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1 Introduction

Paul Malliavin in the eighties developed a stochastic method to study the regularity of probability laws arising

on the Wiener space. In particular, using this stochastic method he obtained the existence and smoothness of

densities of diffusions under the hypoelliptic condition. This celebrated theory has been applied successfully

to a variety of stochastic equations providing useful properties of densities of random variables associated to

these equations. It is based on the integration by parts formula which requires “stochastic” smoothness of

the random variable in question.

For this reason, one usually requires smoothness of the coefficients of the stochastic equation. On the other

hand, many results from partial differential equations provide the same results for the density of uniformly

elliptic diffusions under weaker conditions on (some of ) the coefficients, such as Hölder continuity or even

bounded and measurable. Still, many stochastic equations (e.g. stochastic partial differential equations)

do not have a partial differential equation counterpart and therefore the current results on existence and

smoothness of probability laws are limited to the case of smooth coefficients.

Here we consider a d1-dimensional diffusion

Xx
t = x+

∫ t

0

b(Xx
s )ds+

∫ t

0

σ(Xx
s ) ◦ dWs, (1)

where σ : Rd1 → Rd1×m, b : Rd1 → Rd1 , x ∈ Rd1 . We assume that σ is smooth and uniformly elliptic while b

is measurable and bounded. Here W denotes a m-dimensional Brownian motion defined on the probability

space (Ω,F , P ) and the above stochastic integral is the Fisk-Stratonovich integral. Under these conditions,

we obtain the existence and smoothness of the density of Yt where Yt =
∫ t

0
ψ(Xx

s )ds where ψ : Rd1 → Rd2 is

a smooth function with bounded derivatives. Note that this random vector is non-elliptic in the sense that

there is no Wiener component in the equation for Y and that the system (X,Y ) is of dimension d = d1 + d2.
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Now, we introduce our main condition. Define the vector fields

V0 =

d2∑
i=1

ψi
∂

∂xi+d1
− 1

2

d1∑
i,j=1

m∑
l=1

σjl∂jσil
∂

∂xi
,

Vi =

d1∑
j=1

σji
∂

∂xj
, 1 ≤ i ≤ m.

Then, define

A0 = {V1, ..., Vm}

An = {[Vi, Z]; i = 0, ...,m, Z ∈ An−1} , n ≥ 1.

We assume that there exists k ∈ N and c0 > 0 such that that for all ξ ∈ Rd and x ∈ Rd1

∑
V ∈∪k

l=1Al

〈V (x), ξ〉2 ≥ c0 ‖ξ‖2 . (2)

For example, in the one dimensional case (d1 = d2 = m = 1), if we assume that |ψ′(x)| ≥ c0 and σ is

uniformly elliptic then the above hypothesis (2) is satisfied.

Our goal is then to prove

Theorem 1. Consider the random vector Yt =
∫ t

0
ψ(Xx

s )ds where X satisfies (1). Assume that the coeffi-

cients σ and ψ are smooth with bounded derivatives, b is a bounded and measurable function, σ is uniformly

elliptic and that the system (X,Y ) satisfies (2). Then the vector Yt has a smooth density.

The regularity of the joint density of time averages of diffusions is a problem that appears in various

applied fields ranging from average quantities in economics, finance1 and filtering problems2 between others.

One possible example is to consider one dimensional diffusions with drifts that have a discontinuity of the

first kind (for some examples, see e.g. [27] and the references therein. Also see the references on existence

and uniqueness of solutions for SDE’s with irregular drift).

From the mathematical point of view, another related attempt to deal with irregularities in the coefficients

of the diffusion using Malliavin Calculus can be found in [26]. Note that if we are only considering the density

of the random vector Xx
t then the problem could be studied by using techniques from partial differential

equations as can be seen in [15] or [24] but only limited regularity is obtained. The goal of the present

1Notably the Asian option considers as its main random variable the integral of the stock price
2The signal process is an example that belongs to an extended version of the above theorem to be considered in Theorem 7.
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research is to try to establish an extension of the Malliavin Calculus technique to deal with situations where

the drift is irregular.

Our method of proof can be succinctly explained as follows. First, we use Girsanov’s theorem in order

to remove the irregular drift from the stochastic equation. This is why we require uniform ellipticity. This

reduces our study to the case where the stochastic equation is regular driven by a new Brownian motion, say

B. Still, one has to deal with the non-smooth change of measure as this will appear in the expression for the

characteristic function.

The change of measure is then expanded using Itô-Taylor expansion up to a high order. We prove that the

residue is small. The problem is to be able to carry out the integration by parts formula without requiring

derivatives of the multiple integrals as they contain the non-smooth drift..

Next, we divide the integration region of the multiple stochastic integral so that a fixed interval is not

included in the region of integration. We call this interval, [α1, α2]. Using this interval we take advantage

that the noise B within this interval regularizes the irregular drift by use of conditional expectations.

Then we perform a conditional integration by parts (ibp) in this interval with respect to B. If we perform

a usual ibp we will not avoid considering derivatives of the drift.

The final idea consists in taking expectations with respect to the Wiener process, B, in the interval

[α1+α2

2 , α2] in order to regularize the drift appearing in the multiple integrals, and then applying the ibp in

the interval [α1,
α1+α2

2 ] (where no drift appears) as many times as necessary, in order to obtain the smoothness

of the density. Here is where the additivity of Y plays an important role.

The method just described is rather general and can be applied to many situations. In fact, we will

consider a slight generalization of the problem proposed here (see also the conclusions section at the end of

the article).

This article has the following sections. In section 2, we give the main set up of the problem. In subsection

2.1, we give notation from Malliavin Calculus that will be used in this article. Then in Section 3 we give our

general set-up for the problem and the generalization of Theorem 1 which we prove in Section 4. We close

with the proof of Theorem 1 and an Appendix where some preliminary estimates are proven.

Throughout the article, we assume that all stochastic differential equations have unique strong solutions.

In recent years, various applications of the system described here have appeared (in particular the 3D-Navier
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Stokes equation between others) and has led to the study of existence and uniqueness of stochastic differential

equations with irregular drifts in weak and pathwise form (the interested reader may look at [2], [25], [5], [3],

[4], [6], [10], [11], [16], [17], [22], [18], [28] between others). In order to avoid this discussion, we decided to

use a set-up where the Girsanov theorem has already been applied (see Section 3).

For a multi-index α = (α1, ..., αk) ∈ Nk, we denote its length by |α| = k. Without further mention we use

sometimes the convention of summation over double indices (Einstein convention). When the exact values

of the constants are not important we may repeat the same symbol for constants that may change from one

line to the next. These constants will be denoted by an over bar symbol. For a matrix A, AT denotes the

transpose of A.

Vectors will be always considered as column vectors except for vectors denoting time which are considered

as line vectors. For a vector of time variables s = (s1, ..., sn), we use the following notations: ds = dsn...ds1,

sj = (s1, ..., sj), s̄
n−j+1 = (sj , ..., sn). Similarly we denote by πi(s) and π̄i(s) the projection operator for the

first i components and the last i components of s respectively. Sometimes, we may use s to denote a real

time (instead of a vector one) integration variable. The difference should be clear from the context. Partial

derivatives will be denoted by ∂if(x), x ∈ Rn where this means the i-th variable appearing in the function

f . For a multi-index α = (α1, ..., αk) ∈ {1, ..., d}k we denote (iθ)
−α

= i−k
∏k
i=1 θ

−1
αi

, |θ|−α =
∏k
i=1 |θ−1

αi
| and

∂α =
∏k
i=1 ∂αi

. The inner product between two vectors u and v is denoted by u·v. Similar notation is used for

products of vectors and matrices or between matrices. Stochastic processes may be denoted interchangeably

by X(t) or Xt. As usual, constants may change from one line to the next even if the same notation is used.

Finally, j will denote the imaginary unit and although there may be a slight abuse of notation (occasionally

j may denote an index in a summation) the context will determine clearly the intended meaning.

2 Preliminaries

Let (Ω,F , P, (Ft)t≥0) be a filtered standard m−dimensional Wiener space with filtration given by Ft ( see

[8] Chapter 1, Section 2.25). We will use the following classical result which characterizes the existence and

smoothness of densities

Lemma 2. Let F be a random vector and denote by hF (θ) = E[exp(jθ · F )] its characteristic function. If
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for k ∈ N, we have that ∫
‖θ‖k |hF (θ)| dθ <∞

then F has a density and it belongs to the class Ckb .

Note that in order to obtain the smoothness of the density of F it is enough to prove that for any k ∈ N

there exists a positive constant Ck such that for all ‖θ‖ ≥ 1, we have that ‖θ‖k |hF (θ)| ≤ Ck.

2.1 Malliavin Calculus

We give a brief introduction to Malliavin Calculus. For details, we refer the reader to [7], [19], [20] or [21].

From now on we fix T > 0. For any measurable function h ∈ L2([0, T ];Rm) =: H0,T we denote its stochastic

integral by W (h) =
∫ T

0
h(s) · dWs and by S the class of smooth functionals

S = {F : F = f(W (h1), ...,W (hn));h1, ..., hn ∈ H0,T ; f ∈ C∞p (Rn;R);n ∈ N}.

Here C∞p denotes the class of C∞-functions with at most polynomial growth at infinity. For F ∈ S we define

the Malliavin derivative as

Dj
tF =

n∑
i=1

∂if(W (h1), ...,W (hn))hji (t).

For k ∈ Z+ and p ≥ 1 we define the following semi-norms

||F ||k,p =

(
E[|F |p] +

k∑
i=1

E

[
||DiF ||pH⊗i

0,T

]) 1
p

||DiF ||H⊗i
0,T

=

(∫ T

0

...

∫ T

0

|Di
s1,...,siF |

2ds1...dsi

) 1
2

As usual, ‖F‖0,p ≡ ‖F‖p. If we complete these semi-norms appropriately, one defines the space Dk,p. In

such a case for F ∈ Dk,p, we can define the k-th order derivative as Ds1,...,siF = Ds1 ...DsiF . As with

multiple derivatives we use the symbol Dα
s F for a multiple derivative with respect to the noises indexed in

α at the times indicated by the time vector s. Furthermore we define the space of smooth random variables

D∞ = ∩k,pDk,p. Similarly, for a Hilbert space V and a V -valued random variable one can define Dk,p(V )

and D∞(V ). In particular, for a R-valued random process us, s ≤ T , we define the following semi-norm

||u||k,p =

(
E[||u||pH0,T

] +

k∑
i=1

E

[
||Diu||pH⊗i+1

0,T

]) 1
p

.
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We define the Skorokhod integral δ as the dual operator of the closable operator D. When δ is restricted to

Ft-adapted L2 stochastic processes {us, s ≤ T} then the Skorokhod integral coincides with the Itô integral

δ(u). For this reason we sometimes write δ(u) =
∫ T

0
ut · dWt or δ(u) =

∫ T
0
ut · δWt if we want to be more

explicit. Furthermore if u is an element in the domain of δ (this is the case if e.g. u ∈ D1,2(L2[0, T ])) and

F ∈ D1,2 and it satisfies E
[
F 2
∫ T

0
u2
tdt
]
<∞ then

δ(Fut) = Fδ(u)−
∫ T

0

(DtF ) · utdt

is satisfied provided the right hand side is square integrable and furthermore we have the following duality

formula

E[Fδ(u)] = E

[∫ T

0

DtF · utdt

]
. (3)

Definition 3. For a random vector F = (F 1, ..., F d) ∈
(
D1,2

)d
, we define the d × d Malliavin covariance

matrix MF

M ij
F =< DF i, DF j >H0,T

. (4)

If we have that for any p ≥ 1,

E[(detMF )−p] < +∞

then we say that the random vector F is non-degenerate.

In order to simplify notation we sometimes consider the d×m matrix DF = (DjF i)ij for F = (F 1, ..., F d).

We also have the following integration by parts formula.

Proposition 4. Let F ∈ (D∞)
d

be nondegenerate and let G ∈ D∞, φ ∈ C∞p . Then for any multi-index

α ∈ {1, ..., d}|α|, we have

E[∂αφ(F )G] = E[φ(F )Hα(F,G)]

for a random variable Hα(F,G) ∈ D∞ which has the following explicit expression

H(α1,..,αk)(F,G) = H(αk)(F,H(α1,...,αk−1)(F,G))

H(α1)(F,G) = δ(G
(
M−1
F

)α1j
DF j).

Furthermore there exists positive integers β, γ, q, n1 and n2 such that

‖Hα(F,G)‖p ≤ C
∥∥∥(detMF )

−1
∥∥∥n1

β
‖DF‖n2

|α|,γ ‖G‖|α|,q . (5)
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We will also use conditional Malliavin Calculus in various part of the article. For this we introduce the

notation

Et[G] = E[G|Ft]

||F ||t,t+h,k,p =

(
Et[|F |p] +

k∑
i=1

Et

[
||DiF ||pH⊗i

t,t+h

]) 1
p

, F ∈ Dk,p, k ≥ 1, p ≥ 2, h > 0.

We also use the following notation for the Skorohod integral δt,t+h(u) =
∫ t+h
t

us · dWs. We remark as

before that if u is in the domain of δ and E
[
F 2
∫ T

0
u2
tdt
]
< ∞ and F ∈ D1,2 then we have the duality

formula

Et [Fδt,t+h(u)] = Et

[∫ t+h

t

DsF · usds

]
(6)

if both terms inside the expectations are conditionally square integrable. In many situations we will have

to change probability spaces in order to carry the Malliavin Calculus in the standard Wiener space, given

that the quantity to be computed is determined only by the law of W . We will do this without any further

mention.

Note that usually the spaceH used in the definition of the Malliavin covariance matrix (4) is H = L2[0, T ].

Some other times we may use H = L2[t, t + h]. In such a case we may use the notation M
[t,t+h]
F , H

[t,t+h]
α

etc.

In the next result we give an extension of various classical theorems that can be found in [20], [9], [12],

[13] and [14]. The proof is quite similar so we leave it for the reader. We will apply the following results in

various situations.

3 Problem set-up and main result

The problem that we will treat is the integration by parts formula for the following expression

h(θ) = E
[
exp(jθ · Y 0,z

t )ρ(t)
]

ρ(t) = exp

(∫ t

0

b̄(X0,x
s ) · dWs −

1

2

∫ t

0

b̄T b̄(X0,x
s )ds

)

where W is a m-dimensional Wiener process and

Xs,x
t = x+

∫ t

s

b(Xs,x
u )du+

∫ t

s

σ(Xs,x
u ) ◦ dWu, (7)
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Y s,zt = y +

∫ t

s

ψ(Xs,x
u )du+

∫ t

s

ϕ(Xs,x
u ) ◦ dWu (8)

for z = (x, y). The following hypotheses will be used in our main theorem:

Hypothesis (A1): b̄ : Rd1 → Rm is a bounded and measurable function.

Hypothesis (A2): All the coefficients b : Rd1 → Rd1 , σ : Rd1 → Rd1×m, ϕ : Rd1 → Rd2×m and

ψ : Rd1 → Rd2 are smooth with bounded derivatives.

Hypothesis (A3):σTσ(x) is an invertible matrix for all x ∈ Rm.

Remark 5. 1. The process Y s,(x,0) will appear frequently in our calculations so we may simplify the notation

to Y s,x ≡ Y s,(x,0). Similarly, we will also use Yt = Y 0,x
t and Xt ≡ X0,x

t . Note that due to the fact that

the initial value of Y is zero the flow properties are slightly modified. In fact, the classical flow property is

written as

exp(jθ · Y 0,z
t ) = exp(jθ · Y 0,z

s ) exp(jθ · Y s,(X
0,x
s ,Y 0,z

s )
t ). (9)

2. We also remark that under hypothesis (A2), we have that there exists a pathwise unique solution for (X,Y )

and it has smooth flows satisfying the Markov property. We define its associated semigroup by

Ptf(z) = E[f(Z0,z
t )]

for Zs,zt := (Xs,x
t , Y s,zt ). Note that the following basic estimate is satisfied

|Ptf(z)| ≤ C ‖f‖∞ .

3. Furthermore under hypothesis (A3) we remark that

(σTσ)−1σ(Xt)
T
(
b̃(Xt)dt− dXt

)
= dWt

and therefore

σ(Xs, s ≤ t) = σ(Ws, s ≤ t)

is satisfied. Here

b̃i = bi =
1

2

d1∑
j=1

m∑
l=1

∂jσilσjl.
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Therefore we also have that X satisfies the Markov property(see e.g. [23] Section V.6 Theorem 32). For

example, we have

E

[
f

(∫ b

a

g1(Xs)dWs +

∫ b

a

g2(Xs)ds

)∣∣∣∣∣Fa
]

= E

[
f

(∫ b

a

g1(Xs)dWs +

∫ b

a

g2(Xs)ds

)∣∣∣∣∣Xa

]
.

This property can also be generalized to multiple stochastic integrals.

We define the vector fields associated to Z

V0 =

d1∑
i=1

bi
∂

∂xi
+

d2∑
i=1

ψi
∂

∂xi+d1
− 1

2

d1∑
i,j=1

m∑
l=1

σjl∂jσil
∂

∂xi
− 1

2

d2∑
i=1

d1∑
j=1

m∑
l=1

σjl∂jϕil
∂

∂xi+d1

Vi =

d1∑
j=1

σji
∂

∂xj
+

d2∑
j=1

ϕji
∂

∂xj+d1
, 1 ≤ i ≤ m.

We assume that there exists k ∈ N and c0 > 0 satisfying that for all ξ ∈ Rd and x ∈ Rd1

∑
V ∈∪k

l=1Al

〈V (x), ξ〉2 ≥ c0 ‖ξ‖2 . (10)

This condition is a uniform version of the Hörmander condition. Furthermore we also have the following

classical result.

Theorem 6. Assume Hypothesis (A2) and (10). Then Zs,zt := (Xs,x
t , Y s,zt ) ∈ D∞ and in fact ‖Zs,zt ‖s,t,k,p ≤

C(1 + ‖z‖)µ for any s < t and k, p ∈ N and some positive constants C and µ. The Malliavin covariance

matrix has all inverse moments. That is, there exists positive constants C and µ such that

E

[(
detM

[a,t]

Zs,z
t

)−p]
≤ C(t− a)−µ(1 + ‖z‖)µ

for all a ∈ [s, t) and there exists positive constants C ≡ C(α) and µ ≡ µ(α) such that for any multi-index α

∥∥∥H [a,t]
α (Zs,zt , 1)

∥∥∥
p
≤ C(1 + ‖z‖)µ(t− a)−µ. (11)

Therefore the semigroup associated to Zs,zt satisfies

|∂αPtf(z)| ≤ C(1 + ‖z‖)µt−µ ‖f‖∞

and in particular, the characteristic function of Zs,zt satisfies

∣∣∣E [ejθ·Zs,z
t

]∣∣∣ ≤ C(1 + ‖z‖)µ(t− s)−µ ‖θ‖−k

for any θ ∈ Rd+1 − {0}, any k ∈ N and some constants C and µ. Therefore Zs,zt has a smooth density

pt−s(z, ·).
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We will prove the following result which is more general than Theorem 1.

Theorem 7. Assume hypotheses (A1), (A2), (A3) and that the system (7)-(8) is uniformly hypoelliptic in

the sense of (10). Then there exists constants Ck such that for all k ∈ N, we have for all θ ∈ Rd2

‖θ‖k |h(θ)| = ‖θ‖k
∣∣∣E [exp(jθ · Y 0,x

t )ρ(t)
]∣∣∣ ≤ Ck

The conclusions on the densities of Y will follow from Lemma 2.

4 Proof of Theorem 7

The goal is to prove that ‖θ‖k |h(θ)| is a bounded function of θ for any k > 0. We start with a Lemma which

expands h(θ). The proof uses the Itô-Taylor expansion.

Lemma 8. For any θ ∈ R and t ≥ 0, then

h(θ) = E[exp(jθ · Yt)] + E[IN (t, θ) +RN (t, θ)] (12)

where

IN (t, θ) = exp(jθ · Yt)
N∑
n=1

Ĩn(t), (13)

Ĩn(t) =

∫ t

0

∫ s1

0

...

∫ sn−1

0

b̄(Xsn) · dWsn ...b̄(Xs1) · dWs1

RN (t, θ) = ξt(0, x)

∫ t

0

∫ s1

0

...

∫ sN

0

ρsN+1
b̄(XsN+1

) · dWsN+1
...b̄(Xs1) · dWs1 .

Furthermore

E[|RN (t, θ)|] ≤ exp
(

2−1t
∥∥b̄∥∥2

∞

) (C(d)t
∥∥b̄∥∥∞)(N+1)/2√
(N + 1)!

. (14)

Here C(d) is a universal constant that only depends on the dimension d.

Proof: First we just need to apply the Itô -Taylor expansion of ρ as follows

ρt =

N∑
n=1

Ĩn(t) +

∫ t

0

∫ s1

0

...

∫ sN

0

ρsN+1
b̄(XsN+1

) · dWsN+1
...b̄(Xs1) · dWs1 .

In order to obtain the estimate on RN (t, θ) we just perform an L2(Ω) estimate as follows

E[|RN (t, θ)|] ≤ E

[∣∣∣∣∫ t

0

∫ s1

0

...

∫ sN

0

ρsN+1
b̄(XsN+1

) · dWsN+1
...b̄(Xs1) · dWs1

∣∣∣∣2
]1/2

≤ exp
(

2−1t
∥∥b̄∥∥2

∞

) (C(d)t
∥∥b̄∥∥∞)(N+1)/2√
(N + 1)!

.
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Note that here we have used that

E
[
ρ2
t

]
= E

[
exp

(
2

∫ t

0

b̄(Xs) · dWs − 2

∫ t

0

b̄T b̄(Xs)ds

)
exp

(∫ t

0

b̄T b̄(Xs)ds

)]
≤ exp

(
t
∥∥b̄∥∥2

∞

)
.

�

Considering the result in Lemma 8, we have to find upper bounds for each of the terms in (12). We will

start with each of the terms in the sum (13). The important idea is to separate the domain of integration in

each integral Ĩn in a clever way so that we can apply the integration by parts formula. In order to do this,

we define for each n ∈ N, i = 1, ..., n the following points: ai = t
2i and bi = 3t

2i+1 . and the following sets

An = {(s1, ..., sn) ∈ [0, t]n; sn ≤ ... ≤ s1 ≤ t}

Ani = {(s1, ..., sn) ∈ [0, t]n; s1 > a1, ..., si−1 > ai−1, si ≤ ai} ∩An

A∗n = {(s1, ..., sn) ∈ [0, t]n; s1 > a1, ..., sn−1 > an−1, sn > an} ∩An.

What will be important in what follows is that on Ani , we have that as si ≤ ai and si−1 > ai−1 then

si−1 − si > ai−1 − ai. Then we also define the sets for n ∈ N

Λni = πi−1(Ani ), i = 2, ..., n

Λ̄ni = π̄n−i+1(Ani ), i = 1, ..., n.

Then we have the following important decompositions. The proof is straightforward

Lemma 9. For n ∈ N and i = 1, ..., n we have

An =

n∑
i=1

Ani +A∗n. (15)

Furthermore An1 = Λ̄n1 and for n ∈ N and i = 2, ..., n we have

Ani = Λni × Λ̄ni . (16)

From this lemma one obtains the following decomposition for the integrals in (13).

12



Lemma 10. For n ∈ N, we have

Ĩn(t) = Ūn1 +

n∑
i=2

Ūni U
n
i + Un+1

n+1 (17)

where Uni and Ūni ∈ Fai are given by

Uni =

∫
[0,t]i−1

1Λn
i
(si−1)b̄(Xsi−1) · dWsi−1 ...b̄(Xs1) · dWs1 , i = 2, ..., n (18)

Ūni =

∫
[0,t]n−i+1

1Λ̄n
i
(sn−i+1)b̄(Xsn) · dWsn ...b̄(Xsi) · dWsi , i = 1, ..., n. (19)

The following L2(Ω) estimates are also satisfied: ‖Ūni ‖2 ≤ ‖b̄‖n−i+1
∞

an−i+1
i

(n−i+1)! and ‖Uni ‖ai−1,t,0,2 ≤ ‖b̄‖i−1
∞ (t−

ai−1)i−1.

Proof. The proof starts from the previous lemma as

Ĩn(t) =
∫

[0,t]n
1An b̄(Xsn) · dWsn ...b̄(Xs1) · dWs1 .

Therefore by (15), we first decompose the above stochastic integral in n + 1 stochastic integrals. The first

and the last are already the integrals announced in (17). The last term in (17) follows because Λn+1
n+1 = A∗n.

For the other stochastic integrals one uses (16) and finally note that Ūni ∈ Fai and therefore the first

inner n − i + 1 stochastic integrals can be taken outside of the external i − 1 integrals as their region of

integration is always taken for values of time strictly greater than ai. The L2(Ω) estimates for Uni and Ūni

follows straightforwardly from the Itô-isometry.

Proof of Theorem 7. Our goal is to prove that ‖θ‖k
∣∣E[eiθ·Yt ]

∣∣ ≤ Ck for ‖θ‖ big enough. Throughout

the proof various constants may depend on k but this is not important as k is fixed for the rest of the proof

(although we may try to be explicit at some points).

First, we note that due to (12) we will only consider its middle term (the other terms which are simpler

will be analyzed at the end of the proof):

E [IN (t, θ)] =

N∑
n=1

E
[
exp(jθ · Yt)Ĩn(t)

]
. (20)

Furthermore considering (13) and (17) our goal can be decomposed as follows: Prove that for any k ∈ N,

any θ ∈ Rd2 with ‖θ‖ big enough, there exists a constant Cn,k so that for i = 1, ..., n,

‖θ‖k
∣∣E [exp(jθ · Yt)Ūn1

]∣∣ ≤ Cn,k (21)

‖θ‖k
∣∣E [exp(jθ · Yt)Ūni Uni

]∣∣ ≤ Cn,k, i = 2, ..., n (22)

‖θ‖k
∣∣E [exp(jθ · Yt)Un+1

n+1

]∣∣ ≤ Cn,k. (23)

13



The proof of the first and third statement follow by a simplification of the argument for the second

inequality, so we just prove the second. In fact, using the flow property (see Remark 5.1 (9)), we have

E
[
exp(jθ · Yt)Ūni Uni

]
= E

[
exp(jθ · Yai−1

)Ūni E
[

exp(jθ · Y
ai−1,Xai−1

t )Uni

∣∣∣Fai−1

]]
= E

[
exp(jθ · Ybi)Ūni E

[
exp(jθ · Y bi,Xbi

ai−1 )Fni (Xai−1
)
∣∣∣Fbi]] .

Here we have obviously defined

Fni (x) ≡ Fni (x; θ) := E
[

exp(jθ · Y
ai−1,Xai−1

t )Uni

∣∣∣Xai−1
= x

]
. (24)

The important issue in the above decomposition and the calculations to follow is that as b̄ is not smooth

then Uni and Ūni are not smooth random variables in the Malliavin sense and therefore a direct application of

the integration by parts formula in (22) or (24) using Proposition 4 would not work. Instead, we will use the

partition of time intervals given in Lemma 9 so as to allow for the application of partial Malliavin Calculus

or conditional integration by parts in the appropriately selected time interval [ai, bi].

Now, let φni (z) ≡ φni (z, θ) = exp(jθ · y)Fni (x) where z = (x, y). Therefore using the definition of the

semigroup P and the flow property as explained in Remark 5.1, we have that

E
[
exp(jθ · Yt)Ūni Uni

]
= E

[
exp(jθ · Ybi)Ūni Pai−1−biφ

n
i (Xbi , 0)

]
(25)

= E
[

exp(jθ · Yai)Ūni E
[
exp(jθ · Y ai,Xai

bi
)Pai−1−biφ

n
i (Xbi , 0)

∣∣∣Fai]] .
Now, we perform integration by parts in the inner conditional expectation with respect to the multi-index

β ∈ {d1 + 1, ..., d2}|β| on the interval [ai, bi] and the function gni (z) = exp(jθ · y)Pai−1−biφ
n
i (x, 0). This gives

(here we abuse the notation, letting Z
ai,Xai

bi
≡ Zai,(Xai

,0)

bi
)

E
[

exp(jθ · Y ai,Xai

bi
)Pai−1−biφ

n
i (Xbi , 0)

∣∣∣Fai]
= (jθ)−β̃E

[
∂βg

n
i (Z

ai,Xai

bi
)
∣∣∣Fai]

= (jθ)−β̃E
[
gni (Z

ai,Xai

bi
)H

[ai,bi]
β

(
Z
ai,Xai

bi
, 1
)∣∣∣Fai]

= (jθ)−β̃E
[

exp(jθ · Y ai,Xai

bi
)Pai−1−biφ

n
i (Xbi , 0)H

[ai,bi]
β

(
Z
ai,Xai

bi
, 1
)∣∣∣Fai] , (26)

where β̃ = (β1 − d1, ..., β|β| − d1).

We will now bound each of the terms in (26). Note that from Remark 5.2, (24) and Lemma 10, we have

‖Pai−1−biφ
n
i (Xbi , 0)‖ai,t,0,2 ≤ C‖φni ‖∞ ≤ C‖Fni ‖∞ ≤ C‖Uni ‖ai−1,t,1

≤ C‖b̄‖i−1
∞ (t− ai−1)i−1 (27)

14



Furthermore, using Theorem 6 (in particular (11)), the following estimate is valid for some non-random

constants pi, i = 1, ..., 4, C and µ

∥∥∥H [ai,bi]
β

(
Z
ai,Xai

bi
, 1
)∥∥∥

ai,bi,0,2
≤ C (bi − ai)−µ (1 + ‖Xai‖)

µ
. (28)

Putting (27) and (28) together in (26) and (25) successively with the obvious equality | exp(jθ · y)| = 1,

we obtain the following upper bound

|E
[
exp(jθ · Yt)Ūni Uni

]
|

≤ C (bi − ai)−µ ‖b̄‖i−1
∞ (t− ai−1)i−1|(jθ)−β̃ |E

[
|Ūni | (1 + ‖Xai‖)

µ]
.

Using Lemma 10 (bound of the L2(Ω)-norm of Ūni )and Theorem 6 (bound for the L2(Ω)-norm of ‖Xai‖), we

obtain that there exists constants C (depending on x and |β|) and µ (depending on |β|) such that

|E
[
exp(jθ · Yt)Ūni Uni

]
| ≤ C (bi − ai)−µ |θ|−β̃ ‖b̄‖n∞

an−i+1
i (t− ai−1)i−1

(n− i+ 1)!
. (29)

This finishes the proof of (22). Similarly, one also obtains the proof of (21) and (23). That is,

∣∣E [exp(jθ · Yt)Ūn1
]∣∣

=
∣∣∣E [exp(jθ · Ya1)Ūn1 E

[
(jθ)−β̃ exp(jθ · Y a1,Xa1

t )H
[a1,t]
β (Z

a1,Xa1
t , 1)

∣∣∣Fa1]]∣∣∣
≤ C|θ|−β̃‖b̄‖n∞

an1
n!

(t− a1)−µ, (30)∣∣E [exp(jθ · Yt)Un+1
n+1

]∣∣
=

∣∣E [exp(jθ · Yan)Fn+1
n+1 (Xan)

]∣∣ ≤ C|θ|−β̃‖b̄‖n∞(t− an)na−µn . (31)

Summarizing, we have that the first term in (12) satisfies by direction application of Theorem 6 that

|E[exp(jθ · Y 0,x
t )]| ≤ Ct−µ|θ|−β̃ .

Similarly, the second term which has been decomposed as in (20), had been studied in three separate terms

(29), (30) and (31). Adding all of them, one obtains a bound of the type

|E [IN (t, θ)] | ≤ C|θ|−β̃MN ,

for some positive constants C and M . And finally the third term in (12), had been bounded in (14). Therefore

putting all these terms together we obtain the following estimate for some positive constant M ,

|h(θ)| ≤ |θ|−β̃MN +M (N+1)/2 (N + 1)!−1/2.
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As limN→∞
N !
cN

=∞ for any constant c > 0, we have that there exists N0 such that for any N ≥ N0

M (N+1)/2 (N + 1)!−1/2 ≤M−2N .

Finally one takes N = logM (|θ|β̃)1/2 with θ satisfying logM (|θ|β̃)1/2 ≥ N0. From here we obtain our final

result:

|h(θ)| ≤ C(|θ|−β̃)1/2,

for |θ|β̃ > 1. Therefore the statement of Theorem 7 follows from the inequality ‖θ‖ ≤ max{|θi|; i = 1, .., d2}

�

5 Proof of Theorem 1

Here we assume that σ is smooth and uniformly elliptic and therefore of full rank. Then given a bounded

measurable b : Rd → Rd1 there exists b̄ : Rd → Rm measurable and bounded such that b = σb̄. We apply the

setting in section 3 as follows : b = 0, φ = 0 and let X be the unique pathwise solution of the equation

Xt = x+

∫ t

0

σ(Xs) ◦ dWs.

In this setting we apply the results of the previous section. Then if we define the change of measure

dP

dQ

∣∣∣∣
Ft

= exp

(
−
∫ t

0

b̄(Xs) · dWs +
1

2

∫ t

0

b̄T b̄(Xs)ds

)
.

Then we have that under Q, Bt = Wt +
∫ t

0
b̄(Xs)ds is a F-Brownian motion. Therefore the result in

Theorem 7 implies that the characteristic function of

Yt =

∫ t

0

ψ(Xs)ds

decreases rapidly to zero as ‖θ‖ → ∞ where X is given by

Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs) ◦ dBs. (32)

Therefore by weak uniqueness of solutions, the law of X in (32) and the law of the solution of (1) are the

same. From here we obtain the result. �

Final Remarks: We have presented a general and simple method to prove the smoothness of densities

of random vectors generated by additive functionals of stochastic systems with measurable bounded drift.
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From the arguments is clear that one may further weaken some of the conditions on b as long as the Girsanov

change of measure can be performed. In that sense, b may depend on time, be somewhat random or have

linear growth.

Also one can use the same method of proof to deal with the case

Y 1
t =

∫ t

0

ψ(Xx
s )dµ(s)

where µ has an accumulation point in its support. That is, there exists x0 such that for any ε > 0, we have

µ [(x0 − ε, x0 + ε)− {x0}] > 0.

Other possibilities include the possibility that this method can be used to obtain upper bound for the

densities. Lower bounds can also be possibly be obtained but refined techniques are needed (see e.g. [1] or

[9]). Many other extensions can be considered, such as the case of stochastic partial differential equations.
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(2006), 2406-2440.

[2] R.F. Bass, E. Pardoux, Uniqueness for diffusions with piecewise constant coefficients. Probab. Theory

Related Fields, 76, (1987), 557-572.

[3] F. Flandoli, Remarks on uniqueness and strong solutions to deterministic and stochastic differential

equations. Metrika, 69, (2009), 101-123.

[4] E. Fedrizzi, F. Flandoli, Pathwise uniqueness and continuous dependence for SDEs with nonregular

drift, (2010), preprint.

[5] A. Figalli, Existence and uniqueness of martingale solutions for SDEs with rough or degenerate

coefficients. J. Funct. Anal., 254, (2008), 109–153.

[6] I. Gyongy, T. Martinez, On stochastic differential equations with locally unbounded drift,

Czechoslovak Math. J., 51, (2001), 763–783.

[7] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Second edition,

North-Holland, Kodansha, Amsterdam, (1989).

17



[8] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Second edition, Springer-

Verlag, New York, (1991).

[9] A. Kohatsu-Higa, Lower bounds for densities of uniformly elliptic non-homogeneous diffusions. Pro-

ceedings of the Stochastic Inequalities Conference in Barcelona. Progress in Probability, 56, . (2003),

323-338.

[10] A.N. Krylov, On weak uniqueness for some diffusions with discontinuous coefficients. Stoch. Proc.

Appl., 113, (2004), 37-64.

[11] N.V. Krylov, M. Rockner, Strong solutions of stochastic equations with singular time dependent

drift. Probab. Theory Rel. Fields, 131, (2005), 691-708.

[12] S. Kusuoka, D. Stroock, Applications of the Malliavin Calculus, Part I. Stochastic Analysis, Pro-

ceedings Taniguchi International Symposium Katata and Kyoto 1982, North Holland, Amsterdam, 271-

306, (1984).

[13] S. Kusuoka, D. Stroock, Applications of the Malliavin Calculus, Part II. J. Fac. Sci. Univ. Tokyo

SectIA Math., 32, (1985), 1-76.

[14] S. Kusuoka, D. Stroock, (1987). Applications of the Malliavin Calculus, Part III. J. Fac. Sci. Univ.

Tokyo Sect IA Math., 34, 391-442.
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