0)

∣

∣≤ Ξ1√
N

a.s.,

and therefore
∣

∣

∣EN[ f ]−En
N,m[ f ]

∣

∣

∣≤ Ξ1+Ξ2√
N

a.s.
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4 Appendix

4.1 Study of the function (1− θ∆
m )m and

(1− θ∆
m )2m−1

θ( θ
m−2)

Here we give some lemmas which are used in the parameter tuning sections.

Lemma 6. For c > 1, we have

(i). (x+y)2 ≤ c
c−1x2 +cy2,

(ii). c−1
c x2 +(c−1)y2 ≤ (x−y)2.

The proofs are based on Young’s lemma.

Lemma 7. For m≥ 2β∆ , we have|(1− θ∆
m )m−e−θ∆ | ≤ e−α∆ (β∆)2 1

m.

After simple calculations, we can obtain this lemma. From this lemma, we obtain

Lemma 8. For k = 0,1 and m≥ 2β∆ , we have the following estimations;

(i). | ∂ k

∂θk (σ2
∆ (θ)−σ2(m,θ ,h))| ≤C(α,β ,∆){ 1

m +h21(k = 0)},

(ii). | ∂ k

∂θk (e
−θ∆ −µ(m,θ))| ≤C(α,β ,∆) 1

m,

where C(α,β ,∆) is some positive constant.

Lemma 9. For m> β∆ , we have
(

1− θ∆
m

)m ≤ e−θ∆ .

Proof.Set f (x) = (1+ 1
x)x. Then f (x) is an increasing function for−∞ < x<−1

and limx→−∞ f (x) = e. The proof follows.⊓⊔

Lemma 10.We have the following: For k∈ N∪{0},

(i). sup
m≥max( k

2 ,β∆)

sup
θ∈Θ

∣

∣

∣

∣

∂ k

∂θ k µ(m,θ)

∣

∣

∣

∣

= sup
m≥max( k

2 ,β∆)

sup
θ∈Θ

∣

∣

∣

∣

∂ k

∂θ k (1− θ∆
m

)m

∣

∣

∣

∣

≤ (2∆)k32β∆ < +∞,

(ii). sup
0≤h≤1

sup
m≥max( k

2 ,β∆)

sup
θ∈Θ

∣

∣

∣

∣

∂ k

∂θ k σ2(m,θ ,h)

∣

∣

∣

∣

= sup
0≤h≤1

sup
m≥max( k

2 ,β∆)

sup
θ∈Θ

∣

∣

∣

∣

∣

∂ k

∂θ k

(1− θ∆
m )2m−1

θ( θ
m−2)

+h21{k=0}

∣

∣

∣

∣

∣

≤C(k,∆ ,α)+1 < +∞,
(iii). inf

0≤h≤1
inf

m≥max( k
2 ,β∆)

inf
θ∈Θ

∣

∣σ2(m,θ ,h)
∣

∣

= inf
0≤h≤1

inf
m≥max( k

2 ,β∆)
inf

θ∈Θ

∣

∣

∣

∣

∣

(1− θ∆
m )2m−1

θ( θ
m−2)

+h2

∣

∣

∣

∣

∣

≥ 2(1−e−2α∆ )

3β
> 0,

where some positive constant C(k,∆ ,α) is defined in the proof.
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Proof. Now µ(m,θ) = (1− θ∆
m )m and setDk

θ = ∂ k

∂θk . Note that from Lemma 9,

we have 0≤ µ(m,θ) ≤ e−θ∆ ≤ supθ e−θ∆ = e−α∆ . Note that

Dk
θ µ(m,θ) = (2m)(2m−1) · · ·(2m− (k−1))

(

1− θ∆
m

)2m−k(

−∆
m

)k

.

Then

Dk+1
θ µ(m,θ)

= (2m)(2m−1) · · ·(2m− (k−1))(2m−k)

(

1− θ∆
m

)2m−(k+1)(

−∆
m

)k+1

.

And for 2m≥ k, we have

sup
m

sup
θ

|Dk
θ µ(m,θ)| ≤ sup

m

{

(2m∆)k

mk (1+
β∆
m

)2m−k
}

≤ (2∆)k32β∆ .

Hence we obtain(i).
Remember thatσ2(m,θ) = µ(m,θ)2−1

θ( θ
m−2)

. From the Leibnitz’s formula, we have

|Dk
θ σ2(m,θ)|

≤
k

∑
i=0

Ck,i sup
m

sup
θ

|Di
θ (µ(m,θ)2)|sup

m
sup

θ

∣

∣

∣

∣

∣

Dk−i
θ

1

θ( θ
m −2)

∣

∣

∣

∣

∣

+sup
m

sup
θ

∣

∣

∣

∣

∣

Dk
θ

1

θ( θ
m−2)

∣

∣

∣

∣

∣

.

From the above and the Leibnitz’s formula, we have fori = 0,1, · · · ,k, from the
binomial theorem,

sup
m

sup
θ

|Di
θ (µ(m,θ)2)| ≤ sup

m
sup

θ

∣

∣

∣

∣

∣

∆ i(1− θ∆
m

)2m−i
i

∑
j=0

(

i
j

)

∣

∣

∣

∣

∣

≤ ∆ ie−α∆
i

∑
j=0

(

i
j

)

< +∞.

And for all i = 0,1, · · · ,k, we have, from the binomial theorem,

sup
m

sup
θ

∣

∣

∣

∣

∣

Di
θ

1

θ( θ
m−2)

∣

∣

∣

∣

∣

≤
i

∑
j=0

Ci, j
j!

α j+1

(i − j)!
2i− j .

Then we have

sup
m

sup
θ∈[α,β ]

∣

∣

∣
Dk

θ σ2(m,θ)
∣

∣

∣

≤
k

∑
i=0

Ck,i

{

∆ ie−α∆
i

∑
j=0

(

i
j

)

}{

k−i

∑
j=0

Ck−i, j
j!

α j+1

(k− i − j)!
2k−i− j

}
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+
k

∑
j=0

Ck, j
j!

α j+1

(k− j)!
2k− j =: C(k,∆ ,α) < +∞. (18)

Therefore we obtain(ii) .
Finally for m≥ β∆ , we have

σ2(m,θ) ≥ 1−e−2θ∆

θ
(

2− θ
2θ
) =

2
3θ

(

1−e−2θ∆
)

≥ 2
3β

(

1−e−2α∆
)

> 0.

We obtain(ii) .
Here form≥ β∆ , 0≤

(

1− θ∆
m

)m ≤ e−θ∆ ≤ e−α∆ . And for m≥ β∆ ,

2(1−e−2α∆ )

3β
≤ (1− θ∆

m )2m−1

θ( θ
m−2)

≤ 1
α(2−β )

.

Therefore we obtain(iv) and finish the proof.⊓⊔
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