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Abstract: The Malliavin-Thalmaier formula was introduced in [8] as an alternative expres-
sion for the density of a multivariate smooth random variable in Wiener space. In comparison
with classical integration by parts formulae, this alternative formulation requires the application
of the integration by parts formula only once to obtain an expression that can be simulated.
Therefore this expression is free from the curse of dimensionality. Unfortunately, when this for-
mula is applied directly in computer simulation, it exhibits unstable behavior. We propose an
approximation to the Malliavin-Thalmaier formula in the spirit of the theory of kernel density
estimation to solve this problem. In the first part of this paper, we obtain a central limit theorem
for the estimation error. And in the latter part, we apply the Malliavin-Thalmaier formula for
the calculation of Greeks in finance.

Keywords: Malliavin-Thalmaier formula, Multidimensional density function, Greeks

1 Introduction

Let (Ω,F , P ) denote a complete probability space carrying a k-dimensional Wiener process W
and let F : Ω → Rd, F = (F1, ..., Fd), d ≥ 2 be a random vector defined in this space. The goal
of the present article is to discuss how to simulate the probability density function of F for d ≥ 2
using Malliavin Calculus. Applications of this problem can be found in a variety of fields where
fundamental solutions or density functions can not be explicitely obtained. This problem has
attracted some interest due to its financial applications although we frame it here as a general
density estimation problem.

The classical integration by parts formula of Malliavin Calculus is an approach that has been
suggested by Fournié et. al. [5]. For definitions and results on Malliavin Calculus, we refer the
reader to Section 2 of this article where a brief introduction is given or Nualart [9], Theorem
2.1.4 and Proposition 2.1.5 p.102-103 or Sanz-Solé [10], Proposition 5.4 p.67.

Our starting point is an expression for the density of a smooth d-dimensional random vector
F . This basic result can be stated as follows.

Let F = (F1, ..., Fd) be a nondegenerate random vector and G a smooth random variable.
We denote by pF,G = E[G/F = x]pF,1(x), where pF,1(x) denotes the density of F . Then there
exists a random variable H(1,2,...,d)(F ; 1) ∈ Lp(Ω) for any p > 2 such that

pF,G(x̂) = E

[
d∏

i=1

1[0,∞)(Fi − x̂i)H(1,2,...,d)(F ; G)

]
, (1.1)

1
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where 1[0,∞)(x) denotes the indicator function. Here, for i = 2, ..., d,

H(1)(F ; G) :=
d∑

j=1

δ
(
G(γ−1

F )1jDFj

)
,

H(1,...,i)(F ; G) :=
d∑

j=1

δ
(
H(1,...,i−1)(F ; G)(γ−1

F )ijDFj

)
. (1.2)

Here δ denotes the adjoint operator of the Malliavin derivative operator D and γF the Malliavin
covariance matrix of F .

In particular, we remark that δ is an extension of the Itô integral that also integrates non-
adapted processes and is usually called the Skorohod integral. The definition of H(1,...,i)(F ; 1) in
iterative form in (1.2), shows that in order to compute this expression one requires the calculation
of i-iterated stochastic integrals.

The Skorohod integral being a non-adapted integral is not easy to simulate in iterative form
and therefore the above expression takes a relatively large amount of time to be simulated when
d is big unless an explicit simple expression for H(1,...,d)(F ; G) is obtained. Besides this problem,
one also encounters problems of high variance and therefore variance reduction methods have to
be incorporated making the problem even less tractable from an applied point of view.

Recently, Malliavin and Thalmaier [8] (Section 4.5.) introduced an alternative integration
by parts formula that seems to alleviate the computational burden for simulation of densities in
high dimension. In fact, Malliavin and Thalmaier express the multi-dimensional delta function
as

δ0(x) = ∆Qd(x),

where ∆ =
∑d

i=1
∂2

∂x2
i

is the Laplace operator and Qd is the fundamental solution of the Poisson

equation. Then for x̂ ∈ Rd, they obtain the following representation for the density of F

pF,G(x̂) = E

[
d∑

i=1

∂

∂xi
Qd(F − x̂)H(i)(F ; G)

]
. (1.3)

Therefore one needs to simulate H(i)(F ; G) which involves only one Skorohod integral instead of
the previous d-iterated Skorohod integrals in (1.2).

In fact, if we partition the time interval in N intervals in order to carry out simulations of
the increments of the Wiener process, then the iterated Skorohod integrals appearing in (1.1)
will require the calculation over Nd cross-intervals. Instead formula (1.3) only requires Nd.

In principle, one expects then that the calculation time will be highly reduced. Nevertheless,
the high variance problem in formula (1.1) is taken to an extreme as the variance of the estimator
in (1.3) is infinite. This problem appears because the limit of ∂

∂xi
Qd(x) at x = 0 is ∞, although

the expectation in (1.3) is finite.
Therefore we propose a slightly modified estimator that depends on a modification parameter

h which will converge to the function ∂
∂xi

Qd(x) as h → 0. This will generate a small bias and a
large variance which is not infinite. Then we control the explosive behavior of the variance using
the number of simulations. This type of calculation is common in kernel density estimation
(KDE) methods where this technique has been very effective. The main difference between
traditional KDE theory and the proposal in this paper is that although the modification we
propose here is mathematically natural it does not correspond to any of the classical estimation
methods studied in KDE theory.

In order to ”tune the parameter h” (expression used in KDE, meaning how to choose h) we
obtain in Section 3 the bias of the estimation procedure. In Section 4 we study the L2(Ω) error
of estimation to finally obtain in Section 5, the central limit theorem that shows how to tune the
parameters of the estimation procedure. In Section 6 we apply the Malliavin-Thalmaier formula
to finance, especially to the calculation of Greeks, in the spirit of Fournié et al [5] where the
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one dimensional examples are considered. We give an expression for Greeks using the Malliavin-
Thalmaier formula. In particular, the weights are free from the curse of dimensionality. That is,
the expression does not have a d-iterated Skorohod integral.

The article closes in section 7, with the discussion of various simulation results. In particular,
we concentrate on the simulation of the density of the stock value and volatility in the Heston
model.

In order to avoid long proofs we have moved to an Appendix all technical details leaving in
the proofs of the main theorems the essential ideas.

Also note that the expression in (1.1) corresponds to a density only in the case that G = 1.
To avoid introducing further terminology, we will keep referring to pF,G(x̂) as the ”density”.

2 Preliminaries

Let us introduce some notations and basic definitions of Malliavin Calculus. For a multi-index
α = (α1, ..., αm) ∈ {1, ..., d}m, we denote by |α| = m the length of the multi-index.

2.1 Malliavin Calculus

Let (Ω,F , P ) be a complete probability space. Let W be a k-dimensional Wiener process on the
time interval [0, T ].

We denote by C∞
p (Rn) the set of all infinitely differentiable functions f : Rn → R such that

f and all of its partial derivatives have at most polynomial growth.
Let S denote the class of smooth random variables of the form

F = f(W (t1), ..., W (tn)), (2.1)

where f ∈ C∞
p (Rn), t1, ..., tn ∈ [0, T ], and n ≥ 1.

If F has the form (2.1) we define its derivative Di
sF, i = 1, ..., k as

Di
sF =

n∑

j=1

∂f

∂xj
(W (t1), ..., W (tn))1[0,ti](s).

We will denote the domain of D in Lp(Ω) by D1,p. This space is the closure of the class of
smooth random variables S with respect to the norm

‖F‖1,p =
{

E
[
|F |p

]
+ E

[
‖DF‖p

L2[0,T ]

]} 1
p
.

We can define the iteration of the operator D in such a way that for a smooth random
variable F , the derivative DkF is a random variable with values on L2[0, T ]⊗k. Then for every
p ≥ 1 and k ∈ N we introduce a seminorm on S defined by

‖F‖p
n,p = E

[
|F |p

]
+

n∑

j=1

E
[
‖DjF‖p

L2[0,T ]⊗j

]
.

For any real p ≥ 1 and any natural number n ≥ 0, we will denote by Dn,p the completion of the
family of smooth random variables S with respect to the norm ‖ · ‖n,p. Note that Dj,p ⊂ Dn,q if
j ≥ n and p ≥ q.

Consider the intersection
D∞ =

⋂

p≥1

⋂

n≥1

Dn,p.

Then D∞ is a complete, countably normed, metric space.
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We will denote by δ the adjoint of the operator D as an unbounded operator from L2(Ω)
into L2(Ω;L2[0, T ]). That is, the domain of δ, denoted by Dom(δ), is the set of L2[0, T ]-valued
square integrable random variables u such that

|E[< DF, u >L2[0,T ]]| ≤ c‖F‖2,

for all F ∈ D1,2, where c is some positive constant depending on u. (here ‖ · ‖2 denotes the
L2(Ω)-norm.) We remark here that any L2 integrable adapted process u, belongs to the domain
of δ. Furthermore one can prove that in such a case δ(u) is the Itô integral of u. In general, δ(u)
is called the Skorohod integral of u. A property of δ that is frequently used is: Let G ∈ D1,2 be
a real-valued random variable such that Gu ∈ L2(Ω, L2[0, T ])), then

δ(Gu) = Gδ(u)− < DG, u >L2[0,T ] (2.2)

where we suppose that the right hand side is integrable.
Suppose that F = (F1, ..., Fd) is a random vector whose components belong to the space D1,1.

We associate with F the following random symmetric nonnegative definite matrix:

γF =
(

< DFi, DFj >L2[0,T ]

)
1≤i,j≤d

.

This matrix is called the Malliavin covariance matrix of the random vector F .

Definition 2.1 We say that the random vector F = (F1, ..., Fd) ∈ (D∞)d is nondegenerate if
the matrix γF is invertible a.s. and

(det γF )−1 ∈
⋂

p≥1

Lp(Ω).

It is well known that if F is nondegenerate and G ∈ D∞ then pF,G exists and is smooth and in
particular one obtains (1.1).

2.2 Malliavin-Thalmaier Representation of Multi-Dimensional Density Func-
tions

We represent the delta function by

δ0(x) = ∆Qd(x) for x ∈ Rd, d ≥ 2,

in the following sense (see Evans [4], p.25). If f is a twice continuously differentiable function with
compact support, then the solution of the Poisson equation ∆u = f is given by the convolution
Qd ∗ f where the fundamental solution (also called Poisson kernel) Qd has the following explicit
form;

Q2(x) := a−1
2 ln |x| and Qd(x) := −a−1

d

1
|x|d−2

for d ≥ 3.

Here ad is the area of the unit sphere in Rd. The derivative of the Poisson kernel is

∂

∂xi
Qd(x) = Ad

xi

|x|d ,

where i = 1, ..., d, A2 := a−1
2 and for d ≥ 3, Ad := a−1

d (d− 2).

Definition 2.1 Given the Rd-valued random vector F and the R-valued random variable G, a
multi-index α and a power p ≥ 1 we say that there is an integration by parts formula (IBP
formula) if there exists a random variable Hα(F ; G) ∈ Lp(Ω) such that

IPα,p(F, G) : E

[
∂|α|

∂xα
f(F )G

]
= E

[
f(F )Hα(F ; G)

]
for all f ∈ C

|α|
0 (Rd).
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Related to the Malliavin-Thalmaier formula, Bally and Caramellino [2], have obtained the
following result, which gives specific conditions for the Malliavin-Thalmaier formula to hold.

Proposition 2.1 (Bally, Caramellino [2]) Suppose that for some p > 1

sup
|a|≤R

E

[∣∣∣ ∂

∂xi
Qd(F − a)

∣∣∣
p

p−1 +
∣∣∣Qd(F − a)

∣∣∣
p

p−1

]
< ∞ for all R > 0, a ∈ Rd. (2.3)

Then for x̂ ∈ Rd, we have,
(i). If IPi,p(F ; G), i = 1, ..., d, holds then the law of F is absolutely continuous with respect to
the Lebesgue measure on Rd and the density pF,G is represented as

pF,G(x̂) = E

[
d∑

i=1

∂

∂xi
Qd(F − x̂)H(i)(F ; G)

]
. (2.4)

(ii). If IPα,p(F ; G) holds for every multi-index α with |α| ≤ m + 1 then pF,G ∈ Cm(Rd) and for
every multi-index ρ with |ρ| ≤ m one has

∂|ρ|

∂xρ
pF,G(x̂) = E

[
d∑

i=1

∂

∂xi
Qd(F − x̂)H(i,ρ)(F ;G)

]
.

The heuristic idea of the above proof is to use the IBP formula as follows

pF,G(x̂) = E
[
∆Qd(F − x̂)G

]
=

d∑

i=1

E

[
∂2

∂x2
i

Qd(F − x̂)G
]

= E

[
d∑

i=1

∂

∂xi
Qd(F − x̂)H(i)(F ;G)

]
.

Next we impose conditions to assure that the assumptions of Proposition 2.1 are satisfied.
The proof is given in the Appendix.

Corollary 2.1 If F = (F1, ..., Fd) is a nondegenerate random vector and G ∈ D∞, then the
probability density function of the random vector F is, for x̂ ∈ Rd,

pF,G(x̂) = E

[
d∑

i=1

∂

∂xi
Qd(F − x̂)H(i)(F ; G)

]
.

Assumption 2.1 From now on, we always assume that F = (F1, ..., Fd) is a d-dimensional
nondegenerate random variable and G ∈ D∞.

3 Bias Error Estimation

In this section, we find the rate of convergence of the modified estimator of the density at x̂ ∈ Rd.
From Assumption 2.1, IPα,p(F ; G) will always hold (see Nualart [9], Proposition 2.1.4, p.100 or
Sanz-Solé [10], Proposition 5.4 p.67). We start with some definitions and notations.
Definitions and Notations
1. For h > 0 and x ∈ Rd, define | · |h by

|x|h :=

√√√√
d∑

i=1

x2
i + h.

Without loss of generality, we assume 0 < h < 1.
2. For i = 1, ..., d, define the following approximation to Qd, for x ∈ Rd,

Qh
d(x) =

{
a−1

2 ln |x|h ; d = 2
−a−1

d
1

|x|d−2
h

; d ≥ 3
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Then we have that
∂

∂xi
Qh

d(x) = Ad
xi

|x|dh
.

3. Then we define the approximation to the density function of F , for x ∈ Rd, as

ph
F,G(x) := E

[
d∑

i=1

∂

∂xi
Qh

d(F − x)H(i)(F ; G)

]
. (3.1)

4. Consider a function η which satisfies;




(i). η ∈ C∞
0 (Rd), η(x) ≥ 0 (x ∈ Rd),

(ii). supp(η) ⊂ {x ∈ Rd| |x| ≤ 1},
(iii).

∫

Rd

η(x)dx = 1,

(iv). η(x) is symmetric, that is, η(x) = η(y) when |x| = |y| for x,y ∈ Rd.

5. For each ε > 0, we define ηε(x) as

ηε(x) :=
1
εd

η
(x

ε

)
.

6. We define η̃ε(x);

η̃ε(x) :=
∫ xd

−∞
· · ·

∫ x1

−∞
ηε(y)dy1...dyd. (≤ 1 from 4.)

7. We often use the spherical coordinates. To avoid long expressions we define Θ := (Θ1, ...,Θd)∗

as the coordinate change

rΘ1 :=r cos(θ1) cos(θ2) · · · cos(θd−2) cos(θd−1),
rΘi :=r cos(θ1) · · · cos(θd−i) sin(θd−i+1) for i = 2, ..., d,

where 0 ≤ r < ∞, −π
2 ≤ θi ≤ π

2 , i = 1, ..., d − 2, 0 ≤ θd−1 ≤ 2π. Set si = sin θi, ci = cos θi for
i = 1, ..., d− 1.

We will give some preparatory Lemmas for the following section.

Lemma 3.1 For m ∈ N∪{0}, let α ∈ {1, ..., d}m, be any multi-index. Then for x̂ = (x̂1, ..., x̂d) ∈
Rd, there exists some constant C such that for p ≥ 1,

lim
ε→0

∣∣∣∣∣
∂|α|

∂xα
E [ηε(F − x̂)G]

∣∣∣∣∣ ≤
C

1 + |x̂|p .

Proof. It is enough to consider the case p ∈ N. In such a case, we have
∣∣∣∣limε→0

(1 + |x̂|p) ∂m

∂xα
E [ηε(F − x̂)G]

∣∣∣∣ =
∣∣∣lim
ε→0

(1 + |x̂|p)E [ηε(F − x̂)Hα(F,G)]
∣∣∣

≤ lim
ε→0

|E [ηε(F − x̂)(1 + (|F |+ ε)p)Hα(F,G)]|
≤ CpE

[∣∣H(1,...,d)(F ; (1 + |F |2p)Hα(F, G))
∣∣] < +∞. ¥

Lemma 3.2 The following holds, for x̂ = (x̂1, ..., x̂d) ∈ Rd,

lim
ε→0

E
[
ηε(F − x̂)G

]
= E[G|F = x̂]pF,1(x̂).
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Proof. Set zi = Fi − xi (i = 1, ..., d). By the dominated convergence theorem and the
properties of ηε, stated in 4., and Fubini’s theorem, we have for ϕ ∈ C∞

0 (Rd),
∫

Rd

(
lim
ε→0

E [ηε(F − x̂)G]
)

ϕ(x̂)dx̂ = lim
ε→0

E

[∫

Rd

ηε(z)ϕ(F + z)dzG
]

= E
[
ϕ(F )G

]

=
∫

Rd

ϕ(x̂)E
[
G

∣∣∣F = x̂
]
pF,1(x̂)dx̂.

¥

The next result gives the order of the error of the approximation to the density.

Theorem 3.1 Let F be a nondegenerate random vector and G ∈ D∞, then for x̂ = (x̂1, ..., x̂d) ∈
Rd,

pF,G(x̂)− ph
F,G(x̂) = Cx̂

1 h ln
1
h

+ C x̂
2 h + o(h),

where

C x̂
1 :=

d∑

i=1

Cx̂
1,i and Cx̂

2 :=
d∑

i=1



Cx̂

2,i +
d∑

j,k=1

Cx̂
3,i,j,k + C x̂

4,i



 ,

and the constants appearing above are defined in Lemmas 8.3, 8.4 and 8.5 in the Appendix.

Proof. As we will have to change from rectangular to spherical coordinates, set y1−x̂1 = rΘ1

and yi − x̂i = rΘi for i = 2, ..., d.
By using Lemma 3.2 and spherical coordinates,

pF,G(x̂)− ph
F,G(x̂) = E

[
d∑

i=1

(
∂

∂xi
Qd(F − x̂)− ∂

∂xi
Qh

d(F − x̂)
)

H(i)(F ; G)

]

= Ad

d∑

i=1

∫

Rd

(
yi − x̂i

|y − x̂|d −
yi − x̂i

|y − x̂|dh

) (
lim

ε→∞E
[
ηε(F − y)H(i)(F ; G)

])
dy1 · · · dyd

= Ad

d∑

i=1

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

(∫ 1

0
+

∫ ∞

1

)
(r2 + h)

d
2 − rd

(r2 + h)
d
2

Θic
d−2
1 · · · cd−2

(
lim
ε→0

ΦF
i,ε(rΘ + x̂)

)
drdθ1...dθd−1,

where ΦF
i,ε(y) := E

[
ηε(F − y)H(i)(F ; G)

]
for i = 1, ..., d. Here note that the limits appearing in

the above formula exist due to Lemma 3.1 and Lemma 3.2.
Next, we consider the integral for r ∈ [0, 1] where the following Taylor formula is used

ΦF
i,ε(rΘ + x̂) = ΦF

i,ε(x̂) +
d∑

j=1

rΘj
∂

∂yj
ΦF

i,ε(x̂) +
1
2

d∑

j,k=1

r2ΘjΘk

∫ 1

0

∂2

∂yk∂yj
ΦF

i,ε(x̂ + γrΘ)dγ.

This leads to three terms, whose orders of convergence are analyzed respectively in Lemmas
8.2, 8.3 and 8.4 in the Appendix. Finally, the integral term for r ∈ [1,+∞) is analyzed in Lemma
8.5 in the Appendix. Therefore one obtains that

pF,G(x̂)− ph
F,G(x̂) =

d∑

i=1



Cx̂

1,ih ln
1
h

+ Cx̂
2,ih + o(h) +

d∑

j,k=1

C x̂
3,i,j,kh + o(h) + C x̂

4,ih + o(h)



 .

The constants are explicitly given in the Appendix. ¥
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4 Estimation of the L2-error of the Approximation

In this section, we compute the rate at which the L2-error of the estimator diverges. That is,

E




(
d∑

i=1

∂

∂xi
Qh

d(F − x̂)H(i)(F ; G)− pF,G(x̂)

)2



= E




(
d∑

i=1

∂

∂xi
Qh

d(F − x̂)H(i)(F ; G)

)2

 + 2pF,G(x̂)

{
pF,G(x̂)− ph

F,G(x̂)
}
− pF,G(x̂)2. (4.1)

Therefore it is enough to estimate the rate of divergence of the first term in (4.1) as the
second term converges to 0 (proved in Theorem 3.1) and the third is a constant. The term we
will calculate is then

E




(
d∑

i=1

∂

∂xi
Qh

d(F − x̂)H(i)(F ; G)

)2

 =

d∑

i,j=1

E

[
∂

∂xi
Qh

d(F − x̂)
∂

∂xj
Qh

d(F − x̂)H(i)(F ; G)H(j)(F ;G)
]

.

Let Φ̂F
i,j,ε(y) := E

[
ηε(F − y)H(i)(F ;G)H(j)(F ; G)

]
for i, j = 1, ..., d.

4.1 Case d = 2

Theorem 4.1 Let F be a nondegenerate random vector and G ∈ D∞. Then for d = 2,

E




(
2∑

i=1

∂

∂xi
Qh

2(F − x̂)H(i)(F ;G)− pF,G(x̂)

)2

 = C x̂

3 ln
1
h

+ O(1) (x̂ ∈ Rd),

where Cx̂
3 :=

∑2
i=1 C x̂

5,i and the constants Cx̂
5,i are defined in Lemma 8.6 in the Appendix.

Proof. Set yi − x̂i = rΘi for i = 1, 2. For i, j = 1, 2, by using Lemma 3.2, Taylor expansion
and spherical coordinates,

E

[
∂

∂xi
Qh

2(F − x̂)
∂

∂xj
Qh

2(F − x̂)H(i)(F ; G)H(j)(F ; G)
]

= A2
2

∫

R2

(yi − x̂i)(yj − x̂j)
|y − x̂|4h

(
lim
ε→0

Φ̂F
i,j,ε(y)

)
dy1dy2

= A2
2

∫ 2π

0

∫ 2|x̂|+1

0
r

r2ΘiΘj

(r2 + h)2

{
lim
ε→0

(
Φ̂F

i,j,ε(x̂) +
2∑

k=1

rΘk

∫ 1

0

∂

∂yk
Φ̂F

i,j,ε(x̂ + γrΘ)dγ

)}
drdθ

+ A2
2

∫ 2π

0

∫ ∞

2|x̂|+1
r

r2ΘiΘj

(r2 + h)2
(
lim
ε→0

Φ̂F
i,j,ε(rΘ + x̂)

)
drdθ. (4.2)

Then by using Lemma 8.6, Lemma 8.7 and Lemma 8.8, we obtain

(4.2) =
2∑

i=1

C x̂
5,i ln

1
h

+ O(1).
¥

4.2 Case d ≥ 3

Theorem 4.2 Let F be a nondenegerate random vector and G ∈ D∞. Then for d ≥ 3,

E




(
d∑

i=1

∂

∂xi
Qh

d(F − x̂)H(i)(F ;G)− pF,G(x̂)

)2

 = C x̂

4

1

h
d
2
−1

+ o

(
1

h
d
2
−1

)
(x̂ ∈ Rd),

where Cx̂
4 =

∑d
i=1 C x̂

8,i and the constants Cx̂
8,i are defined in Lemma 8.10.
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Proof. Let yi − x̂i = rΘi for i = 1, ..., d. For i, j = 1, ..., d, by using Lemma 3.2, Taylor
expansion and spherical coordinates,

E

[
∂

∂xi
Qh

d(F − x̂)
∂

∂xj
Qh

d(F − x̂)H(i)(F ;G)H(j)(F ; G)
]

= A2
d

∫

Rd

(yi − x̂i)(yj − x̂j)
|y − x̂|2d

h

(
lim
ε→0

Φ̂F
i,j,ε(y)

)
dy1...dyd

= A2
d

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

∫ 1

0

r2ΘiΘj

(r2 + h)d
rd−1cd−2

1 · · · cd−2 (4.3)

×
{

lim
ε→0

(
Φ̂F

i,j,ε(x̂) +
d∑

k=1

rΘk

∫ 1

0

∂

∂yk
Φ̂F

i,j,ε(x̂ + γrΘ)dγ

)}
drdθ1...dθd−1

+ A2
d

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

∫ ∞

1

r2ΘiΘj

(r2 + h)d
rd−1cd−2

1 · · · cd−2

(
lim
ε→0

Φ̂F
i,j,ε(x̂ + rΘ)

)
drdθ1...dθd−1.

Then from Lemma 8.10, Lemma 8.11 and Lemma 8.12, we can obtain our result. ¥

Remark. In particular, for h = 0 one obtains that the variance of the Malliavin-Thalmaier esti-
mator is infinite. We also point out that this situation also appears in kernel density estimation
theory. In particular, one uses as estimator h−1K(F−x

h ) where h is the tunning parameter and
K is a smooth density function with mean 0 and finite moments. In this case, the bias is of order
O(h2) and the L2-error is of order O( 1

hd/2 ). In that situation, as we will do in the next section,
the solution is to use the sample size in order to obtain the convergence of the estimator.

5 The Central Limit Theorem

Obviously when performing simulations, one is also interested in obtaining confidence intervals
and therefore the Central Limit Theorem is useful in such a situation. In what follows⇒ denotes
weak convergence and the index j = 1, ..., N denotes N independent copies of the respective
random variables. The symbol b·c , denotes the greatest integer function.

Theorem 5.1 Let Z be a random variable with standard normal distribution and let (F (j), G(j)) ∈
(D∞)d × D∞, j ∈ N be a sequence of independent identically distributed random vectors.
(i). When d = 2, set n =

⌊
C

h ln 1
h

⌋
and N =

⌊
C2

h2 ln 1
h

⌋
for some positive constant C fixed

throughout. Then as h → 0

n


 1

N

N∑

j=1

2∑

i=1

∂

∂xi
Qh

2(F (j) − x̂)H(i) (F ; G)(j) − pF,G(x̂)


 =⇒

√
Cx̂

3 Z − C x̂
1 C, (5.1)

where H(i)(F ; G)(j), i = 1, ..., d, j = 1, ..., N , denotes the weight obtained in the j-th independent
simulation (the same that generates F (j) and G(j)).

(ii). When d ≥ 3, set n =
⌊

C
h ln 1

h

⌋
and N =

⌊
C2

h
d
2 +1(ln 1

h
)2

⌋
for some positive constant C fixed

throughout. Then as h → 0

n


 1

N

N∑

j=1

d∑

i=1

∂

∂xi
Qh

d(F (j) − x̂)H(i) (F ; G)(j) − pF,G(x̂)


 =⇒

√
Cx̂

4 Z − C x̂
1 C. (5.2)
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Proof. Consider

n


 1

N

N∑

j=1

d∑

i=1

∂

∂xi
Qh

d(F (j) − x̂)H(i) (F ; G)(j) − pF,G(x̂)




=
n

N

N∑

j=1

{
d∑

i=1

∂

∂xi
Qh

d(F (j) − x̂)H(i) (F ; G)(j) − ph
F,G(x̂)

}
+ n

(
ph

F,G(x̂)− pF,G(x̂)
)
.

Due to the definition of n and Theorem 3.1 we have that the second term above converges
to −C x̂

1 C. Therefore it only remains to prove a central limit theorem for n
N

∑N
j=1 ζh

j where

ζh
j :=

d∑

i=1

∂

∂xi
Qh

d(F (j) − x̂)H(i) (F ; G)(j) − ph
F,G(x̂).

Note that {ζh
j } is a sequence of the i.i.d. random variables with E[ζh

1 ] = 0.
To prove this, we compute the characteristic function of n

N

∑N
j=1 ζh

j . By Taylor expansion,
Lemma 8.13 and Lemma 8.14,

E


exp



√−1un

N

N∑

j=1

ζh
j





 =

{
1− 1

N

(
1
2

u2n2

N
E

[(
ζh
1

)2
]

+ N ×R
)}N

−→ exp
(
−u2

2
C ′

x̂

)
,

where when d = 2, C ′
x̂ = Cx̂

3 and when d ≥ 3, C ′
x̂ = Cx̂

4 and set

R := E

[
exp

(√−1un

N
ζh
1

)]
−

{
1− 1

2
u2n2

N2
E

[(
ζh
1

)2
]}

.
¥

Remark 5.1 (i). In the assertion of Theorem 5.1, we can freely choose the constant C. There-
fore we have that if C is small (wrt Cx̂

1 ), then the bias becomes small.

(ii). This theorem also gives an idea on how to choose h once n or N is fixed.

(iii). The constants Cx̂
3 and C x̂

1 have explicit expressions but they seem cumbersome to compute
for each model. One alternative way to compute these constants is to perform a pilot
simulation and estimate the constants through a histogram of the left hand side of (5.1) or
(5.2).

(iv). This theorem can be applied to obtain the values of the constants Cx̂
3 and C x̂

1 which later
can be used to choose an appropiate value for h.

6 Application of the Malliavin-Thalmaier formula to Finance

In this section, we compute Greeks using the Malliavin-Thalmaier Formula. The set-up of this
section is rather general and does not refer to the financial issues. We refer to the reader to
Fournié et. al. [5] for more details about the financial background.

We consider a random vector Fµ = (Fµ
1 , ..., Fµ

d ), µ ∈ Rm; m ∈ N which depends on a
parameter µ. We suppose through this section that Fµ is a.s. differentiable with respect to
µ. Furthermore, we assume that Fµ ∈ (D∞)d is a nondegenerate random vector. And let
f(x1, ..., xd) be a payoff function in the following class A; 1

A :=
{

f : Rd → R :
continuous a.e. w.r.t. Lebesgue measure,
and there exist constants c, a such that |f(x)| ≤ c

(1+|x|)a (a > 1).

}
.

1Note that in the case of a put option, clearly (K − x)+ ∈ A. Also in digital put option case, 1[0,K](x) ∈ A.
In the call cases, the results in this section if we apply the put-call parity before calculating the Greeks.

Finally if we want to compute a Greeks for call option case (x − K)+, then one uses directly gi and gh
i after

taking the derivative. Although it is known that then a localization is needed.
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Note that functions in A are bounded.
A greek is defined for f ∈ A, as the following quantity for some j ∈ {1, ..., , m}

∂

∂µj
E

[
f(Fµ

1 , ..., Fµ
d )

]
.

As the study of the second derivative is similar we concentrate on the above quantity and just
quote the result for second derivatives in the next section.

First we give some lemmas. For i = 1, ..., d and f ∈ A, set

gi(y) :=
∫

Rd

f(x)
∂

∂xi
Qd(y − x)dx,

gh
i (y) :=

∫

Rd

f(x)
∂

∂xi
Qh

d(y − x)dx.

Note that gh
i ∈ C∞(Rd) for i = 1, ..., d.

Lemma 6.1 For f ∈ A ∩ Lp(Rd) (p > 1) and i = 1, ..., d

gh
i (y) −→ gi(y) a.e.

Proof. For δ > 0,
∫

Rd

f(x̂)
{

∂Qd

∂xi
(y − x̂)− ∂Qh

d

∂xi
(y − x̂)

}
dx̂

=
∫

Rd

f(x̂)
{

∂Qd

∂xi
(y − x̂)− ∂Qh

d

∂xi
(y − x̂)

}
dx̂ (6.1)

+
∫

Rd

f(x̂)
{

∂Qd

∂xi
(y − x̂)− ∂Qh

d

∂xi
(y − x̂)

}
dx̂. (6.2)

Note that f ∈ A ⇒ f ∈ Lp(Rd) (p > d/a). Then we take d
a < p < d and 1

p + 1
q = 1. By the

dominated convergence theorem, we have that for any δ > 0,

∣∣∣ (6.2)
∣∣∣ ≤ ‖f‖p

∥∥∥∥
∂Qd

∂xi
(y − ·)− ∂Qh

d

∂xi
(y − ·)

∥∥∥∥
q,B(y;δ)c

−→ 0, (h → 0),

where ‖ · ‖p denotes the Lp(Rd)-norm and ‖ · ‖q,B(y;δ)c denotes the Lq(B(y; δ)c)-norm, B(y; δ)c

denotes the complement of the d-dimensional sphere with center y ∈ Rd and radius δ > 0.
Next we consider (6.1).

(6.1) =
∫

|y−x̂|≤δ
(f(x̂)− f(y))

{
∂

∂xi
Qd(y − x̂)− ∂

∂xi
Qh

d(y − x̂)
}

dx̂ (6.3)

+ f(y)
∫

|y−x̂|≤δ

{
∂

∂xi
Qd(y − x̂)− ∂

∂xi
Qh

d(y − x̂)
}

dx̂.

As in the proof of Lemma 8.2, the second term equals 0. Therefore as δ → 0, (6.3) converges
to 0 due to the continuity of f a.e. and that

∫
|y−x̂|≤δ

∣∣∣ ∂
∂xi

Qd(y − x̂)− ∂
∂xi

Qh
d(y − x̂)

∣∣∣ dx̂ < ∞.
Therefore the result follows. ¥

Remark:
From this remark and Lemma 6.1 we obtain the following convergence.

Lemma 6.2 For f ∈ A and i = 1, ..., d,

E
[
gh
i (Fµ)

]
−→ E

[
gi(Fµ)

]
as h → 0. ¥
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We denote the integration with respect to ph
F µ,1(x) by Eh[·]. That is,

Eh
[
f(Fµ)

]
:=

∫

Rd

f(x̂)ph
F µ,1(x̂)dx̂.

Lemma 6.3 For f ∈ A,

E
[
f(Fµ)

]
=

d∑

i=1

E
[
gi(Fµ)H(i)(F

µ; 1)
]
,

Eh
[
f(Fµ)

]
=

d∑

i=1

E
[
gh
i (Fµ)H(i)(F

µ; 1)
]
.

The proof of this lemma is straightforward. In fact, for the proof use the Malliavin-Thalmaier
formula (2.4), multiply it by f(x̂) integrate and finally apply Fubini’s Theorem.

Now we consider an expression of a first derivative.

Proposition 6.1 Let k ∈ {1, ..., m} be fixed. Let Fµ be a nondegenerate random vector which
is a.s. differentiable with respect to µk. Suppose that for every i = 1, ..., d, H(1,...,d,i)(Fµ; 1) is

a.s. differentiable in µk, ∂
∂µk

H(1,...,d,i)(Fµ; 1) ∈ L2(Ω), and also
∂F µ

j

∂µk
∈ L2(Ω) for all j = 1, ..., d.

Then we have

∂

∂µk
Eh

[
f(Fµ)

]
=

d∑

i=1

∂

∂µk
E

[
gh
i (Fµ)H(i)(F

µ; 1)
]
−→

d∑

i=1

∂

∂µk
E

[
gi(Fµ)H(i)(F

µ; 1)
]

=
∂

∂µk
E

[
f(Fµ)

]
.

Proof. Using the IBP formula d times, for i = 1, ..., d, we have that the following equality
is satisfied for f = gh

i , gi

E
[
f(Fµ)H(i)

(
Fµ; 1

)]
= E

[∫ F µ
d

0
· · ·

∫ F µ
1

0
f(z)dzH(1,...,d,i)

(
Fµ; 1

)]
.

For i = 1, ..., d, define

Gh
i (y) :=

∫ yd

0
· · ·

∫ y1

0
gh
i (z)dz and Gi(y) :=

∫ yd

0
· · ·

∫ y1

0
gi(z)dz.

From Lemma 8.7, we have that gh
i , i = 1, ..., d, has at most polynomial growth. Therefore the

same property is satisfied by Gh
i for i = 1, ..., d, and then

∂

∂µk
E

[
Gh

i (Fµ)H(1,...,d,i)

(
Fµ; 1

)]

= E




d∑

j=1

∂

∂yj
Gh

i (Fµ)
∂Fµ

j

∂µk
H(1,...,d,i)

(
Fµ; 1

)

 + E

[
Gh

i (Fµ)
∂

∂µk
H(1,...,d,i)

(
Fµ; 1

)]
.

We consider the first term. Let y be fixed. From Lemma 8.7, gh
i , i = 1, ..., d, has at most

polynomial growth, then it is bounded on [0, y1]× · · · × [0, yd]. Hence for j = 1, ..., d,

∂

∂yj
Gh

i (y) −→ ∂

∂yj
Gi(y) as h → 0.

And since gh
i , i = 1, ..., d, has at most polynomial growth, ∂

∂yj
Gh

i , i, j = 1, ..., d, has also polyno-
mial growth where the growth rate is independent of h. Hence for i, j = 1, ..., d,

E

[
∂

∂yj
Gh

i (Fµ)
∂Fµ

j

∂µk
H(1,...,d,i)

(
Fµ; 1

)]
−→ E

[
∂

∂yj
Gi(Fµ)

∂Fµ
j

∂µk
H(1,...,d,i)

(
Fµ; 1

)]
as h → 0.
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Similarly we prove the convergence of the second term; for i = 1, ..., d,

E

[
Gh

i (Fµ)
∂

∂µk
H(1,...,d,i)

(
Fµ; 1

)]
−→ E

[
Gi(Fµ)

∂

∂µk
H(1,...,d,i)

(
Fµ; 1

)]
.

From here the result follows in a straightforward manner. ¥

For i, j = 1, ..., d, define

gh
i,j(y) :=

∂gh
i

∂yj
(y) =

∂

∂yj

∫

Rd

f(x̂)
∂

∂xi
Qh

d(y − x̂)dx̂, y ∈ Rd. (6.4)

Remark 6.1 Note that if f ∈ A then gh
i,j exists and is finite for i, j = 1, ..., d and y ∈ Rd.

Theorem 6.1 Let k ∈ {1, ..., m} be fixed and let f ∈ A. Moreover, let Fµ be a nondegenerate
random vector, which is a.s. differentiable with respect to µk. Suppose that for j = 1, ..., d,
∂F µ

j

∂µk
∈ D∞. Then for i = 1, ..., d,

∂

∂µk
Eh

[
f(Fµ)

]
=

∂

∂µk

d∑

i=1

E
[
gh
i (Fµ)H(i)

(
Fµ; 1

)]
=

d∑

i,j=1

E

[
gh
i,j(F

µ)H(i)

(
Fµ;

∂Fµ
j

∂µk

)]
.

Moreover if we assume that for all i, j = 1, ..., d, there exists a function gi,j such that gh
i,j(F

µ) →
gi,j(Fµ) in L1+ε(Ω) as h → 0 for some ε > 0, then

d∑

i,j=1

E

[
gi,j(Fµ)H(i)

(
Fµ;

∂Fµ
j

∂µk

)]
=

∂

∂µk
E

[
f(Fµ)

]
. (6.5)

Proof. We prove the first part by using the IBP formula. For i = 1, ..., d,

∂

∂µk
E

[
gh
i (Fµ)H(i)

(
Fµ; 1

)]
=

∂

∂µk
E

[
∂

∂yi
gh
i (Fµ)

]

= E




d∑

j=1

∂2

∂yj∂yi
gh
i (Fµ)

∂Fµ
j

∂µk




=
d∑

j=1

E

[
∂

∂yj
gh
i (Fµ)H(i)

(
Fµ;

∂Fµ
j

∂µk

)]
.

where we have used Lemma 8.15. Therefore we obtain the first assertion. The second claim
follows by taking limits. ¥

Remark 6.2 (i). Note that the expression in Theorem 6.1 is obviously not unique. In fact,
we also have

∂

∂µk

d∑

i=1

E
[
gh
i (Fµ)H(i)

(
Fµ; 1

)]
=

d∑

i,j=1

E

[
gh
i,i(F

µ)H(j)

(
Fµ;

∂Fµ
j

∂µk

)]
.

(ii). In the digital put case, we have an explicit expression of gi,j , i, j = 1, ..., d. That is, let
d = 2 and f(x1, x2) = 1(0 ≤ x1 ≤ K1)1(0 ≤ x2 ≤ K2) ∈ A where K1 and K2 are positive
constants.

g1,1(y) = A2

{
arctan

y2

y1
− arctan

y2 −K2

y1
− arctan

y2

y1 −K1
+ arctan

y2 −K2

y1 −K1

}
,

g2,2(y) = A2

{
arctan

y1

y2
− arctan

y1 −K1

y2
− arctan

y1

y2 −K2
+ arctan

y1 −K1

y2 −K2

}
.

g1,2(y) = g2,1(y) =
A2

2
ln

((
y2
1 + y2

2

) (
(y1 −K1)2 + (y2 −K2)2

)
(
(y1 −K1)2 + y2

2

)
(y2

1 + (y2 −K2)2)

)
(6.6)

These expressions are obtained after taking limits of gh
i,j(y) as h → 0 for i, j = 1, 2.
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(iii). In general, if gh
i,j, i, j = 1, ..., d has an explicit representation, then one can calculate Greeks

easily. If we do not have an explicit expression for the multiple integral then one can use
a suitable approximation for multiple Lebesgue integrals.

(iv). The case of second derivatives follows along a similar pattern and we only quote briefly
the result. For more details, see [11]. Let k, l ∈ {1, ...,m} be fixed. Suppose that for
i = 1, ..., d, l, k = 1, ..., n, ∂F µ

i
∂µk

, ∂F µ
i

∂µl
, ∂2F µ

i
∂µk∂µl

∈ D∞. Furthermore, assume that for all

i, j = 1, ..., d, there exists functions gi,i, gi,i,j such that
(
gh
i,i, g

h
i,i,j

)
(Fµ) → (gi,i, gi,i,j) (Fµ)

in L1+ε(Ω) as h → 0 for some ε > 0. Then we have

∂2

∂µl∂µk
Eh

[
f(Fµ)

]
=

d∑

i,j1=1





d∑

j2=1

E

[
gh
i,i,j2(F

µ)H(j1)

(
Fµ;

∂Fµ
j2

∂µl

∂Fµ
j1

∂µk

)]
+ E

[
gh
i,i(F

µ)H(j1)

(
Fµ;

∂2Fµ
j1

∂µl∂µk

)]



−→
d∑

i,j1=1





d∑

j2=1

E

[
gi,i,j2(F

µ)H(j1)

(
Fµ;

∂Fµ
j2

∂µl

∂Fµ
j1

∂µk

)]
+ E

[
gi,i(Fµ)H(j1)

(
Fµ;

∂2Fµ
j1

∂µl∂µk

)]

 =

∂2

∂µl∂µk
E

[
f(Fµ)

]
.

(v). Note that we have written the approximation of the second derivative as part of the state-
ment. This is because in some particular situations it may be more convenient to use the
approximation to the second derivative rather than the limit expression itself. For exam-
ple, this is the case for d = 2 and when the second derivative coincides with the density
function.

7 Examples and Simulations

In this section, we provide some simple examples of application in two cases. In the first, we
approximate the multi-dimensional log-normal density. We take this as a toy-example, to show
the performance of the Malliavin-Thalmaier method with and without regularization parameter
(i.e. h > 0 or h = 0). In order to be concise, we only describe the results and comment on the
important issues in the toy-example. The case of the bivariate density of the Heston model is
solved using the technique presented in this paper and using a finite difference scheme.

7.1 The multivariate Geometric Brownian motion

Consider the solution of the following stochastic differential equation,

dXi
t

Xi
t

= µidt +
d∑

j=1

σijdW j
t , Xi

0 = xi. (7.1)

where Wt = (W 1
t , ..., W d

t ) is a standard d-dimensional Brownian motion, µi and σij are constants.
The density of Xt = (X1

t , ..., Xd
t ) is the multivariate lognormal distribution. As the goal

is to compare the theoretical density with the Malliavin-Thalmaier approach with and without
regularization parameter h we only need to the formula (3.1) explicitly. In particular, we derive
an expression for the weight H(i)(F ; G). First, define, for i = 1, ..., d,

fi(x) :=y0
i exp

((
µi −

∑d
j=1 σ2

ij

2

)
T + x

)
,

Xi
T :=fi(

d∑

j=1

σijW
j
T ).
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Then, we have using the chain rule for Malliavin derivatives that

DXi
T =





∂

∂x
fi(

d∑

j=1

σijW
j
T )



D




d∑

j=1

σijW
j
T


 = Xi

T




σi11(· ≤ T )
...

σid1(· ≤ T )


 .

Lemma 7.1 Let F be a nondegenerate random vector then the density of F = XT , solution of
equation (7.1), can be expressed as

pF,1(x̂) = Ad

d∑

i=1

E


 Fi − x̂i

|F − x̂|d
d∑

j=1

(−1)i+j det(Σj
i )

det(Σ)

{
W j

T

Fi
+

σijT

Fi

}
 . (7.2)

Here, Σ := (σij)i,j=1,...,d and Σi
j, j, i = 1, ..., d, is a (d− 1)× (d− 1) matrix obtained from Σ by

deleting row i and column j.

Proof. The expression of H(i) does not depend on the function f . Therefore from Proposition
2.1 and Lemma 8.16 in the Appendix, we have an representation of the density pF,G, where
F = XT . ¥

Our approximation to the density is given by

ph
F,1(x̂) = Ad

d∑

i=1

E


 Fi − x̂i

|F − x̂|dh

d∑

j=1

(−1)i+j det(Σj
i )

det(Σ)

{
W j

T

Fi
+

σijT

Fi

}
 . (7.3)

Now we briefly comment on the simulation results. We realized the Monte Carlo simulation
of both formulas (7.3) and (7.2) and compared them with the theoretical result in the d = 2
dimensional case. In particular the parameters were

µ = (0.01, 0.02)

σ =
(

0.1 0.2
0.3 0.2

)
.

The densities were then compared. In particular the Malliavin-Thalmaier formula is highly
biased in comparison with the approximative formula (7.3). The Malliavin-Thalmaier formula
exibited peaks which are due to the unstable behaviour of ∂

∂xi
Qd. This unstability can also be

observed at a local level. In comparison the regularized version behaves smoothly. The choice
of h = 0.01 was an adhoc choice. In fact, the central limit theorem Theorem 5.1 states that the
weak convergence occurs as h → 0. Nevertheless one may also want to minimize the asymptotic
L2-error as it is usually done in kernel density estimation theory. This requires a minimization
procedure that can be done when the constants in the formulas appearing in Sections 3 and 4
are known. In fact, they can be obtained in practice through a pilot simulation that gives the
histogram of the error sequences in the central limit theorem 5.1.

7.2 Example: The Heston model

Now we consider the simulation of the joint density of the underlying price and the volatility in
the Heston model. First we define Heston model [6] as follows;

dSt = µStdt +
√

vtSt

{
ρdW

(2)
t +

√
1− ρ2dW

(1)
t

}
,

dvt = γ (θ − vt) dt + κ
√

vtdW
(2)
t ,

(7.4)
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where µ, γ, θ, κ are positive constants satisfying γθ ≥ 3κ2

4 . This condition assures that v satisfies
the necessary differentiability and integrability properties and that it is strictly positive a.s. For
more information, we refer the reader to Alos, Ewald [1]and Section 6.2.2. in Lamberton, Lapeyre
[7]. Next we consider the following change of variables. Set Xt := ln(St/S0) − µt, ut := avt for
a positive constant a. Then

Xt = X0 − 1
2a

∫ t

0
urdr +

ρ√
a

∫ t

0

√
urdW (2)

r +

√
1− ρ2

a

∫ t

0

√
urdW (1)

r ,

ut = u0 − γ

∫ t

0
urdr + aγθt +

√
aκ

∫ t

0

√
urdW (2)

r .

(7.5)

In this setting we have the following facts
(i).

D(2)
s ut = κ

√
aus

e(t)
e(s)

1[0,t](s), (7.6)

where

e(t) := exp
(
−γt− aκ2

8

∫ t

0

1
ur

dr +
√

aκ

2

∫ t

0

1√
ur

dW (2)
r

)
,

and

D(2)
s e(t) = e(t)

{ √
aκ

2
√

us
+

aκ2

8

∫ t

s

D
(2)
s ur

u2
r

dr −
√

aκ

4

∫ t

s

D
(2)
s ur

u
3
2
r

dW (2)
r

}
1[0,t](s).

Also note that D
(1)
s ut ≡ 0 and D

(1)
s e(t) ≡ 0.

(ii).

D(1)
s Xt =

√
1− ρ2

a

√
us1[0,t](s).

(iii).

D(2)
s Xt

=

(
ρ
√

us√
a
− κ

√
us

2
√

ae(s)

∫ t

s
e(r)dr +

ρκ
√

us

2e(s)

∫ t

s

e(r)√
ur

dW (2)
r +

√
1− ρ2κ

√
us

2e(s)

∫ t

s

e(r)√
ur

dW (1)
r

)
1[0,t](s).

(iv).

D(2)
w D(1)

s Xt =

√
1− ρ2

2
√

aus
D(2)

w us1[0,t](s)1[0,s](w).

(v).

D(2)
w D(2)

s ut = κ
√

aus
e(t)
e(s)

{
κ3√auw

8e(w)

∫ t

s∨w

e(r)
u2

r

dr − aκ2

4

√
uw

e(w)

∫ t

s∨w

e(r)

u
3
2
r

dW (2)
r

+
√

aκ

2
√

uw
1(0 ≤ s ≤ w ≤ t) +

D
(2)
w us

2us
1(0 ≤ w < s ≤ t)

}
.

(vi). Calculation of H(1)(F ; 1) for F = (Xt, ut). With the previous calculations we can apply
the Bismut-Elworthy formula (see Exercise 2.3.5 in [9]), to obtain

H(1)(F ; 1) =
√

a√
1− ρ2t

∫ t

0

1√
us

dW (1)
s .
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(vii).Similarly,

H(2)(F ; 1) =
1
t

{
δ(2)

(
1

D
(2)
· ut

)
− δ(1)

(
D

(2)
· Xt

D
(1)
· Xt

1

D
(2)
· ut

)}
. (7.7)

where
∫ t

0

1

D
(2)
s ut

dW (2)
s

=
1√

aκe(t)

∫ t

0

e(s)√
us

dW (2)
s +

1
2e(t)

∫ t

0

e(s)
us

ds +
aκ2

8e(t)

∫ t

0
r
e(r)
u2

r

dr −
√

aκ

4e(t)

∫ t

0
r
e(r)

u
3
2
r

dW (2)
r ,

and

δ(1)

(
D

(2)
· Xt

D
(1)
· Xt

1

D
(2)
· ut

)

=
ρ

κ
√

a(1− ρ2)e(t)

∫ t

0

e(s)√
us

dW (1)
s − 1

2
√

a(1− ρ2)e(t)

∫ t

0
e(r)

∫ r

0

1√
us

dW (1)
s dr

+
ρ

2
√

1− ρ2e(t)

∫ t

0

e(r)√
ur

∫ r

0

1√
us

dW (1)
s dW (2)

r +
1

2e(t)

∫ t

0

e(r)√
ur

∫ r

0

1√
us

dW (1)
s dW (1)

r ,

where we have used the fact that ut and e(t) are independent of W
(1)
t .

We compare the simulation results of the finite difference method for the associated par-
tial differential equation and the Malliavin-Thalmaier formula with and without regularization
parameter. We observe that the finite difference method is sensible to changes in the initial
condition although the value stabilizes around the values [5.2, 5.4]. The Malliavin-Thalmaier
formula without regularization also seems to converge to a similar value but there seems to be a
bias in the results probably due to the high variance of the estimates. The Malliavin-Thalmaier
formula with regularization exhibits a better behavior with less variance. Confidence intervals
have also been computed. As before the value of h was computed by obtaining the constants C x̂

1

and Cx̂
3 with a pilot simulation in the central limit theorem theorem 5.1. Then one minimizes

the L2 error in a fashion similar to kernel density estimation methods.
We have not compared these results with the classical formulation that follows from equation

(1.1) as this will require a long calculation of triple stochastic integrals. As noted before, when
the dimension of the problem increases then the dimension of the multiple stochastic integrals
in (1.1) will increase while the ones using the Malliavin-Thalmaier formula will remain of order
2.

A detailed description of the simulation study will appear elsewhere.
8 Appendix

8.1 Proof of Corollary 2.1

In this section, we give a proof of Corollary 2.1.

Lemma 8.1 For xi ≥ 0, i = 1, ..., d, the following inequalities hold;
(i). For d = 2 and 1 < κ < 2− 2

p , p > 2 we have

∫ x2

0

∫ x1

0
|Q2(y)| p

p−1 dy1dy2 ≤ π

2
a
− p

p−1

2

{
p− 1

(2− κ)p− 2
+ |x| 2p−1

p−1

}
.

(ii). For p > d− 1 ≥ 2,
∫ xd

0
· · ·

∫ x1

0
|Qd(y)| p

p−1 dy1...dyd ≤
(π

2

)d−1
a
− p

p−1

d

{
p− 1
2p− d

+ |x| 2p−d
p−1

}
.
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Figure 1: Simulations for the Heston model

(iii). For p > d ≥ 2, i = 1, ..., d,
∫ xd

0
· · ·

∫ x1

0

∣∣∣∣
∂

∂yi
Qd(y)

∣∣∣∣
p

p−1

dy1...dyd ≤
(π

2

)d−1
A

p
p−1

d

{
p− 1
p− d

+ |x|
}

.

Proof. (i). Here one performs a change of variables from rectangular to spherical coordinates
and separates the region of integration in two. The first integral is bounded by the integral over
the unit ball and the second on the complement. For the first one uses the inequality

∣∣∣ ln(r)
∣∣∣ < 1

rκ

for 1 < κ and 0 < r < 1. For the second integral, one uses that ln(r) < r for r > 1. Then the
inequality follows after some straightforward integrations where the condition κ < 2− 2

p is used.
(ii) and (iii) are proved changing directly from rectangular to spherical coordinates. ¥

Proof of Corollary 2.1. The goal in the proof is to show that (2.3) is satisfied.
First, note that |Qd(x)| and | ∂

∂xi
Qd(x)| (i = 1, ..., d) are symmetric. That is, |Qd(x)| =

|Qd(−x)| and | ∂
∂xi

Qd(x)| = | ∂
∂xi

Qd(−x)|.
Now, we prove that sup|a|≤R E[|Q2(F−a)| p

p−1 ] < ∞ for all R > 0. From the above symmetric
property, the IBP formula, Lemma 8.1 and Hölder’s inequality,

sup
|a|≤R

E
[∣∣∣Q2(F − a)

∣∣∣
p

p−1
]

= sup
|a|≤R

E

[
∂2

∂y1∂y2

(∫ |F2−a2|

0

∫ |F1−a1|

0

∣∣∣Q2(y)
∣∣∣

p
p−1

dy1dy2

)]

= sup
|a|≤R

E

[(∫ |F2−a2|

0

∫ |F1−a1|

0

∣∣∣Q2(y)
∣∣∣

p
p−1

dy1dy2

)
H(1,2)(F ; 1)

]

≤ π

2
a
− p

p−1

2

{
p− 1

(2− κ)p− 2
+ E

[(
|F |+ R

) 2p−1
p−1

p
p−1

] p−1
p

}
E

[∣∣∣H(1,2)(F ; 1)
∣∣∣
p] 1

p
< ∞.

Proving the inequality for general d and the derivative of Qd follows along the same lines as
above. ¥

8.2 Lemmas used in the proof of Theorem 3.1

Lemma 8.2 For i = 1, ..., d,

Ad

(
lim
ε→0

ΦF
i,ε(x̂)

) ∫ 1

0

(r2 + h)
d
2 − rd

(r2 + h)
d
2

dr

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

Θic
d−2
1 · · · cd−2dθ1...dθd−1 = 0.
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Proof. We know by Lemma 3.1 that limε→0 ΦF
i,ε(x̂) is finite. Similarly, for fixed h we have

that
∫ 1
0

(r2+h)
d
2−rd

(r2+h)
d
2

dr is finite. Therefore the result follows from
∫ π

2

−π
2

sin θ cosn θdθ = 0 for n ∈ N.¥

Lemma 8.3 For i, j = 1, ..., d,

Ad

(
lim
ε→0

∂

∂yj
ΦF

i,ε(x̂)

) ∫ 1

0
r
(r2 + h)

d
2 − rd

(r2 + h)
d
2

dr

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

ΘiΘjc
d−2
1 · · · cd−2dθ1 · · · dθd−1

=

{
Cx̂

1,ih ln
1
h

+ Cx̂
2,ih + o(h) ; for i = j

0 ; for i 6= j,

where

Cx̂
1,i :=

d

4
Ad

(
lim
ε→0

∂

∂yi
ΦF

i,ε(x̂)

)∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

Θ2
i c

d−2
1 · · · cd−2dθ1 · · · dθd−1,

Cx̂
2,i := Ad

(
lim
ε→0

∂

∂yi
ΦF

i,ε(x̂)

) ∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

Θ2
i c

d−2
1 · · · cd−2dθ1 · · · dθd−1

×
[∫ 1

0
u

(u2 + 1)
d
2 − ud

(u2 + 1)
d
2

du +
1
4

ln
1

2d−1 + 2
d
2
−1

+ M0
d

]
,

and M0
d is a constant (defined in the proof).

Proof. In the case of i 6= j, using the same argument of Lemma 8.2, the result follows.
Next in the case of i = j, note that

∣∣∣∣∣Ad

(
lim
ε→0

∂

∂yi
ΦF

i,ε(x̂)

)∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

Θ2
i c

d−2
1 · · · cd−2dθ1 · · · dθd−1

∣∣∣∣∣ < ∞.

Set u = r√
h
.

∫ 1

0
r
(r2 + h)

d
2 − rd

(r2 + h)
d
2

dr = h

∫ 1

0
u

(u2 + 1)
d
2 − ud

(u2 + 1)
d
2

du + h

∫ 1√
h

1
u

∑d
l=1

(
d
l

)
u2(d−l)

(u2 + 1)
d
2 {(u2 + 1)

d
2 + ud}

du.

Clearly the first term on the right hand side has finite value. Next we consider the second term.

h

∫ 1√
h

1
u

∑d
l=1

(
d
l

)
u2(d−l)

(u2 + 1)
d
2 {(u2 + 1)

d
2 + ud}

du

=
h

4

∫ 1√
h

1

2du(u2 + 1)d−1 + d
2(4u3 + 2u)(u4 + u2)

d
2
−1

(u2 + 1)d + (u4 + u2)
d
2

du

+ h

[
−d

4

∫ 1√
h

1

(
2u

d−1∑

l=1

(
d− 1

l

)
u2(d−1−l) + 2u2d−1

((
1 +

1
2u2

)(
1 +

1
u2

) d
2
−1

− 1

))

×
(

(u2 + 1)d + (u4 + u2)
d
2

)−1

du +
∫ 1√

h

1

∑d
l=2

(
d
l

)
u2(d−l)

(u2 + 1)d + (u4 + u2)
d
2

du




=
h

4

{
ln

(
(1 + h)d + (1 + h)

d
2

)
+ d ln

1
h
− ln

(
2d + 2

d
2

)}
+ hMh

d ,

where Mh
d is defined by the term within brackets [ ]. Note that the integrands in Mh

d are of
order O(u2) as u →∞ and therefore integrable. Then we define M0

d := limh→0 Mh
d . Hence

lim
h→0

h
4

{
ln

(
(1 + h)d + (1 + h)

d
2

)
− ln

(
2d + 2

d
2

)}
+ hMh

d

h
=

1
4

(
ln(2) + ln

(
2d + 2

d
2

))
+ M0

d .¥
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Lemma 8.4 For i, j, k = 1, ..., d,

Ad

2

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

∫ 1

0
r2 (r2 + h)

d
2 − rd

(r2 + h)
d
2

ΘiΘjΘkc
d−2
1 · · · cd−2

×
(

lim
ε→0

∫ 1

0

∂2

∂yk∂yj
ΦF

i,ε(x + γrΘ)dγdrdθ1 · · · dθd−1

)
= Cx̂

3,i,j,kh + o(h), (8.1)

where

Cx̂
3,i,j,k :=

dAd

4

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

∫ 1

0
ΘiΘjΘkc

d−2
1 · · · cd−2

(
lim
ε→0

∫ 1

0

∂2

∂yk∂yj
ΦF

i,ε(x̂ + γrΘ)dγ

)
drdθ1 · · · dθd−1.

Proof. From l’Hôpital’s Rule,

lim
h→0

(LHS of (8.1))
h

= lim
h→0

Ad

2

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

∫ 1

0

d

2
rd+2

(r2 + h)
d+2
2

ΘiΘjΘkc
d−2
1 · · · cd−2

×
(

lim
ε→0

∫ 1

0

∂2

∂yk∂yj
ΦF

i,ε(x̂ + γrΘ)dγ

)
drdθ1 · · · dθd−1.

The result follows after applying the bounded convergence theorem. ¥

Lemma 8.5 For i=1,...,d,

Ad

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

∫ ∞

1

(r2 + h)
d
2 − rd

(r2 + h)
d
2

Θic
d−2
1 · · · cd−2

(
lim
ε→0

ΦF
i,ε(x̂ + rΘ)

)
drdθ1...dθd−1

= C x̂
4,ih + o(h), (8.2)

where

C x̂
4,i :=

d

2
Ad

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

∫ ∞

1

1
r2

Θic
d−2
1 · · · cd−2

(
lim
ε→0

ΦF
i,ε(x̂ + rΘ)

)
drdθ1...dθd−1.

Proof. As in the previous Lemma, from l’Hôpital’s Rule, we have

lim
h→0

(LHS of (8.2))
h

= lim
h→0

Ad

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

∫ ∞

1

d

2
rd

(r2 + h)
d
2
+1

Θic
d−2
1 · · · cd−2

(
lim
ε→0

ΦF
i,ε(x̂ + rΘ)

)
drdθ1...dθd−1.

The result follows from the dominated convergence theorem. ¥

8.3 Lemmas used in the proof of Theorem 4.1

We provide some lemmas for Section 4.1. We use the same notations and assumptions in Section
4.1.

Lemma 8.6 For i, j = 1, 2,

A2
2

(
lim
ε→0

Φ̂F
i,j,ε(x̂)

)∫ 2|x̂|+1

0

r3

(r2 + h)2
dr

∫ 2π

0
ΘiΘjdθ1 =

{
C x̂

5,i ln
1
h

+ O(1) ; for i = j

0 ; for i 6= j,
(8.3)

where

C x̂
5,i =

π

2
A2

2

(
lim
ε→0

Φ̂F
i,i,ε(x̂)

)
.
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Proof. In the case of i 6= j, (LHS of (8.3))= 0, as in Lemma 8.2.
Set u := r√

h
. In the case of i = j, then

(LHS of (8.3)) = πA2
2

(
lim
ε→0

Φ̂F
i,i,ε(x̂)

){
1
4

∫ 2|x̂|+1√
h

0

4u3 + 4u

(u2 + 1)2
du−

∫ 2|x̂|+1√
h

0

u

(u2 + 1)2
du

}
.

The first term in the brackets can be computed as follows:

1
4

∫ 2|x̂|+1√
h

0

4u3 + 4u

(u2 + 1)2
du =

1
2

{
ln

(
(2|x̂|+ 1)2 + h

)
+ ln

1
h

}
.

We can easily find that the second term is bounded uniformly in h. ¥

Lemma 8.7 For i, j, k = 1, 2,
∣∣∣∣∣A

2
2

∫ 2π

0

∫ 2|x̂|+1

0

r4ΘiΘjΘk

(r2 + h)2

{
lim
ε→0

∫ 1

0

∂

∂yk
Φ̂F

i,j,ε(x̂ + γrΘ)dγ

}
drdθ1

∣∣∣∣∣ ≤ C x̂
6 ,

where Cx̂
6 is a positive constant which depends on x̂.

Proof. By Lemma 3.1, limε→0

∫ 1
0

∂
∂yk

Φ̂F
i,j,ε(x̂ + γrΘ)dγ is uniformly bounded. Therefore the

result follows. ¥

Lemma 8.8 For i, j = 1, 2,
∣∣∣∣∣A

2
2

∫ 2π

0

∫ ∞

2|x̂|+1
r

r2ΘiΘj

(r2 + h)2
(
lim
ε→0

Φ̂F
i,j,ε(rΘ + x̂)

)
drdθ1

∣∣∣∣∣ ≤ C x̂
7 ,

where Cx̂
7 is a positive constant which depends on x̂.

Proof. From Lemma 3.1,
∣∣∣∣∣A

2
2

∫ 2π

0

∫ ∞

2|x̂|+1
r

r2ΘiΘj

(r2 + h)2
(
lim
ε→0

Φ̂F
i,j,ε(rΘ + x̂)

)
drdθ1

∣∣∣∣∣ ≤ A2
2

∫ 2π

0

∫ ∞

2|x̂|+1

r3

(r2 + h)2
C

1 + |rΘ + x̂|2 drdθ1

≤ C ′

1 + (|x̂|+ 1)2
,

where C ′ is a positive constant. ¥

8.4 Lemmas used in the proof of Theorem 4.2

We provide the lemmas used in Section 4.2. We will use the same notations and assumptions in
Section 4.2.

Lemma 8.9 Set I(n,m) =
∫

sinn x cosm xdx for n + m 6= 0. Then

I(n,m) = −sinn−1 x cosm+1 x

n + m
+

n− 1
n + m

I(n− 2,m) =
sinn+1 x cosm−1 x

n + m
+

m− 1
n + m

I(n,m− 2).

Proof. This is proved using the IBP formula for Lebesgue integrals. ¥



July 17, 2008 Estimating Multidimensional Density Functions 22

Lemma 8.10 For i, j = 1, ..., d,

A2
d

{
lim
ε→0

Φ̂F
i,j,ε(x̂)

}∫ 1

0

rd+1

(r2 + h)d
dr

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

ΘiΘjc
d−2
1 · · · cd−2dθ1...dθd−1

=





C x̂
8,i

1

h
d
2
−1

+ o

(
1

h
d
2
−1

)
; for i = j

0 ; for i 6= j,
(8.4)

where

C x̂
8,i =





3π

16
A2

d

{
lim
ε→0

Φ̂F
i,i,ε(x̂)

}∫ 2π

0

∫ π
2

−π
2

Θ2
i c1dθ1dθ2 (d = 3),

1
d− 2




d
2
−1∏

k=0

2 + 2k
d + 2k


A2

d

{
lim
ε→0

Φ̂F
i,i,ε(x̂)

}∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

Θ2
i c

d−2
1 · · · cd−2dθ1...dθd−1 (d ≥ 4 : even),

π

4




d−7
2∏

k=0

3 + 2k

4 + 2k







d−1
2∏

k=0

1 + 2k

d− 1 + 2k


A2

d

{
lim
ε→0

Φ̂F
i,i,ε(x̂)

}∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

Θ2
i c

d−2
1 · · · cd−2dθ1...dθd−1

(d ≥ 5 : odd),

where if d = 5, then we define
∏ d−7

2
k=0

3+2k
2+2k = 1.

Proof. In the case of i 6= j, (LHS of (8.4))= 0, as in Lemma 8.2.
In the case that i = j we perform successively the following changes of variables u := r√

h
,

u = tan τ and ν = arctan 1√
h

to obtain that

∫ 1

0

rd+1

(r2 + h)d
dr =

1

h
d
2
−1

∫ 1√
h

0

ud+1

(u2 + 1)d
du =

1

h
d
2
−1

∫ ν

0
sind+1 τ cosd−3 τdτ.

(i). In the case of d = 3. Then

1

h
1
2

(∫ ν

0
sin4 τdτ − 3π

16

)
+

3π

16
1

h
1
2

=
3π

16
1

h
1
2

+ o

(
1

h
1
2

)
.

(ii). In the case that d (≥ 4) and even, we have from Lemma 8.9 that

1

h
d
2
−1




∫ ν

0
sind+1 τ cosd−3 τdτ − 1

d− 2

d
2
−1∏

k=0

2 + 2k
d + 2k


 +

1

h
d
2
−1

1
d− 2

d
2
−1∏

k=0

2 + 2k

d + 2k

=
1

h
d
2
−1

1
d− 2

d
2
−1∏

k=0

2 + 2k

d + 2k
+ o

(
1

h
d
2
−1

)
.

(iii). In the case that d (≥ 5) is odd. From Lemma 8.9,

1

h
d
2
−1




∫ ν

0
sind+1 τ cosd−3 τdτ − π

4




d−7
2∏

k=0

3 + 2k
4 + 2k







d−1
2∏

k=0

1 + 2k

d− 1 + 2k







+
π

4




d−7
2∏

k=0

3 + 2k

4 + 2k







d−1
2∏

k=0

1 + 2k
d− 1 + 2k


 1

h
d
2
−1

=
π

4




d−7
2∏

k=0

3 + 2k

4 + 2k







d−1
2∏

k=0

1 + 2k
d− 1 + 2k


 1

h
d
2
−1

+ o

(
1

h
d
2
−1

)
.

¥
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Lemma 8.11 For i, j, k = 1, ..., d,

A2
d

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

∫ 1

0

rd+2ΘiΘjΘk

(r2 + h)d
cd−2
1 · · · cd−2

{
lim
ε→0

∫ 1

0

∂

∂yk
Φ̂F

i,j,ε(x̂ + γrΘ)dγ

}
drdθ1...dθd−1

=





O

(
ln

1
h

)
; for d = 3

O

(
1

h
d−3
2

)
; for d ≥ 4.

Proof. By Lemma 3.1, limε→0(
∫ 1
0

∂
∂yk

Φ̂F
i,j,ε(x + γrΘ)dγ) is bounded. Set u = r√

h
. Then

∫ 1

0

rd+2

(r2 + h)d
dr ≤ 1

h
d−3
2

∫ 1

0

ud+2

(u2 + 1)d
du +

1

h
d−3
2

∫ 1√
h

1

1
ud−2

du.

Hence the result follows. ¥

Lemma 8.12 For i, j = 1, ..., d, there exists some positive constant C such that
∣∣∣∣∣A

2
d

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

∫ ∞

1

rd+1ΘiΘj

(r2 + h)d
cd−2
1 · · · cd−2

(
lim
ε→0

Φ̂F
i,j,ε(rΘ + x̂)

)
drdθ1...dθd−1

∣∣∣∣∣ ≤ C.

Proof. By Lemma 3.1, limε→0 Φ̂F
i,j,ε(rΘ + x) is bounded. Then the result follows. ¥

8.5 Lemmas used in the proof of Theorem 5.1

In this section, we give some lemmas used to prove the central limit theorem.

Lemma 8.13 For any d ≥ 2 and 0 < p < 1
2 , we have |N ×R| ≤ o(hp).

Proof. Generally, for n ∈ N and x ∈ R, we have
∣∣∣∣∣e
√−1x −

n∑

k=0

(
√−1x)k

k!

∣∣∣∣∣ ≤
|x|n+1

(n + 1)!
.

Then it is enough to prove the following; For any d ≥ 2, we have E[|ζh
1 |3] ≤ O(1/hd− 3

2 ). In fact,

E
[∣∣∣ζh

1

∣∣∣
3]
≤ E




∣∣∣∣∣
d∑

i=1

∂

∂xi
Qh

d(F (1) − x̂)H(i)(F ; G)(1)

∣∣∣∣∣

3

 + 3E




(
d∑

i=1

∂

∂xi
Qh

d(F (1) − x̂)H(i)(F ;G)(1)

)2

 ph

F (1),G
(x̂)

+ 3E

[∣∣∣∣∣
d∑

i=1

∂

∂xi
Qh

d(F (1) − x̂)H(i)(F ; G)(1)

∣∣∣∣∣

] (
ph

F (1),G
(x̂)

)2
+

(
ph

F (1),G
(x̂)

)3
. (8.5)

The second and fourth term have already been studied in Theorems 3.1, 4.1 and 4.2. Hence
we estimate the first and third term.
(1). Define

Φi,j,k

F (1)(y) := E
[∣∣∣H(i)(F ; G)(1)H(j)(F ; G)(1)H(k)(F ; G)(1)

∣∣∣
∣∣∣ F (1) = y

]
pF (1),1(y)

for i, j, k = 1, ..., d. Using spherical coordinates and Lemma 3.1, the first term of (8.5) is first
divided into two terms as follows

E




∣∣∣∣∣
d∑

i=1

∂

∂xi
Qh

d(F (1) − x̂)H(i)(F ; 1)(1)

∣∣∣∣∣

3

 (8.6)

≤ A3
d

d∑

i,j,k=1

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

(∫ 1

0
+

∫ ∞

1

)
rd+2|ΘiΘjΘk|
{r2 + h} 3d

2

Φi,j,k

F (1)(x̂ + rΘ)cd−2
1 · · · cd−2drdθ1...dθd−1.



July 17, 2008 Estimating Multidimensional Density Functions 24

We can easily check integrability of the second term of (8.6). We consider the first term.
Set r =

√
h tan(τ), β := arctan 1√

h
. Then there exists a positive constant M such that

(
First term of (8.6)

)
≤ M

hd− 3
2

∫ β

0
sind+2 τ cos2d−4 τdτ

×
∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

d∑

i,j,k=1

|ΘiΘjΘk|cd−2
1 · · · cd−2dθ1...dθd−1.

Then we obtain the order 1

hd− 3
2
.

(2). Next we calculate the third term of (8.5). Set |Φi
F (1)(y)| := E[|H(i)(F ; G)(1)| | F (1) =

y ]pF (1),1(y) for i = 1, ..., d. By using the spherical coordinates and Lemma 3.1

E

[∣∣∣∣∣
d∑

i=1

∂

∂xi
Qh

d(F − x̂)H(i)(F ; 1)

∣∣∣∣∣

]

≤
d∑

i=1

∫ 2π

0

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

{∫ 1

0
+

∫ ∞

1

}
r|Θi|

{r2 + h} d
2

|Φi
F (x̂ + rΘ)|rd−1cd−2

1 · · · cd−2drdθ1...dθd−1

≤ Cd
1√
h

+ C ′
d,

where Cd and C ′
d are some constants. This completes the proof.

Therefore as a result of above, we have our conclusion. ¥

Lemma 8.14

E

[(
ζh
1

)2
]

=





C x̂
3 ln

1
h

+ O(1) ; for d = 2

C x̂
4

1

h
d
2
−1

+ o

(
1

h
d
2
−1

)
; for d ≥ 3.

Proof. In the case of d = 2, the result follows from Theorem 3.1 and Theorem 4.1. In the
case d ≥ 3 it follows from Theorem 3.1 and Theorem 4.2. ¥

8.6 Lemma for Section 6

Lemma 8.15 Assume that f ∈ A then we have that for i = 1, ..., d,

|gi(y)| ≤ a|y|+ b and |gh
i (y)| ≤ a|y|+ b, (8.7)

where a and b are constants which depend on d and are independent of h.

Proof. Equation (8.7) follows easily from the assumptions on f . ¥

8.7 Lemma for Section 7.1

Here we obtain the weight H(i).

Lemma 8.16 Let XT , be the solution of equation (7.1), then an expression for H(j) is

H(j)(XT ; 1) =
1
T

d∑

i=1

(−1)i+j
det(Σi

j)
det(Σ)

{
W i

T

Xj
T

+
σjiT

Xj
T

}
,

where j = 1, ..., d, Σ := (σij)i,j=1,...,d and Σi
j, j, i = 1, ..., d, is a (d− 1)× (d− 1) matrix obtained

from Σ by deleting row i and column j.
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Proof. Let f ∈ C1
0 (Rd) and ei be a unit vector whose ith component is 1 and the other

components are 0. For l = 1, ..., d, we have using the chain rule

Dif(XT ) =
d∑

j=1

∂

∂xj
f(XT )DiXj

T =
d∑

j=1

∂

∂xj
f(XT )Xi

T σij .

If we consider the above as a set of equations for i = 1, ..., d where the unknowns are ∂
∂xj

f(XT ),
we can solve this set of simultaneous equation using Cramer’s formula and obtain

E

[
∂

∂xj
f(XT )

]
= E

[
1

Xj
T det(Σ)

1(· ≤ T )
d∑

i=1

(−1)i+j det
(
Σi

j

)
< Df(XT ), ei >Rd

]
,

where < ·, · >Rd is the inner product in Rd. Then using that the Skorohod integral, δ, is the
dual operator of D we have that

E

[
∂

∂xj
f(XT )

]
= E

[
1

det(Σ)

d∑

i=1

(−1)i+j det
(
Σi

j

)
δi

(
1(· ≤ T )

Xj
T

ei

)
f(XT )

]

Then by (2.2), δi

(
1(·≤T )

Xj
T

)
= W i

T

Xj
T

+ σjiT

Xj
T

and from here the result follows.
¥
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