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Abstract

In this article, we generalize the lower bound estimates for uniformly elliptic diffusion pro-
cesses obtained by Kusuoka and Stroock. We define the concept of uniform elliptic random
variable on Wiener space and show that with this definition one can prove a lower bound esti-
mate of Gaussian type for its density. We apply our results to the case of the stochastic heat
equation under the hypothesis of unifom ellipticity of the diffusion coefficient.

1 Introduction

Professors S. Kusuoka and D. Stroock developed in a series of three long articles the set up for a
variety of results about densities of diffusions that became one of the inspiring cornerstones on the
topic of applications of Malliavin Calculus for random variables on Wiener space and in particular
to solutions of various stochastic differential equations. Now we can use this technique not only
to investigate the existence and smoothness of densities but also its positivity, the support of its
law and large deviations principle between other properties. In Part III of their series of articles
(see [13]), Kusuoka and Stroock proved that the density of a uniformly hypoelliptic diffusion whose
drift is a smooth combination of its diffusion coefficients has a lower bound of Gaussian type. Their
results were the first known detailed global extensions of analytical results obtained in [18] and [4].
In particular, they found particularly refined expressions that related these lower bounds with the
large deviations principle for diffusions.

In this article, we intend to extend their results to various other uniformly elliptic situations that
can not be directly deduced from their article as they specifically use the structure of a diffusion
with a particular condition on the drift. This condition which is the result of the use of the Girsanov
theorem essentially means that the drift has to be a smooth multiple of the diffusion coefficient.
This restriction is not binding in one dimension, given that one is assuming the uniformly elliptic
condition, but it is highly restrictive in higher dimensions. On the other hand, we partially give
up on the idea of finding a very explicit expression for the exponent of the Gaussian density and
instead use an Euclidean norm which is equivalent to the distance appearing in the large deviation
principle under uniformly elliptic conditions.

The general idea of Kusuoka-Stroock’s result is to expand the diffusion using the Itô-Taylor
expansion, then consider the main term in this expansion. Their results rely heavily on a Lie
algebra structure of multiple stochastic integrals generated by the Wiener process and therefore the
use of the Girsanov theorem becomes natural.

∗Keywords: Malliavin Calculus, density estimates, Aronson estimates.
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In this article we will neither use the Girsanov theorem nor the Lie algebra structure of the
stochastic integrals involved. Thinking about several applications in stochastic processes at the
same time it becomes obvious that one can not expect such a nice structure of the multiple integrals
which will in general combine stochastic and Lebesgue integrals. On the other hand, one can expect
that such lower bounds for the density of a big class of elliptic stochastic equations should be satisfied.

Instead of dealing with the problem on a case by case basis we will provide a general theory and a
definition of uniformly elliptic random variable on Wiener space which most probably can be applied
to a wide variety of situations. This definition implies, in particular, that the random variable is
non-degenerate in the Malliavin Calculus sense. With this general definition in hand we will show
that such random variables have densities with Gaussian type lower bounds. As an example, we
apply this result to the stochastic heat equation. Various other cases possibly follow by applying
the general theorem given in this article (Theorem 5). Other possible applications of our results
are in the cases of the solutions of the stochastic Volterra equation, stochastic partial differential
equations, and the functional delay equation. We treat one of these examples and leave the rest for
future publications.

In our general theory, we admit that the variance of the random variable Xt in question could be
of any order. In particular one could think of examples where the variance is of order tα for α > 0.
In the diffusion case α = 1. In a later section, we study the case of the stochastic heat equation
where α = 1/2. The reason for the decrease in the order is due to the degeneracy of the Green
kernel around time 0. One could also develop other examples with time dependent coefficients with
various values of α. For example, for the case of biparametric diffusions one has α = 2.

One can certainly create particular situations were α takes any other value but those cases
require to develop ad-hoc theorems of existence, uniqueness, smoothness, etc. For this reason we
have preferred to use the stochastic heat equation as an example as most of its smoothness properties
related to Malliavin Calculus are well known.

The main result of existence of lower bounds for densities of random variables in Wiener space will
depend on two conditions. The main one being that for all sequence of partitions of the time interval
of the subjacent Wiener process there exists a sequence of successive approximations to the random
variable indexed in the partition (this is condition (H1) in Theorem 5). Next we require that these
approximations have a series decompositions of the Itô-Taylor type. When this series expansion is
truncated at some order we require a series of conditions encapsulated in (H2a)-(H2d). These are
mostly regularity properties except for the property describing the heart of the concept of uniform
ellipticity, (H2c).

This property essentially requires that each difference of two adjacent random variables in the
approximation sequence can be decomposed as a non-trivial Gaussian term (this will be made explicit
in condition (H2c)) and another term which is of smaller order than the Gaussian term (condition
(H2d)).

The proof of the main theorem is based on ideas laid by Kusuoka and Stroock. Nevertheless
several new problems appear due to the generality of the statement. The first is related to the fact
that diffusions are Markov processes while in our general set-up such property can not be expected.
In fact, Kusuoka and Stroock’s approach is based on the Chapman-Kolmogorov formula. We deal
with this problem using conditional expectations for the approximation sequence and at first hope
that one can estimate these quantities uniformly for ω ∈ Ω (see hypothesis 1 in Theorem 1 and
hypothesis A3 in Theorem 3). At first we assume that there is a lower bound estimate for these
conditional expectations in small time. Then in Theorem 5, we prove that our hypotheses (H1)-
(H2) imply the existence of this lower bound. Obtaining this lower bound is done through the
truncated approximation series expansion mentioned previously. Therefore the introduction of the
truncated series expansion becomes natural as we want to control (uniformly) the Gaussian behavior
of the approximation sequence.

Possible applications of these lower estimates for densities can be found in capacity theory ( see
[2]), statistical estimation theory ( see [5] and [6]) and quantile estimation (see [19]).

Section 2 is composed of some notions of Malliavin Calculus used throughout the text. Section
3 contains the main definition of uniformly elliptic random variable and the proof of the main
Theorem under the hypothesis of the local estimate for the conditional density in small time for
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the approximation process. In Section 4 we treat the case of the stochastic heat equation. In the
Appendix we give some accessory results on the stability of the Malliavin covariance matrix of the
approximations as well as some needed estimates for the study of the bounds for the density of the
stochastic heat equation.

C∞b (Rd) denotes the space of real bounded functions on Rd such that they are infinitely differ-
entiable with bounded derivatives. C∞p (Rd) stands for a similar space but the functions and their
derivatives have polynomial growth instead. C, c, m and M denote constants in general that may
change from one line to another unless stated otherwise. ‖ · ‖ without any subindices denotes the
usual Euclidean norm in Rl. The dimension l should be clear from the context.

2 Preliminaries

Let W be a k-dimensional Wiener process indexed in [0, T ]× A with A ⊆ Rm. Our base space will
be a sample space (Ω,F , P ) where the Wiener process will be defined (for details see [16], Section
1.1 and [17]). The associated filtration will be defined as {Ft; 0 ≤ t ≤ T}, where Ft is the σ−field
generated by the random variables {W (s, x), (s, x) ∈ [0, t]×A} with A ⊆ Rm. On the sample space
(Ω,F , P ) one can define a derivative operator D, associated domains (Dn,p, ‖·‖n,p) where n denotes
the order of differentiation and p denotes the Lp(Ω) space where the derivatives lie. We say that F
is smooth if F ∈ D∞ = ∩n∈N,p>1Dn,p. For a q−dimensional random variable F ∈ D1,2, we denote
by ψF the Malliavin covariance matrix associated with F . That is, ψi,j

F =< DF i, DF j >L2[0,T ]×A.
One says that the random variable is non-degenerate if F ∈ D∞ and the matrix ψF is invertible a.s.
and (det ψF )−1 ∈ ∩p≥1L

p(Ω). In such a case expressions of the type E(δy(F )), where δy denotes
the Dirac delta function, have a well defined meaning through the integration by parts formula.
Obviously in such cases one can also define E(δy(F )) as the limit of E(φr(F − y)) as r → 0 with
φr(x) = (2πrd)−1/2 exp(−‖x‖2

2r ).
The integration by parts formula of Malliavin Calculus can be briefly described as follows. Sup-

pose that F is a non-degenerate random variable and G ∈ D∞. Then for any function g ∈ C∞p (Rq)
and a finite sequence of multi-indexes β ∈ ∪l≥1{1, ..., q}l, we have that there exists a random variable
Hβ(F, G) so that

E(gβ(F )G) = E(g(F )Hβ(F,G)) with
∥∥Hβ(F, G)

∥∥
n,p

≤ C(n, p, β)
∥∥det(ψF )−1

∥∥a′

p′ ‖F‖
a
d,b ‖G‖d′,b′ (1)

for some constants C(n, p, β), a, b, d, p′, a′, b′, d′ and β ∈ ∪l≥1{1, ..., q}l. Here gβ denotes the high
order derivative of order l(β) and whose partial derivatives are taken according the index vector β.
This inequality can be obtained following the calculations in Lemma 12 of [15]. In some cases we
will consider the above norms and definitions on a conditional form. That is, we will use partial
Malliavin Calculus. We will denote this by adding a further time sub-index in the norms. For
example, if one completes the space of smooth functionals with the norm

‖F‖2,s = (E(‖F‖2 /Fs))1/2

‖F‖21,2,s = ‖F‖22,s + E(
∫ T

s

‖DuF‖2 du/Fs),

we obtain the space D1,2
s . To simplify the notation we will sometimes denote Es(·) = E(·/Fs) and Ps

the respective conditional probability. Analogously we will write Hβ
s and ψF (s) when considering

integration by parts formula and the Malliavin covariance matrix conditioned on Fs. That is,
ψi,j

F (s) =< DF i, DF j >L2[s,T ]×A. Also we say that F ∈ D1,2

s when F ∈ D1,2
s and ‖F‖1,2,s ∈

∩p≥1L
p(Ω). Similarly, we say that F is s−conditionally non-degenerate if F ∈ D∞s = ∩n∈N,p>1D

n,p

s

and (det ψF (s))−1 ∈ ∩p>1L
p
s(Ω). In such a case, as before, expressions like E(δy(F )/Fs) have a well

defined meaning through the partial integration by parts formula or via an approximation of the
delta function.
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We will also have to deal with similar situations for sequences Fi that are Fti−measurable
random variables, i = 1, ..., N for a partition 0 = t0 < t1 < ... < tN . In this case we say that
{Fi; i = 1, ..., N} ⊆ D∞ uniformly if Fi ∈ D∞ti−1

for all i = 1, ..., N and for any l > 1 one has for each
n, p ∈ N

sup
N

sup
i=1,..,N

E ‖Fi‖l
n,p,ti−1

< ∞.

In what follows we will sometimes expand our basic sample space to include further increments
of another independent Wiener process, W (usually these increments are denoted by Zi = W (i +
1) −W (i) ∼ N(0, 1)) independent of W in such a case we denote the expanded filtration by F t =
Ft∨σ({W (s); s ≤ i+1, ti ≤ t}). We do this without further mentioning and suppose that all norms
and expectations are considered in the extended space. Sometimes we will write F ∈ Ft which
stands for F is a Ft -measurable random variable.

3 General theory

We start first with a result that will be useful only for very particular cases of random variables that
are approximately Gaussian locally. Nevertheless this result shows clearly the natural idea that in
order to obtain lower bounds for densities one has to generalize local estimates to global ones. In
order to carry out this idea one usually uses some type of Markov property related to the random
variable in question. Here we do this but without requiring explicitly this Markov property. In
general all constants appearing in the rest of the article will be independent of T , ω, the variables
y1,...,yN , or the chosen partition (see the next main set-up) unless explicitly stated otherwise. As
the frame throughout the section is the same we will describe it here.

Main set-up: Let F ∈ Ft.
a. Suppose that there exists ε > 0 such that for any sequence of partitions πN = {0 = t0 < t1 <
... < tN = t} whose norm is smaller than ε and |πN | = max{|ti+1 − ti|; i = 0, ..., N − 1} → 0
as N → ∞ there exists a sequence Fi ∈ L2(Ω;Rq), i = 1, ..., N such that FN = F . Fi is a
Fti-measurable random variable and is a ti−1-conditionally non-degenerate random variable. Fi,
i = 0, .., N is an approximating sequence that will allow the application of the parallel of the
Chapman-Kolmogorov formula.
b. Suppose that there exists a function g : [0, T ] × A → R>0 and a positive constant C such that
‖g‖L2([0,T ]×A) ≤ C. This function will measure the local variance of the r.v. F .

c. Define ∆i−1(g) =
∫ ti

ti−1

∫
A
‖g(t, x)‖2 dxdt. This quantity measures the local variance as explained

in a. The general idea of the proof is to use a Chapman-Kolmogorov-like formula although the
sequence Fi, i = 0, ..., N is not necessarily Markovian. Instead of transition probabilities we will
have conditional probabilities. Then we localize each conditional probability where we will obtain
a Gaussian type lower bound. The localization will be done in the set Ai which is defined as
Ai = {y ∈ Rq; ‖y − Fi−1‖ ≤ c∆i−1(g)1/2}. This finishes the main set up and we are now ready to
state the first theorem.

Theorem 1 Under the main setup:
1. Suppose that there exists positive constants M , c and η0 such that for 0 < ∆i−1(g) < η0 and

yi ∈ Ai

E(δyi(Fi)/Fti−1) ≥
1

M∆i−1(g)q/2

for all i = 1, ..., N and almost all ω ∈ Ω.
Under these restrictions we have that there exists a constant M ′ > 0 which depends on all other
constants (M , c, C, η0, T , ε) such that

pF (y) ≥
exp

(
−M ′ ‖y−F0‖2

‖g‖2
L2([0,t]×A)

)

M ′ ‖g‖q/2
L2([0,t]×A)

.
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Proof. First, we assume without loss of generality that ‖g‖2L2([0,T ]×A) ≤ M . Then for any N ,
there exists a partition π = {ti; i = 0, ..., N} with 0 = t0 < ... < tN = t defined by the equalities

∆i−1(g) =
‖g‖2L2([0,t]×A)

N
(2)

Now we show that there exists e0 such that for any e ≤ e0 and N the smallest integer such that

N ≥ e−1(
‖y − F0‖2

‖g‖2L2([0,t]×A)

+ 1)

we have that |πN | < ε. In fact, suppose by contradiction that for each e0 there exists ti ≡ ti(e0)
and ti+1 ≡ ti+1(e0) such that ti+1 − ti ≥ ε then choosing a converging subsequence we have that if
(ti, ti+1) → (a, b) for b − a ≥ ε. This implies g(s, x) = 0 for all (s, x) ∈ (a, b) × A which leads to a
contradiction.

Let η < η0 and assume that e ≤ η
M ∧ 1

2 ∧ c2

4 . Without loss of generality we suppose that M is
big enough so that e ≤ η

M ≤ e0. We also have that

∆i−1(g) ≤
η ‖g‖2L2([0,t]×A)

M

(
‖y − F0‖2

‖g‖2L2([0,t]×A)

+ 1

)−1

≤ η < η0.

Now choose N − 1 points x1, x2,..., xN−1 with xN = y and x0 = F0 so that ‖xi − xi−1‖ =
‖y − F0‖ /N , i = 1, ..., N . Now, suppose that yi ∈ B(xi+1,

1
4c∆i−1(g)1/2) for i = 1, ..., N − 1, then

‖yi−1 − yi‖ ≤ ‖yi−1 − xi‖+ ‖xi − xi+1‖+ ‖xi+1 − yi‖
≤ 1

4
c∆i−1(g)1/2 +

‖y − F0‖
N

+
1
4
c∆i−1(g)1/2

≤
c ‖g‖L2([0,t]×A)

2
√

N
+ e1/2

‖g‖L2([0,t]×A)√
N

≤ c∆i−1(g)1/2,

for i = 2, ..., N − 1. In the following calculation, we obtain the lower bound estimate for the density.
In the calculation to follow, we use expressions like E(δy(F )δyN−1(FN−1)...δy1(F1)) in the sense of
Watanabe (see Chapter V.9 in [7], for another way to carry out these calculations, see the proof of
Theorem 2). This and other terms of the same type have mathematical meaning through the partial
integration by parts formula. Throughout we let yN = y and y0 = x0. By Fubini’s theorem and the
positivity of E(δy(F )δyN−1(FN−1)...δy1(F1)) for any (y, y1, ..., yN−1) ∈ RqN we have that

E(δy(F )) =
∫

Rq

...

∫

Rq

E(δy(F )δyN−1(FN−1)...δy1(F1))dy1...dyN−1

≥
∫

BN

...

∫

B2

E(δy(F )δyN−1(FN−1)...δy1(F1))dy1...dyN−1.

Here Bi = B(xi,
1
4c∆i(g)1/2). Next we use hypothesis 1 and the positivity of the Dirac delta function

to obtain that

E(δy(F )) ≥
∫

BN

...

∫

B2

1
M∆N−1(g)q/2

× E(δyN−1(FN−1)...δy1(F1))dy1...dyN−1.

Then by induction it follows that iterating the above formula one has

pF (y) ≥
∫

BN

...

∫

B2

N∏

i=1

1
M∆i−1(g)q/2

dy1...dyN−1.
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Now we bound this term by below as follows

pF (y) ≥ 1
∆N−1(g)q/2

(
1
M

)N N−1∏

i=1

|Bi+1|
∆i−1(g)q/2

.

Next, we use that |B(x, r)| = C(q)rq and (2). Then we have that the above lower bound can be
rewritten as

pF (y) ≥ C(q)N−1Nq/2cq(N−1)

‖g‖q
L2([0,t]×A) 4q(N−1)

exp (−N log(M))

≥ CqN
q/2 exp(−NC∗)
‖g‖q

L2([0,t]×A)

.

Here Cq = 4q

C(q)cq and C∗ = log(M)− log(C(q)cq/4q) > 0 (otherwise one may take a bigger constant
M in hypothesis 1 and the previous sequence of inequalities follow as well). Finally we use that
e−1 ≤ N ≤ e−1( ‖y−F0‖2

‖g‖2
L2([0,t]×A)

+ 1) + 1 to obtain that

pF (y) ≥
Cqe

−q/2 exp(−(1 + e−1)C∗) exp(−e−1C∗ ‖y−F0‖2
‖g‖2

L2([0,t]×A)
)

‖g‖q
L2([0,t]×A)

≥
exp(−M ′ ‖y−F0‖2

‖g‖2
L2([0,t]×A)

)

M ′ ‖g‖q
L2([0,t]×A)

,

for some M ′ ≡ M ′(q, c, M, e) > 1 where e = e(η, M, c, C, ε).
A common misconception about this theorem is that one may take limits in the above proof

and therefore it becomes a consequence of a large deviation type result. This is not the case, as
N in the proof has to be precisely taken within certain bounds determined by g, e, x0 and y.
Therefore the value of N is fixed in the above proof. Nevertheless, as we know exactly the value for
N needed one could assume that the hypotheses of the theorem are satisfied for a partition having
the properties as needed. Obviously then the partition will have to satisfy somewhat cumbersome
conditions depending on the constants of the problem.

The restriction ‖g‖L2([0,T ]×A) ≤ C actually says that the previous lower bound is only satisfied in
bounded intervals as far as constants are concerned. For t, T →∞, one has to carry out a separate
study. Also it is clear from the proof that the constant M ′ depends on all the other constants
appearing in hypothesis 1 such as c, η0 and M . Nevertheless g can still depend on other parameters
but as long as C does not depend on them then M ′ will also be independent of these parameters.
This will be the case in the next section when we treat the stochastic heat equation.

The above result can not easily be applied in most examples because the hypothesis 1 is as
difficult to obtain as the claimed result itself. In fact hypothesis 1 is a uniformly (in ω ∈ Ω)
localized (in Ai) lower bound of a conditional density of a random variable (Fi) of the same nature
as the conclusion of the theorem.

Now we will try to establish an intermediary Theorem that can be applied in most examples.
Here hypothesis 1 is replaced with an approximate local estimate of the conditional density of Fi

given Fti−1

Theorem 2 Under the main set-up suppose that:
I. There exist positive constants c, M , α > 1, η0 and random variables Ci ∈ F ti , i = 0, ..., N − 1
satisfying that supi=0,...,N E |Ci| ≤ M and such that for 0 < ∆i−1(g) < η0 and yi ∈ Ai

E(δyi(Fi)/Fti−1) ≥
1

M∆i−1(g)q/2
− Ci−1(ω)∆i−1(g)α
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for almost all ω ∈ Ω and i = 1, ..., N .
Then there exists a constant M ′ > 0 that depends on all other constants such that

pF (y) ≥
exp

(
−M ′ ‖y−F0‖2

‖g‖2
L2([0,t]×A)

)

M ′ ‖g‖q/2
L2([0,t]×A)

.

Proof. As in the previous proof first we choose e0 and let η ≤ η0 ∧ 1 and N be the smallest

integer such that

N ≥ e−1(
‖y − F0‖2

‖g‖2L2([0,t]×A)

+ 1)

for e ∈ ( c0
2 , c0) with c0 = η

M ∧ 1
2 ∧ c2

4 ∧ e0. As before we have that there exists a partition πN such
that

∆i−1(g) =
‖g‖2L2([0,t]×A)

N
≤ η.

In comparison with the previous proof, for reasons of clarity in the arguments, we prefer to
follow an approximative argument for delta functions. Then we have by Fatou’s lemma that for any
r1,...,rN−1 > 0

E(δy(F )) ≥ lim inf
r→0

∫

BN

...

∫

B2

E(φr(F − y)φrN−1(FN−1 − yN−1)...φr1(F1 − y1))dy1...dyN−1

≥
∫

BN

...

∫

B2

E

[(
1

M∆N−1(g)q/2
− CN−1∆N−1(g)α

)
...φr1(F1 − y1)

]
dy1...dyN−1

=
∫

BN

...

∫

B2

E

(
1

M∆N−1(g)q/2
φrN−1(FN−1 − yN−1)...φr1(F1 − y1)

)
dy1...dyN−1

−∆N−1(g)αE |CN−1| .

Here we have used that
∫

BN

...

∫

B2

E
(|CN−1|φrN−1(FN−1 − yN−1)...φr1(F1 − y1)

)
dy1...dyN−1 ≤ E |CN−1| ,

which follows from Fubini’s theorem. Next we take the limit when rN−1 → 0 and repeat the same
arguments. By induction and the arguments as in the proof of Theorem 1, we obtain that there
exists a positive constant M depending on all the constants such that

pF (y) ≥
exp

(
−M ‖y−F0‖2

‖g‖2
L2([0,t]×A)

)

M ‖g‖q/2
L2([0,t]×A)

−
N∑

i=1

∆i−1(g)αE |Ci−1|
∫

BN

...

∫

Bi+1

N∏

j=i+1

1
M∆j−1(g)q/2

dyi...dyN−1.

Here we define the previous integral as 1 when i = N . We bound the last integral as follows

∫

BN

...

∫

Bi+1

N∏

j=i+1

1
M∆j−1(g)q/2

dyi...dyN−1 ≤
N∏

j=i+1

|Bj |
M∆j−1(g)q/2

≤
(

C(q)cq

4qM

)N−i

.
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From here one obtains that

pF (y) ≥
exp

(
−M ‖y−F0‖2

‖g‖2
L2([0,t]×A)

)

M ‖g‖q/2
L2([0,t]×A)

−
N∑

i=1

∆i−1(g)αE |Ci−1|
(

C(q)cq

4qM

)N−i

(3)

≥
exp

(
−M ‖y−F0‖2

‖g‖2
L2([0,t]×A)

)

M ‖g‖q/2
L2([0,t]×A)

− C(M)ηαN

where C(M) is a positive constant and we have assumed without loss of generality that M > C(q)cq

4q .
Now take η such that

η <




1
C ′

exp
(
−M ‖y−F0‖2

‖g‖2
L2([0,t]×A)

)

2M ‖g‖L2([0,t]×A)
q/2




1/(α−1)

∧ M

2
∧ c2M

4
∧Me0 ∧ η0 ∧ 1

with C ′ = C(M)
(

2M( ‖y−F0‖2
‖g‖2

L2([0,t]×A)
+ 1) + 1

)
, then e ≥ η

2M = c0
2 and therefore

ηαN ≤ ηα

(
2M

η
(
‖y − F0‖2

‖g‖2L2([0,t]×A)

+ 1) + 1

)
.

Putting these estimates in (3) we have the result with M ′ = 2M .
In this theorem, one uses the full sequence of partitions. In fact, note that as y becomes bigger

η becomes smaller and therefore one refines the partition as e becomes smaller and therefore N
becomes bigger. In the following theorem we establish that if a nice approximating sequence to F
satisfying certain assumptions that ensure an efficient approximation with Malliavin Calculus then
the above hypothesis I is satisfied. Essentially we require that for each i, there is a nicely behaved
approximation F

l

i to Fi. This approximation sequence has to be as close as desired in the sense
of the conditional norms defined in the preliminaries. The degree of closeness is measured through
the parameter l. The higher the value of l, the better the approximation. γ will be a parameter
that measures the quality of the approximation (for more on this, see Section 4). Usually this
approximation will be obtained trough a truncation of the Itô-Taylor series expansion of Fi − Fi−1.
For this reason we refer to F

l

i as the truncated approximation sequence.
Also we require that the behaviour of the Malliavin covariance matrix has to be as the one of

the random variable being approximated. We also assume that the approximating sequence satisfies
hypothesis 1 in Theorem 1 (A3 below). Then we obtain that the hypothesis I in Theorem 2 is
satisfied.

Theorem 3 Under the main set-up suppose that for each l ∈ N and for each partition πN , the
sequence {Fi; , i = 1, ..., N} ⊆ D∞ uniformly and furthermore assume that there exists a sequence
of truncated approximations {F i ≡ F

l

i; i = 1, ..., N} such that F i ∈ F ti∩ D
∞
ti−1

and the following
hypothesis are satisfied

A1.
∥∥Fi − F i

∥∥
n,p,ti−1

≤ C(n, p)∆i−1(g)(l+1)γ for positive constants C(n, p) and γ.

A2. Define F i(ρ) = ρFi + (1 − ρ)F i, ρ ∈ [0, 1]. We assume that there exists a constant C(p)
such that

sup
ρ∈[0,1]

∥∥∥det ψ−1

F i(ρ)
(ti−1)

∥∥∥
p,ti−1

≤ C(p)∆i−1(g)−q.

A3. There exists positive constants M , η0, c such that for yi ∈ Ai and ∆i−1(g) < η0 one has
that

E(δyi(F i)/Fti−1) ≥
1

M∆i−1(g)q/2
,
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for almost all ω ∈ Ω. Then the hypothesis I of Theorem 2 is satisfied with α = (l + 1)γ − qc1 where
c1 is a positive constant. Therefore one has there exists a constant M ′ that depends on all other
constants such that

pF (y) ≥
exp

(
−M ′ ‖y−F0‖2

‖g‖2
L2([0,t]×A)

)

M ′ ‖g‖L2([0,t]×A)
q/2

.

Example 4 In this example we show that the condition A2 on the Malliavin covariance matrix of
F i is needed even if F i is close to Fi according to condition 1. Let πN be a uniform partition of
size h and let Fn = W (tn) and Fn = W (tn−1) +

∫ tn

tn−1
ψK(W (s))dW (s). K ∈ R is a constant to be

fixed later and ψ ∈ C∞b (Rk, [0, 1]) such that ψK(x) = 1 if |xi| ≤ K for all i = 1, ..., k and ψ(x) = 0
if |xi| ≥ K + 1 for some i = 1, ..., k. In order for condition A1 to be satisfied one needs to choose
K ≡ K(l, h) and ψK such that

E

∫ tn

tn−1

(1− ψK(W (s)))2ds ≤ CK

∫ tn

tn−1

P ( max
i=1,...,d

|Wi(s)| > K)ds

≤ CK

∫ tn

tn−1

2
(

1− Φ
(

K√
s

))k

ds

≤ C(tn − tn−1)(l+1)/2.

We claim that this condition is not enough to have that the Malliavin covariance matrix of Fn is
non-degenerate. In fact, on

{ω ∈ Ω; min
s∈[tn−1,tn]

max
i=1,...,k

|Wi(s)| > K}

we have that the partial Malliavin covariance matrix of Fn conditioned on Ftn−1 is zero. It would
be interesting to prove that for any approximation Fn there exists a sequence Fn with the required
characteristics. We have not been able to prove this.
If one instead requires conditions that ensure A3 is satisfied then condition A2 can be simplified as
shown in Proposition 12 in the Appendix.

Proof. It is enough to prove hypothesis I in Theorem 2. Consider for y ∈ Ai and ∆i−1(g) < η0

Eti−1(δy(Fi)) ≥ 1
M∆i−1(g)q/2

+ Eti−1(δy(Fi)− δy(F i)).

Therefore is enough to prove that for almost all ω ∈ Ω, there exists F ti−1-measurable random
variables Ci−1 with the required characteristics such that

∣∣Eti−1(δy(Fi)− δy(F i))
∣∣ ≤ Ci−1∆i−1(g)(l+1)γ−qc2 .

Now we estimate the error terms
∣∣Eti−1

(
δyi(Fi)− δyi(F i)

)∣∣

≤
q∑

β=1

∫ 1

0

∣∣∣Eti−1

(
δ(β)
yi

(αFi + (1− α)F i)
(
F β

i − F
β

i

))∣∣∣ dα

≤ C

∫ 1

0

q∑

β=1

∥∥∥H
γ(β)
ti−1

(
αFi + (1− α)F i, F

β
i − F

β

i

)∥∥∥
1,ti−1

dα

≤ C

∫ 1

0

q∑

β=1

(∥∥∥F β
i − F

β

i

∥∥∥
n3,p3,ti−1

∥∥αFi + (1− α)F i

∥∥c2

n2,p2,ti−1

×
∥∥∥∥det

(
ψαFi+(1−α)F i

(ti−1)
)−1

∥∥∥∥
c1

p1,ti−1

)
dα.
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Here γ(β) = (1, ..., q, β) and the constants above are independent of i. Using our hypothesis A1 and
A2, we have

∣∣Eti−1

(
δyi

(Fi)− δyi
(F i)

)∣∣ (ω) ≤ Ci−1(ω)∆i−1(g)(l+1)γ−qc1 .

Here Ci−1 =
∥∥αFi + (1− α)F i

∥∥c2

n2,p2,ti−1
∈ ∩p≥1L

p(Ω) uniformly in i = 1, ..., N and N . In fact, as

{Fi; , i = 1, ..., N} ⊆ D+∞
uniformly and under hypothesis A1, we have for any a > 1,

sup
N

sup
i=1,.,N

E
∥∥F i

∥∥a

n,p,ti−1
≤ sup

N
sup

i=1,.,N

(
E

∥∥F i − Fi

∥∥a

n,p,ti−1
+ E ‖Fi‖a

n,p,ti−1

)

≤ C(a, n, p).

Therefore taking l big enough and by Theorem 2 we obtain the conclusion.
In the previous theorem γ is a constant that may change depending on the characteristics of how

the underlying noise appears in the structure of F and the quality of the truncated approximation
sequence F i. In the following theorem we give conditions so that a sequence that approximates
Fi as in the previous theorem can be constructed. In this setting we try to give conditions for
the sequence as close as possible to the general set-up of stochastic equations and requiring the
least amount of conditions so that the lower bound for the density of the approximative random
variable can be obtained. In particular, in this set-up the condition of uniform ellipticity becomes
clear. In the next theorem we use the notation Ii

j(h) =
∫ ti

ti−1

∫
h(s, x)dW j(s, x) for j = 1, ..., k and

h : Ω → L2([ti−1, ti] × A;Rq) a Fti−1−measurable smooth random processes. Also we remind the
reader that the random variables Zi are standard normal r.v.’s as defined in the Preliminaries and
that therefore all norms considered from now are in an extended sample space.

Theorem 5 Under the main set-up: Suppose that for each Fi and each l ∈ N there exists a (trun-
cated) sequence F i ≡ F

l

i such that

F i = ∆i−1(g)(l+1)γZi + Fi−1 +
k∑

j=1

Ii
j(hj) + Gl

i.

Here Gl
i are Fti ∩ D

∞
ti−1

random variables and hj ≡ hj |[ti−1,ti]
: Ω → L2([ti−1, ti] × A;Rq) is a

collection of Fti−1−measurable smooth random processes which satisfies for almost all ω ∈ Ω :
(H1) There exists a constant C(n, p, T ) such that

‖Fi‖n,p + sup
ω∈Ω

‖hj‖L2([ti−1,ti]×A) (ω) ≤ C(n, p, T )

for any j = 1, ..., k, i = 0, ..., N and n, p ∈ N.
Furthermore the following four conditions are satisfied for the approximation sequence F i and any
i = 1, ..., N and almost all ω ∈ Ω
(H2a) There exists a constant γ > 0, such that for any n, p, l ∈ N,

∥∥Fi − F i

∥∥
n,p,ti−1

≤ C(n, p, T )∆i−1(g)(l+1)γ .
(H2b) There exists a constant C(p, T ) > 0 such that for any p > 1

∥∥det ψ−1
Fi

(ti−1)
∥∥

p,ti−1
≤ C(p, T )∆i−1(g)−q.

(H2c) Define

A = ∆i−1(g)−1
k∑

j=1




∫ ti

ti−1

〈
h1

j (s), h
1
j (s)

〉
L2(A)

ds ...
∫ ti

ti−1

〈
h1

j (s), h
q
j(s)

〉
L2(A)

ds

: . :∫ ti

ti−1

〈
hq

j(s), h
1
j (s)

〉
L2(A)

ds ...
∫ ti

ti−1

〈
hq

j(s), h
q
j(s)

〉
L2(A)

ds


 .

We assume that there exists strictly positive constants C1(T ) and C2(T ), such that for all ξ ∈ Rq,

C1(T )ξ′ξ ≥ ξ′Aξ ≥ C2(T )ξ′ξ.
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(H2d) There exist constants ε > 0 and C(n, p, l, T ) such that
∥∥Gl

i

∥∥
n,p,ti−1

≤ C(n, p, l, T )∆i−1(g)
1
2+ε.

Under the above conditions one has that there exists a constant M > 0 that depend on all other
constants such that

pF (y) ≥
exp

(
−M ‖y−F0‖2

‖g‖2
L2([0,t]×A)

)

M ‖g‖L2([0,t]×A)
q/2

.

Proof. The proof consists in showing that the conditions in Theorem 3 are satisfied. First,
{Fi; , i = 1, ..., N} ⊆ D+∞

uniformly, due to hypothesis (H1) and the fact that E ‖Fi‖k
n,p,ti−1

≤
C ‖Fi‖k

n,pk . Next F i ∈ F ti
∩ D+∞

ti−1
because of the definition of the truncated approximation sequence

and (H1) (see Proposition 11 in the Appendix). Note that here the Wiener space has been expanded
in order to include also the random variables Zi. Condition A1 and (H2a) are the same. Verifying
condition A2 is quite technical and it is done in Proposition 12 in the Appendix. Here, we verify
condition A3.

First, we renormalize the expression for the density. That is, for Fi−1 = z

Eti−1(δy(F i)) =
1

∆i−1(g)q/2
Eti−1

[
δ(y−z)/∆i−1(g)1/2

(
∆i−1(g)(l+1)γ−1/2Zi

+
k∑

j=1

∆i−1(g)−1/2Ii
j(hj) + ∆i−1(g)−1/2Gl

i





 .

Next we consider the Taylor expansion of the delta function around the non-degenerate random
variable ∆i−1(g)−1/2

∑k
j=1 Ii

j(hj). To simplify the notation we will define

(X, Y ) ≡ (Xi, Yi) =


∆i−1(g)−1/2

k∑

j=1

Ii
j(hj),∆i−1(g)(l+1)γ−1/2Zi + ∆i−1(g)−1/2Gl

i


 .

With this new notation we have by the mean value theorem

Eti−1(δy(F i)) =
1

∆i−1(g)q/2
Eti−1

[
δ(y−z)/∆i−1(g)1/2(X + Y )

]
(4)

=
1

∆i−1(g)q/2



Eti−1

[
δ(y−z)/∆i−1(g)1/2 (X)

]
+

∫ 1

0

q∑

β=1

Eti−1

[
δ
(β)

(y−z)/∆i−1(g)1/2(X + ρY )Y β
]
dρ



 .

Now we apply the integration by parts formula to each of the last q terms in the sum above. As the
treatment is similar for every term we will consider one of these terms:

1
∆i−1(g)q/2

Eti−1

[
δ
(β)

(y−z)/∆i−1(g)1/2 (X + ρY )Y β
]

(5)

=
1

∆i−1(g)q/2
Eti−1

[
1

(
X + ρY ≥ (y − z)

∆i−1(g)1/2

)
Hγ(β)(X + ρY, Y β)

]
.

Here γ(β) = (1, ..., q, β). Now we prove that all these terms in the sum above are bounded below by
an expression of the order ∆i−1(g)ε. That is, by (1), the expression (5) is bounded above by

∥∥∥Hγ(β)(X + ρY, Y β)
∥∥∥

1,ti−1

≤ CΨi−1 (X, Y )

where C is a universal constant which does not depend on ρ. Ψ is a random function defined for
two smooth non-degenerate random variables X, Y as

Ψi−1(X, Y ) = ‖X + ρY ‖a1
d1,b1,ti−1

∥∥det(ψX+ρY (ti−1))−1
∥∥a2

b2,ti−1

∥∥Y β
∥∥

d3,b3,ti−1

≤ C(d1, b1)a1C(b2)a2C(d3, b3)∆i−1(g)ε,
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where the last inequality is valid for l big enough. In fact, the middle term measures the Lp(Ω)-
norms of determinants of the Malliavin covariance matrix. This term is bounded by Proposition 12
in the Appendix (Note that X + ρY = G

′
i(ρ)). The first term, ‖X + ρY ‖a1

d1,b1,ti−1
, and the third,∥∥Y β

∥∥
d3,b3,ti−1

, are bounded due to (H1) and (H2d). Therefore we can conclude that

∫ 1

0

q∑

β=1

Eti−1

[
δ
(β)

(y−z)/∆i−1(g)1/2 (X + ρY )Y β
]
dρ ≤ C∆i−1(g)ε.

Now we have that the first term of (4), ∆i−1(g)−1/2
∑k

j=1 Ii
j(hj) is Gaussian and due to (H2c), its

Fti−1 -conditional covariance matrix, A, is invertible. Therefore the exact conditional density in this
case is clearly

Eti−1

(
δ(y−z)/∆i−1(g)1/2(X)

)
=

1

(2π)q/2 det(A)1/2
exp(− (y − z)′A−1(y − z)

2∆i−1(g)
).

Next, due to hypothesis (H2c) we have that

Eti−1

(
δ(y−z)/∆i−1(g)1/2 (X)

) ≥ 1

(2π)q/2
C

q/2
1

exp(− ‖y − z‖2
C2∆i−1(g)

).

Therefore we have that

Eti−1(δy(F i)) ≥ 1
∆i−1(g)q/2

(
1

(2π)q/2
C

q/2
1

exp(− ‖y − z‖2
C2∆i−1(g)

)− C∆i−1(g)ε

)
.

Next, we have that if ‖y − z‖2 ≤ c∆i−1(g) for a constant c > 0 then

Eti−1(δy(F i)) ≥ 1
∆i−1(g)q/2

(
1

(2π)q/2
C

q/2
1

exp(−C−1
2 c)− C∆i−1(g)ε

)
.

Finally we choose the constants M and η0 in hypothesis A3 as follows. Let M be a positive constant
so that

1

(2π)q/2
C

q/2
1

exp(−C−1
2 c) >

1
M

,

next we define

η0 :=

(
1

(2π)q/2
C

q/2
1 C

exp(−C−1
2 c)− 1

MC

)1/ε

.

With these definitions one obtains that if ∆i−1(g) ≤ η0 and ‖y − z‖2 ≤ c∆i−1(g) then

Eti−1(δy(F i)) ≥ 1
M∆i−1(g)q/2

.

Therefore the estimate in A3 is proven.
When the conditions of the previous theorem are met we will say that the random variable F is

a uniformly elliptic random variable. Note that in this theorem, F i is measurable with respect
to the expanded filtration F tias we are adding the variables Zi to its definition. Also we remark that
the random variables F i, considered in this Theorem will not necessarily be non-degenerate unless
one adds the independent random variable ∆i−1(g)(l+1)γZi. To see this is enough to consider the
case l = 2 with Gl

i a double stochastic integral.

Example 6 For example, suppose that F i = Fi−1+
∫ ti

ti−1
f(Wti−1)dWs+

∫ ti

ti−1

∫ s

ti−1
g(Wti−1)dWudWs

with h(s) = f(Wti−1) and Gi =
∫ ti

ti−1

∫ s

ti−1
g(Wti−1)dWudWs. In this case one has that ψF i

(ti−1) =

(ti − ti−1)
(
f(Wti−1) + g(Wti−1)

(
Wti −Wti−1

))2. Then if f(x) ∈ [C1, C2] for two positive constants
C1 and C2 then the random variable Fi satisfies (H2c). Furthermore if g(x) 6= 0 and bounded then
one has that Eti−1ψF i

(ti−1)−p = +∞ for all p ≥ 1. Obviously the same example can be used for Fi.
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Related with these comments we also emphasize that the above proof can not be used to obtain
a lower bound on the local density of Fi conditioned on Fti−1 . The main reason being that once the
main first order stochastic integrals are taken out of Fi , we are not able to prove the stability of
the Malliavin covariance matrix of X + ρY in the proof (with Zi ≡ 0). Probably, as the previous
example shows, this stability is not satisfied in general.

Nevertheless, one can refine the above proof to obtain that for ‖y − z‖2 ≤ c∆i−1(g) then

Eti−1(δy(F i)) ≥
exp

(
−M‖y−z‖2

∆i−1(g)

)

M∆i−1(g)q/2
.

4 The stochastic heat equation

In most situations like the diffusion case one expects the function g to be constant and therefore the
variance to be of the order tα for α = 1. In the example to be treated in this section we consider
a case where α = 1/2 and the local variance function g is not constant. Other examples using
stochastic differential equations can be constructed if the coefficients were allowed to be degenerate
as functions of time. For example, σ(t, x) = t−αf(x) for a smooth function f and 0 < α < 1/2.
In cases of this type one will need to develop an ad-hoc succession of existence, uniqueness and
smoothness results as the coefficient degenerates at t = 0.

Instead of taking this long and tedious road, we have chosen to show an example where most
of the needed properties are known but still the model is quite general. This is the case of the
stochastic heat equation. In fact, most of the smoothness and estimates for the Malliavin variance
will follow from results in [1]. Our main result in this section, Theorem 10, is the characterization of
a specific Gaussian type lower bound for the density of the solution of the stochastic heat equation.

We believe this is the first study of the kind. The Varadhan estimates for the stochastic heat
equation were obtained in [9] using a general theorem taken from [16]. It is clear that these two
results are deeply related. Nevertheless the arguments to obtain Varadhan’s estimate can not be
extended to obtain inequalities for any time t > 0. In contrast, one can obtain estimates for small
time from our results here but the specification of the distance function is not as accurate as in
Varadhan’s estimate.

Without loss of generality we will assume throughout the text that t < 1. The hypotheses stated
in this section are valid in all that follows.

Now we introduce the stochastic heat equation with Neumann conditions. Let us start by con-
sidering u(t, x) to be the weak solution of the stochastic parabolic equation with Neummann type
conditions of the form

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + b(u(t, x)) + σ(u(t, x))

∂2W

∂t∂x
(x, t)

u(0, x) = u0(x),
∂u

∂x
(t, 0) =

∂u

∂x
(t, 1) = 0, t ∈ [0, 1].

Here b, σ : R→ R are bounded smooth functions with bounded derivatives with |σ(x)| ≥ c0 > 0
for all x ∈ R, u0 : [0, 1] → R with u0 ∈ C([0, 1]). {W (t, x); (t, x) ∈ [0, 1]2} is a Wiener sheet. We
are interested in obtaining lower bounds for the density of F = u(t, x), therefore in reference to
the notation in the previous section we have m = q = 1 and A = [0, 1]. It is well known (see e.g.
Nualart (1998), Section 2.4) that the solution to the above equation exists, is unique, smooth and
non-degenerate (for details, see [1]). The solution can be expressed as

u(t, x) = G(u0)(t, x) +
∫ t

0

∫ 1

0

Gt−s(x, y)b(u(s, y))dyds +
∫ t

0

∫ 1

0

Gt−s(x, y)σ(u(s, y))W (dy, ds).

The above stochastic integral is the one defined by Walsh (for details see e.g. Nualart’s sec-
tion 2.4). Gt(x, y) is the Green kernel associated to the heat equation with Neumann boundary
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conditions. That is,

Gt(x, y) =
1√
4πt

+∞∑
n=−∞

{
exp

(
− (y − x− 2n)2

4t

)
+ exp

(
− (y + x− 2n)2

4t

)}

G(u0)(t, x) =
∫ 1

0

Gt(x, y)u0(y)dy.

Recall that as noted by [1], Remark 2.1 the above kernel satisfies the same properties as in the
Dirichlet boundary condition (A.1), (A.3) and (A.5) established in the Appendix of their paper. The
same results are valid for both cases. In particular we recall that there exists a positive universal
constant c1 such that

c1φ4(t−s)(x− y) ≥ Gt−s(x, y) ≥ φt−s(x− y). (6)

Here, as before, φr(x) denotes the density of a normal random variable with variance r. Note that
Gt−s(x, y) is degenerate at t = s. Therefore the local variance g is not constant in this case. In
particular, consider the trivial case b ≡ 0 and σ ≡ 1. In this case u(t, x) is a Gaussian random
variable with mean G(u0)(t, x) and variance

∫ t

0

∫ 1

0
Gt−s(x, y)2dyds. The density can then be written

explicitly and the behavior of the local variance g is clear: it is constant away from s = t but it
degenerates at a rate (t− s)−1/2. In fact, we set for the rest of the section g(s, y) = φt−s(x− y).

The goal of the next subsections is to prove that under strong ellipticity conditions one has a
Gaussian type lower bounds for the density of u(t, x). In this case the main technical problem lies
in the fact that there is not an Ito’s formula that adapts well to form an Itô-Taylor expansion which
could lead to the definition of Gl

i. This means that the verifications of some of the hypothesis (in
particular (H2a) and (H2d)) may become slightly more complicated.

Here, some of the calculations related to the behavior of the Malliavin variance are related to
existing ones in the literature. Still we have to do them as we have to keep exact track of all
the time dependent constants. These are long calculations which we briefly sketch for the sake of
completeness. In general we refer the reader to [1].

4.1 The lower bound

Now we start the description of all the ingredients towards proving that F = u(t, x) is a uniformly
elliptic random variable. First for any partition 0 = t0 < ... < tN = t, define

Fi = G(u0)(t, x) +
∫ ti

0

∫ 1

0

Gt−s(x, y)b(u(s, y))dyds +
∫ ti

0

∫ 1

0

Gt−s(x, y)σ(u(s, y))W (dy, ds).

It is clear from this definition that Fi ∈ Fti = σ{W (s, x), (s, x) ∈ [0, ti] × [0, 1]} for i = 0, ..., N .
We will prove the needed properties in the main set up and in (H1)-(H2) through a sequence of
lemmas. In the proofs to follow, we frequently use the following estimates.

C1t
1/4 ≤ ‖g‖L2([0,t]×[0,1]) ≤ C2t

1/4 (7)

C1(
√

t− s1 −
√

t− s2)1/2 ≤ ‖g‖L2([s1,s2]×[0,1])

‖g‖L2([s1,s2]×[0,1]) ≤ C2(
√

t− s1 −
√

t− s2)1/2

(s2 − s1)1/2 ≤ C2(
√

t− s1 −
√

t− s2)1/2,

for any s1 ≤ s2 ≤ t , and some positive constants C1, C2 independent of t. We will use them
without further mentioning. In many of the subsequent lemmas we will use the following notation
for high order stochastic derivatives. For a vector v = (y1, s1, ..., yn, sn) ∈ [0, 1]2n, define Dn

v ≡
D(s1,y1)...D(sn,yn), dv = dyndsn...dy1ds1 and v− = (y1, s1, ...., yn−1, sn−1).
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Lemma 7 Suppose that σ, b ∈ C∞b (R), ‖σ(x)‖ ≥ c0 > 0 for all x ∈ R. Then Fi ∈ Dn,p and
‖Fi‖n,p ≤ CFi

(n, p) for a positive constant CFi
(n, p) and any n ∈ N and p > 1. Furthermore, there

exists a constant C(p) > 0 such that for any p > 1 and i = 1, ..., N
∥∥ψ−1

Fi
(ti−1)

∥∥
p,ti−1

≤ C(p)∆i−1(g)−1.

Proof. In [1], it is shown that u(t, x) ∈ D+∞ and supt,x ‖u(t, x)‖n,p ≤ Cu(n, p) (one can also use
Lemma 14 in the Appendix to reprove this result). We use Lemma 14 to prove that ‖Fi‖n,p ≤ C(n, p).
In fact, applying Lemma 14 for Fi and p > 6, we have (for a = 0, b = ti, X = Fi, Ii = 1, f(x) = b(x),
g(x) = σ(x), u′(s, y) = u(s, y), X0 = G(u0)(t, x), cu(l, p(l, j), 0, s) = Cu(l, p(l, j)))

‖Fi‖n,p ≤ |G(u0)(t, x)|+ C(n, p)Cu(n, p′)n

{
ti +

(
t3/2−q − (t− ti)3/2−q

)(p−2)/(2p)

t
1/p
i

}
.

Now we prove the estimate on the Malliavin variance of Fi conditioned to Fti−1 . In order to
obtain this estimate one has to follow carefully the same steps as in [1]. Here we only sketch the
main points, referring the reader to [1] for details

ψFi(ti−1) ≥ c2
0

∫ ti

ti−1

∫ 1

0

Si−1
s,y (ti, x)2dyds,

where Si−1
s,y (t1, x1) is defined for s, t1 ∈ [ti−1, ti], x1, y ∈ [0, 1]

Si−1
s,y (t1, x1) = Gt−s(x1, y) + Qi−1

s,y (t1, x1)

Qi−1
s,y (t1, x1) =

∫ t1

s

∫ 1

0

Gt−s1(x1, y1)b′(u(s1, y1))Ss,y(s1, y1)dy1ds1

+
∫ t1

s

∫ 1

0

Gt−s1(x1, y1)σ′(u(s1, y1))Ss,y(s1, y1)W (dy1, ds1)

Ss,y(s1, y1) =
Ds,yu(s1, y1)

σ(u(s, y))
.

Then we will estimate the probability pti−1 = Pti−1

(∫ ti

ti−1

∫ 1

0
Si−1

s,y (ti, x)2dyds ≤ c
2 ‖g‖2L2([ti−ε,ti]×[0,1])

)

for 0 < ε ≤ ti−ti−1 and c is a positive constant such that c ‖g‖2L2([ti−ε,ti]×[0,1]) < 2
3

∫ ti

ti−ε

∫ 1

0
Gt−s(x, y)2dyds.

For this, note that

pti−1 ≤ Pti−1

(
2
3

∫ ti

ti−ε

∫ 1

0

Gt−s(x, y)2dyds− 2
∫ ti

ti−ε

∫ 1

0

Qi−1
s,y (ti, x)2dyds ≤ c

2
‖g‖2L2([ti−ε,ti]×[0,1])

)

≤ Eti−1

(∫ ti

ti−ε

∫ 1

0

Qi−1
s,y (ti, x)2dyds

)p ( c

2
‖g‖2L2([ti−ε,ti]×[0,1])

)−p

.

Now we only need to estimate the above conditional expectation. In order to shorten the length of
the equations we assume without loss of generality that b′ = 0. The general case is similar. The
needed estimate is obtained using Burkholder’s inequality for martingales in Hilbert spaces (see [14],
E.2, p. 212) then one has that using (6) and Lemma 13

E

(∫ ti

ti−ε

∫ 1

0

Qi−1
s,y (ti, x)2dyds

)p

≤ CEti−1

[∫ ti

ti−ε

∫ 1

0

G2
t−s1

(x, y1)
∫ s1

ti−ε

∫ 1

0

Ss,y(s1, y1)2dydsdy1ds1

]p

≤ C

(∫ ti

ti−ε

∫ 1

0

G2q
t−s1

(x, y1)dy1ds1

)p/q ∫ ti

ti−ε

∫ 1

0

Eti−1

(∫ s1

ti−ε

∫ 1

0

Ss,y(s1, y1)2dyds

)p

dy1ds1

≤ C
(
(t− ti + ε)3/2−q − (t− ti)3/2−q

)p/q

ε(p+2)/2 exp
(
Cε(p−1)/2

)
.
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Here p−1 + q−1 = 1 and C is a constant independent of t. Then we obtain, using (7) that for p > 3

Pti−1

(
ψFi

(ti−1) ≤ c (C1c0)
2

2
(√

t− ti + ε−√t− ti
)
)
≤ pti−1

≤ f(ε) = Cε(p+2)/2
(
(t− ti + ε)3/2−q − (t− ti)3/2−q

)p−1 (√
t− ti + ε−√t− ti

)−p

for two constants c and C independent of t and ε ≤ ti − ti−1 ≤ 1.

Now we choose ε ≡ ε(y) =
(

2
cy1/k +

√
t− ti

)2

−(t−ti) with c = c (c0C2)
2 and y ≥ 2k

(
cc2

0∆i−1(g)
)−k.

Under these conditions we have that ε ≤ ti − ti−1 and
∫ +∞

2k(cc2
0∆i−1(g))−k

Pti−1(ψFi
(ti−1) ≤ 1

y1/k
)dy ≤

∫ +∞

2k(cc2
0∆i−1(g))−k

f(ε)dy.

Therefore

Eti−1(ψ
−k
Fi

) =
∫ +∞

0

Pti−1(ψFi
≤ 1

y1/k
)dy

≤ 2k
(
cc2

0∆i−1(g)
)−k

+
∫ +∞

2k(cc2
0∆i−1(g))−k

f(ε)dy.

First, suppose that ti = t then we have

Eti−1(ψ
−k
Fi

) ≤ 2k
(
cc2

0∆i−1(g)
)−k

+ C(p)
∫ +∞

2k(cc2
0∆i−1(g))−k

1
y(p−1)/k

dy

≤ C(p, k)
(
∆i−1(g)−k + ∆i−1(g)p−1−k

)
.

Therefore in this case we have that
∥∥ψ−1

Fi

∥∥
k,ti−1

≤ C(p, k)∆i−1(g)−1 for p > 1. In the case ti < t we

perform the change of variables w = y
(

c
√

t−ti

2

)k

, one has that the above is bounded by

Eti−1(ψ
−k
Fi

) ≤ C(k)∆i−1(g)−k

+C(t− ti)(p−k−1)/2

∫ +∞

C2k
2 (t−ti)k/2∆i−1(g)−k

wp/k

[(
1 +

1
w1/k

)2

− 1

](p+2)/2 [(
1 +

1
w1/k

)3−2q

− 1

]p−1

dw

We also have that for any positive constant C0 there exists a positive constant C1 such that for
any w ≥ C0 (

1 +
1

w1/k

)3−2q

− 1 ≤ C1

w1/k
.

Therefore taking C0 small enough so that C2k
1 (t− ti)k/2∆i−1(g)−k ≥ C0, we have that

Eti−1(ψ
−k
Fi

) ≤ C∆i−1(g)−k + C(t− ti)(p−k−1)/2

∫ +∞

C2k
2 (t−ti)k/2∆i−1(g)−k

1
wp/(2k)

dw

= C∆i−1(g)−k + C(k, p)(t− ti)(p−2)/4∆i−1(g)
p
2−k.

Therefore
∥∥ψ−1

Fi

∥∥
k,ti−1

≤ C(k, p)∆i−1(g)−1 for p > 2k ∨ 2.
With this lemma we have proven that the hypotheses in the main set-up and (H2b) in Theorem

5 are satisfied. Now we proceed with the definition of F i. In order to do this one needs to obtain some
kind of Fti−1-conditional high order Itô-Taylor formula for the difference Fi−Fi−1 then consider the
truncated series approximation and prove all the properties established in Theorem 5. Note that

Fi − Fi−1 =
∫ ti

ti−1

∫ 1

0

Gt−s(x, y)b(u(s, y))dyds +
∫ ti

ti−1

∫ 1

0

Gt−s(x, y)σ(u(s, y))W (dy, ds).
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The next objective is to find a Taylor expansion for the terms on the right above. To do this one
uses a Taylor expansion of b and σ around another point ui−1 to be defined as

ui−1(s1, y1) = G(u0)(s1, y1) +
∫ ti−1

0

∫ 1

0

Gs1−s2(y1, y2)b(u(s2, y2))dy2ds2

+
∫ ti−1

0

∫ 1

0

Gs1−s2(y1, y2)σ(u(s2, y2))W (dy2, ds2).

Note that ui−1 ∈ Fti−1 and is a smooth process. Our first result gives an estimate of the distance
between u and ui−1.

Lemma 8 Suppose that σ, b ∈ C∞b (R). For s ∈ [ti−1, ti], we have that ‖u(s, y)− ui−1(s, y)‖n,p,ti−1
≤

C(s− ti−1)1/8.

Proof. In fact, we have that

u(s, y)−ui−1(s, y) =
∫ s

ti−1

∫ 1

0

Gs−s1(y, y1)b(u(s1, y1))dy1ds1+
∫ s

ti−1

∫ 1

0

Gs−s1(y, y1)σ(u(s1, y1))W (dy1, ds1).

First we remark that applying Lemma 14 we obtain that supt,x ‖u(t, x)‖n,p,ti−1
≤ C(n, p). The

argument is done through induction on n. As this proof is similar to the one that follows we leave it
for the reader. In order to prove the estimate on ‖u(s, y)− ui−1(s, y)‖n,p,ti−1

apply Lemma 14 with
X = u(s, y)− ui−1(s, y), X0 = 0, Ii(s, y) ≡ 1, γ = 0, p∗ = p, f = b, g = σ, u′ = u, a = ti−1, b = s,
t = s which gives for n = 0

‖u(s, y)− ui−1(s, y)‖p,ti−1
≤ C(n, p)

{
(s− ti−1) +

(
(s− ti−1)3/2−q

)(p−2)/(2p)

(s− ti−1)
1/p

}
.

The result follows as (3/2− q)(p− 2)/(2p) + 1/p = 1/4− 1/(2p) ≤ 1/8 if p ≥ 4. Next suppose that
‖u(s, y)− ui−1(s, y)‖j,p,ti−1

≤ C(s − ti−1)1/8 for j ≤ n − 1 then we have that A(u(s, y))n,p,ti−1 =
A(u(s, y)− ui−1(s, y))n,p,ti−1 as ui−1(s, y) is a Fti−1-measurable random variable (A is defined just
before Lemma 14 in the Appendix). Therefore using again Lemma 14, we have that for p > 6

A(u(s, y)− ui−1(s, y))n,p,ti−1≤ C(n, p)

{
(s− ti−1) + (s− ti−1)

1/8 +
∫ s

ti−1

A(u(r, y)− ui−1(r, y))n,p,ti−1dr

+(s− ti−1)
1/4−3/(2p)

(∫ s

ti−1

A(u(r, y)− ui−1(r, y))p
n,p,ti−1

dr

)1/p


 .

The result follows from Gronwall’s lemma applied to A(u(s, y)−ui−1(s, y))p
n,p,ti−1

and the inductive
hypothesis.

In order to proceed in the definition of the truncated approximations we will first study all the
terms that appear in the Taylor expansion of u(s1, y1) − ui−1(s1, y1) in terms of stochastic and
Lebesgue integrals depending only on ui−1.

We say that a process J1(s, t, y) for s ≤ t ≤ 1, y ∈ [0, 1] is of order 1 (in the interval [ti, ti−1]) if
it can be written as

J1(s, t, y) =
∫ s

ti−1

∫ 1

0

Gt−s1(y, y1)σ(ui−1(s1, y1))W (dy1, ds1).

In the particular case s = t we define I1(s, y) = J1(s, s, y) and we say that I1 is a diagonal process
of order 1. We define by induction a process of high order as: A process Jk is a process of order k
if either:

1. Jk(s, t, y) =
∫ s

ti−1

∫ 1

0

Gt−s1(y, y1)σ(l)(ui−1(s1, y1))
l∏

j=1

Imj (s1, y1)W (dy1, ds1) (8)
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where l ≤ k − 1 and Im1 , ..., Iml
are diagonal processes of order m1,...,ml respectively with m1 +

... + ml = k − 1.

2. Jk(s, t, y) =
∫ s

ti−1

∫ 1

0

Gt−s1(y, y1)b(l)(ui−1(s1, y1))
l∏

j=1

Imj
(s1, y1)dy1ds1 (9)

is a process of order k where l ≤ k − 2 and Im1 , ..., Iml
are processes of order m1,...,ml respectively

with m1 + ...+ml = k−2. As before we define Ik(s, y) = Jk(s, s, y) and we say that Ik is a diagonal
process of order k.

We expand the above set of processes by assuming that the process

J2(s, t, y) =
∫ s

ti−1

∫ 1

0

Gt−s1(y, y1)b(ui−1(s1, y1))dy1ds1

is a process of order 2. Obviously the set of processes of order k is finite and we index them using a
finite set Ak. If α ∈ Ak then Jα

k denotes the corresponding process of order k indexed by α.
Next we define the set of residue processes. We say that a process R1 is a residue process of

order 1 if it is defined as either

R1(s, t, y) =
∫ s

ti−1

∫ 1

0

Gt−s1(y, y1)
(∫ 1

0

σ′(um(λ, s1, y1))dλ

)
(u(s1, y1)− ui−1(s1, y1))W (dy1, ds1)

where um(λ, s1, y1) = λu(s1, y1) + (1− λ)ui−1(s1, y1) or

R1(s, t, y) =
∫ s

ti−1

∫ 1

0

Gt−s1(y, y1)b(u(s1, y1))dy1ds1.

Similarly, as before, we define the diagonal residue process of order 1 as R1(s, y) = R1(s, s, y).
The following process R2 is a residue process of order two

R2(s, t, y) =
∫ s

ti−1

∫ 1

0

Gt−s1(y, y1)
(∫ 1

0

b′(um(λ, s1, y1))dλ

)
(u(s1, y1)− ui−1(s1, y1))dy1ds1.

By induction one says that a stochastic process is a residue process of order k if it can be expressed
as either

1.Rk(s, t, y) =
1

k − 1!

∫ s

ti−1

∫ 1

0

Gt−s1(y, y1)
(∫ 1

0

(1− λ)k−1σ(k)(um(λ, s1, y1))dλ

)
(u(s1, y1)−ui−1(s1, y1))kW (dy1,ds1)

(10)
or

Rk(s, t, y) =
∫ s

ti−1

∫ 1

0

Gt−s1(y, y1)σ(l)(ui−1(s1, y1))
l∏

j=1

Rmj (s1, y1)W (dy1, ds1),

where Rmj is either a diagonal residue process of order mj or a diagonal process of order mj and at
least one of the Rmj , j = 1, ..., l is a residue process. As before l ≤ k− 1 with m1 + ... + ml = k− 1.

2.Rk(s, t, y) =
1

k − 2!

∫ s

ti−1

∫ 1

0

Gt−s1(y, y1)
(∫ 1

0

(1− λ)k−2b(k−1)(um(λ, s1, y1))dλ

)
(u(s1, y1)−ui−1(s1, y1))k−1dy1ds1

or

Rk(s, t, y) =
∫ s

ti−1

∫ 1

0

Gt−s1(y, y1)b(l)(ui−1(s1, y1))
l∏

j=1

Rmj (s1, y1)dy1ds1,

where Rmj is either a diagonal residue process of order mj or a diagonal process of order mj and at
least one of the Rmj , j = 1, ..., l is a diagonal residue process. Here l ≤ k−2 with m1+...+ml = k−2.

We denote the index set for the residues of order k as Bk. The next lemma gives the Taylor
expansion for Fi conditioned on Fti−1 and studies the order of each term in the Dn,p

ti−1
−norms
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Lemma 9 Suppose that σ, b ∈ C∞b (R). For r ≥ 1, one has the following expansion of the approxi-
mation sequence {Fi; i = 1, ..., N}

Fi − Fi−1 =
r∑

k=1

∑

α∈Ak

C1(α, k)Jα
k (ti, t, x) +

r+1∑

k=r

∑

α∈Bk

C2(α, k)Rα
k (ti, t, x),

for some appropriate constants Cj(α, k) for j = 1, 2. Furthermore the following estimates are satis-
fied for any (s, y) ∈ [ti−1, ti]× [0, 1]

‖Jα
k (ti, t, y)‖n,p,ti−1

+
∥∥Rα

k−1(ti, t, y)
∥∥

n,p,ti−1
≤ C(n, p, k)(ti − ti−1)k/16. (11)

The above norm estimate is obviously non-optimal but we prefer to do this as the proof becomes
easier to follow.

Proof. The proof is done by induction. As the proof is long and tedious we only give the main
steps here. For k = 1 is not difficult to see that by the mean value theorem we have

Fi − Fi−1 =
∫ ti

ti−1

∫ 1

0

Gt−s(x, y)σ(ui−1(s, y))W (dy, ds) +
∫ ti

ti−1

∫ 1

0

Gt−s(x, y)b(u(s, y))dyds +

∫ ti

ti−1

∫ 1

0

Gt−s(x, y)
(∫ 1

0

σ′(um(λ, s1, y1))dλ

)
(u(s, y)− ui−1(s, y)) W (dy, ds).

The first term is the only process of order 1 and the next two terms are residues of order 1. The
above formula can be extended with the same steps for k = 2. In doing so one also checks that the
residue of order 1 can be written as the sum of processes of order 2 and residues of order 2 and 3.
By inductive hypothesis suppose that the above formula is true for r and that any residue of order
k < r can be expressed as sums of processes of order k + 1 and residue processes of order k + 1
and k + 2. Then we consider every residue term of order r and develop it as follows: If the residue
process of order r is of the type (10) then one rewrites it as

1
r!

∫ s

ti−1

∫ 1

0

Gt−s1(y, y1)σ(r)(ui−1(s1, y1))(u(s1, y1)− ui−1(s1, y1))rW (ds1, dy1) +

1
r!

∫ s

ti−1

(∫ 1

0

Gt−s1(y, y1)
∫ 1

0

(1− λ)rσ(r)(um(λ, s1, y1))dλ

)
(u(s1, y1)− ui−1(s1, y1))r+1W (ds1, dy1).

The last term is a residue process of order r + 1. The first term is decomposed, using the first order
decomposition

u(s1, y1)− ui−1(s1, y1) = I1(s1, y1) +
∑

α∈B1

Rα
1 (s1, y1)

so that the first term is decomposed in sums of terms of order r + 1 and further residue processes of
order r + 1 as follows

1
r!

∫ s

ti−1

∫ 1

0

Gt−s1(y, y1)σ(r)(ui−1(s1, y1))I1(s1, y1)rW (ds1, dy1) +

1
r!

r−1∑

j=0

∑

αl∈B1

∫ s

ti−1

∫ 1

0

Gt−s1(y, y1)σ(r)(ui−1(s1, y1))I1(s1, y1)j

r−j∏

l=1

Rαl
1 (s1, y1)W (ds1, dy1).

Next suppose that one has a residue process of the type

Rr(s, t, y) =
∫ s

ti−1

∫ 1

0

Gt−s1(y, y1)σ(l)(ui−1(s1, y1))
l∏

j=1

Rmj (s1, y1)W (ds1, dy1).

Here, by the induction hypotheses, for each residue process Rmj one has that it can be rewritten as
sums of terms of order mj plus residues of order mj + 1 and mj + 2 therefore generating processes
of order r + 1 and residues of order r + 1 or r + 2.
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Similar operations have to be done when the drift coefficients b appears instead of σ and the
Lebesgue integral replaces the stochastic one.

Now we prove the norm estimates by double induction on n and k. For n = 0 and k = 1 or
k = 2 the estimates can be obtained from straightforward estimates of the integrals. Suppose that
the estimates are true for k− 1, n = 0 and that Jk is of type (8) then we have using Lemma 14 with
X0 = 0, f(x) = 0, g(x) = σ(l)(ui−1(s1, y1)), a = ti−1, b = s, αj = mj , α = k − 1, i0 = l, γ = 1/16,
u′ ≡ 1 that

‖Jk(s, t, y)‖p,ti−1
≤ C(p)

{
(ti−1−s)(k+15)/16+

(
(t− ti−1)3/2−q − (t− s)3/2−q

)(p−2)/(2p)

(s−ti−1)(k−1)/16+1/p
}

,

for s ∈ [ti−1, ti]. As
(
(t− ti−1)3/2−q − (t− s)3/2−q

)(p−2)/(2p) ≤ C(s − ti−1)1/4−3/(2p) the estimate
follows for p ≥ 8. Similarly one proceeds in the case that Jk is of the type (9). Next we consider
the estimates for the Dn,p

ti−1
-norms. This estimate is also obtained by induction on the order of

differentiation and on the order of the process being considered. For this, suppose that we have that
the estimate (11) is satisfied for j ≤ n and k ≤ r−1 we will prove that the same estimate is satisfied
for k = r. Suppose then that we have a process of order r, Jr, of the type (8) then one estimates
A(Jr(s, t, y))n,p,ti−1 , using Lemma 14 with the same choices as before we then obtain that

A(Jr(s, t, y))n,p,ti−1 ≤ C(n, p)(s− ti−1)r/16.

For the residues of order k the proof is also similar. In fact, suppose we have a residue Rk of the
type (10) then one has as before with X0 = 0, f(x) = 0, g(x) = σ(k)(λx + ui−1(s, y)), a = ti−1,
b = s, Ii(s, y) = (u− ui−1) (s, y), αj = 1, α = k, i0 = k, γ = 1/8, u′ ≡ u− ui−1 that for s ∈ [ti−1, ti]

‖Rk(s, t, y)‖n,p,ti−1
≤ C(n, p)

{
(s− ti−1)(k+8)/8+

(
(t− ti−1)3/2−q − (t− s)3/2−q

)(p−2)/(2p)

(s− ti−1)k/8+1/p
}

≤ C(n, p)(ti−1 − s)(k+1)/16.

Here we have used Lemma 8 and Lemma 14.
With this result one defines the approximation of order r, F

r

i as

F i ≡ F
r

i = ∆i−1(g)
r+1
8 Zi + Fi−1 +

r∑

k=1

∑

α∈Ak

C1(α, k)Jα
k (ti, t, x).

Theorem 10 Assume that the coefficients b and σ ∈ C∞b (R). Furthermore suppose that ‖σ(x)‖ ≥
c0 > 0 for all x ∈ R. Then u(t, x) has a smooth density for 0 < t < 1 and x ∈ [0, 1] denoted by
p(t, x, ·) furthermore it satisfies

p(t, x, y) ≥ exp(−M ‖G(u0)(t,x)−y‖2
t1/2 )

Mt1/4

for a constant M ∈ [1,+∞).

Proof. We have already defined Fi, Gl
i and g. Define h(s, y) = Gt−s(x, y)σ(ui−1(s, y)). With

these definitions and Lemma 7 we have that condition (H1) is satisfied. Next, one has that

Fi − F
r

i = Fi − Fi−1 −∆i−1(g)
r+1
8 Zi −

r∑

k=1

∑

α∈Ak

C1(α, k)Jα
k (ti, t, x)

= −∆i−1(g)
r+1
8 Zi −

r+1∑

k=r

∑

α∈Bk

C2(α, k)Rα
k (ti, t, x).

Therefore using Lemma 9 one obtains that
∥∥∥Fi − F

r

i

∥∥∥
k,p,ti−1

≤ C(k, p)∆i−1(g)(r+1)/8
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so that property (H2a) is satisfied with γ = 1/8. (H2b) follows from Lemma 7. Now to obtain
(H2c) is just a matter of computing

∆i−1(g)−1

∫ ti

ti−1

∫ 1

0

G2
t−s1

(x, y1)σ2(ui−1(s1, y1))dy1ds1

this is bounded above and below due to the estimate (A.1) in [1] (or (6)). In order to verify (H2d),
one has that the result in Lemma 9 is insufficient and therefore we compute an exact estimate using
the same induction method of Lemma 9 to estimate :

‖R1(ti, t, y)‖n,p,ti−1
≤

∥∥∥∥∥
∫ ti

ti−1

∫ 1

0

Gt−s(x, y)
(∫ 1

0

σ′(um(λ, s1, y1))dλ

)
(u(s, y)− ui−1(s, y))W (dy, ds)

∥∥∥∥∥
n,p,ti−1

(12)

+

∥∥∥∥∥
∫ ti

ti−1

∫ 1

0

Gt−s(x, y)b(u(s, y))dyds

∥∥∥∥∥
n,p,ti−1

.

First we have that
∥∥∥∥∥
∫ ti

ti−1

∫ 1

0

Gt−s(x, y)b(u(s, y))dyds

∥∥∥∥∥
n,p,ti−1

≤
∫ ti

ti−1

∫ 1

0

Gt−s(x, y) ‖b(u(s, y))‖n,p,ti−1
dyds

≤ C(ti − ti−1).

The last inequality follows because ‖b(u(s, y))‖n,p,ti−1
≤ C(n, p). In fact, A(b(u(s, y))0,p,ti−1 ≤ C(p)

and there exists p′ > 0 such that

A(b(u(s, y)))n,p,ti−1 = C(n, p)
n∑

j=1

A((u− ui−1) (s, y))n
n,p′,ti−1

.

For the first term in (12) we have as before that applying Lemma 14 with X0 = 0, f(x) = 0,
g(x) = σ′(λx + ui−1(s, y)), a = ti−1, b = ti, Ii(s, y) = (u− ui−1) (s, y), αj = 1, α = 1, i0 = 1,
γ = 1/8, u′ ≡ u− ui−1

∥∥∥∥∥
∫ ti

ti−1

∫ 1

0

Gt−s(x, y)
(∫ 1

0

σ′(um(λ, s1, y1))dλ

)
(u(s, y)− ui−1(s, y)) W (dy, ds)

∥∥∥∥∥
n,p,ti−1

≤ C(n, p)(ti − ti−1)3/8−1/(2p) ≤ C(n, p)∆i−1(g)3/4−1/p

for s ∈ [ti−1, ti]. Therefore ε = 1/4− 1/p > 0 if p > 4. Then the result follows from Theorem 5. In
particular note that although g depends on (t, x) as ‖g‖L2([0,t]×[0,1]) ≤ C where C is independent of
(t, x) then the constant M appearing in the conclusion of the Theorem 5 is independent of (t, x).

A Appendix

In this section we give some accessory results used in Sections 3 and 4.1. In the first part we study of
the behavior of Malliavin covariance matrix for truncated approximation sequences used in Section
3, Theorem 5. In the second part we give some estimates on norms of various random variables
associated with the solution of the stochastic heat equation. These estimates were used throughout
Section 4.1.

We start proving some differentiability properties of the approximating and truncated sequences.
In the next two propositions we use the notation introduced in the proof of Theorem 5 Xi =
∆i−1(g)−1/2

∑k
j=1 Ii

j(hj) and Yi = ∆i−1(g)(l+1)γ−1/2Zi + ∆i−1(g)−1/2Gl
i.
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Proposition 11 Let F be a uniformly elliptic random variable with truncated approximating se-
quence F i, then Fi, F i ∈ D∞ti−1

uniformly. Furthermore, assume that (l + 1)γ − 1/2 > ε > 0 then
G′i(ρ) = Xi + ρYi ∈ Dn,p

ti−1
, uniformly for ρ ∈ [0, 1]. Also there exist a positive constant C(α) such

that
E

(∣∣detψG′i(ρ) − det ψXi

∣∣α /Fti−1

) ≤ C(α)ρα∆i−1(g)εα.

Proof. E
(∥∥F i

∥∥a

n,p,ti−1

)
+E

(
‖Fi‖a

n,p,ti−1

)
is uniformly bounded due to the condition (H1) and

(H2d). Also, due to (H1), (H2c) and (H2d), we have that

‖Xi‖n,p,ti−1
≤ C(n, p)

∆i−1(g)−1/2
∥∥Gl

i

∥∥
n,p,ti−1

≤ C(n, p),

for a constant C(n, p). Furthermore
∥∥∆i−1(g)(l+1)γ−1/2Zi

∥∥
n,p,ti−1

≤ C for a constant C. Therefore
one obtains that

‖G′i(ρ)‖n,p,ti−1
≤ C(n, p).

where C(n, p) is a positive constant that does not depend on ρ. For the last inequality one has to
use the definition of the determinant and estimate each difference. That is,

detψG′i(ρ) − detψXi =
∑

σ∈Sq




q∏

j=1

(
ψG′i(ρ)

)
jσ(j)

−
q∏

j=1

(ψXi)jσ(j)




where Sq denotes the set of all permutations of order q. The difference within the sum can be
rewritten as

q∑
p=1

p−1∏

j=1

(
ψG′i(ρ)

)
jσ(j)

((
ψG′i(ρ)

)
pσ(p)

− (ψXi)pσ(p)

) q∏

j=p+1

(ψXi)jσ(j) .

Each term
(
ψG′i(ρ)

)
jσ(j)

, (ψXi)jσ(j) ∈ D
∞
ti−1

uniformly and the middle term can be bounded as follows

∥∥∥
(
ψG′i(ρ)

)
pσ(p)

− (ψXi)pσ(p)

∥∥∥
α,ti−1

≤ ‖G′i(ρ)−Xi‖1,α1,ti−1

(
‖G′i(ρ)‖1,α2,ti−1

+ ‖Xi‖1,α3,ti−1

)
.

Therefore the result follows from the previous estimates on the norms of Xi and Gl
i.

Now we show the stability of the Malliavin covariance matrices associated with any point in
between the approximating sequence and the truncated approximating sequence as a consequence
of the definition of uniformly elliptic random variables.

Proposition 12 Assume that F is a uniformly elliptic random variable with approximation sequence
F i . Then we have that for any l such that (l + 1)γ − 1/2 > ε > 0, there exists a positive constant
C(p) such that

∥∥∥detψ−1

F i
(ti−1)

∥∥∥
p,ti−1

≤ C(p)∆i−1(g)−2(l+1)γ

sup
ρ∈[0,1]

∥∥∥detψ−1
G′i(ρ)(ti−1)

∥∥∥
p,ti−1

≤ C(p)

sup
ρ∈[0,1]

∥∥∥detψ−1

F i(ρ)
(ti−1)

∥∥∥
p,ti−1

≤ C(p)∆i−1(g)−q.

Proof. The first statement follows because one considers the Malliavin covariance matrix of F i

in the extended space. In fact, if one denotes by D̃, the stochastic derivative with respect to the
Wiener process that generates the increments Zi one has that

det ψF i
(ti−1) ≥ ∆i−1(g)−2(l+1)γ det




q∑

j=1

∫ i+1

i

D̃s

j
Zr1

i D̃s

j
Zr2

i ds




q×q

= q∆i−1(g)−2(l+1)γ .
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From here the first estimate follows. For the rest of the proof in order to simplify the notation we
will write ψFi

≡ ψFi
(ti−1) assuming that the time interval is understood. Define the set

B =
{

w ∈ Ω;
∣∣detψG′i(ρ) − detψXi

∣∣ <
1
4
|detψXi

|
}

.

Note that ψXi = A defined in hypothesis (H2c). Therefore there exists a deterministic constant
C(p) independent of t and ρ such that

E
((

detψ−1
G′i(ρ)

)p

1B/Fti−1

)
≤

(
4
3

)p

E
((

det ψ−1
Xi

)p
/Fti−1

)

≤ C(p).

On the other hand, repeating the same argument as for the estimate of ψF i
(ti−1) we have that

ψG′i(ρ) ≥ Cρ2∆i−1(g)2((l+1)γ−1/2). Therefore using the definition of uniformly elliptic r.v., we have
for ρ ∈ (0, 1] and α > 0

E
((

det ψ−1
G′i(ρ)

)p

1B/Fti−1

)
≤ E

((
inf
‖v‖=1

v′ψG′i(ρ)v

)−qp

1B/Fti−1

)

≤ C∆i−1(g)−2((l+1)γ−1/2)qpρ−2qpP (B/Fti−1)

≤ C∆i−1(g)−2((l+1)γ−1/2)qp4αρ−2pq

×E
(∣∣det ψG′i(ρ) − detψXi

∣∣α |detψXi |−α
/Fti−1

)

≤ C(α)∆i−1(g)−2((l+1)γ−1/2)qp4αρ−2pqρα∆i−1(g)εα.

In the last inequality we have used the Proposition 11. Taking α big enough the result follows.
The third estimate follows with a similar argument replacing Xi by Fi.

We now start the second part of this section. We start proving an Lp upper estimate on the
derivative of the solution of the stochastic heat equation.

Lemma 13 Define Ss,y(s1, y1) = Ds,yu(s1,y1)
σ(u(s,y)) , for s ≤ s1 ≤ 1, y, y1 ∈ [0, 1]. Then there exists a

positive constant C(p) such that for p > 1 and α ≤ s1 one has

Eti−1

[∫ s1

α

∫ 1

0

Ss,y(s1, y1)2dyds

]p

≤ C(p) (s1 − α)p/2 exp
(
C(p) (s1 − α)(p−1)/2

)
.

Proof. We assume for simplicity that b′ ≡ 0. Note that Ss,y(s1, y1) is a solution of the equation

Ss,y(s1, y1) = Gs1−s(y1, y) +
∫ s1

s

∫ 1

0

Gs1−s2(y1, y2)σ′(u(s2, y2))Ss,y(s2, y2)W (dy2, ds2).

Then we have that Eti−1

[∫ s1

α

∫ 1

0
Ss,y(s1, y1)2dyds

]p

, for α ≤ s1 can be bounded by

C(p)

((∫ s1

α

∫ 1

0

G2
s1−s(y1, y)dyds

)p

+Eti−1

[∫ s1

α

∫ 1

0

(∫ s1

s

∫ 1

0

Gs1−s2(y1, y2)σ′(u(s2, y2))Ss,y(s2, y2)W (dy2, ds2)
)2

dyds

]p)
.

Applying the Burkholder’s inequality for martingales in Hilbert spaces and Cauchy-Schwartz in-
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equality we have for q−1 + p−1 = 1 that the above is bounded by

Eti−1

[∫ s1

α

∫ 1

0

Ss,y(s1, y1)2dyds

]p

≤ C(p) (s1 − α)p/2 + C(p)Eti−1

[∫ s1

α

∫ 1

0

Gs1−s2(y1, y2)2
∫ s2

α

∫ 1

0

Ss,y(s2, y2)2dydsdy2ds2

]p

≤ C(p) (s1 − α)p/2 + C(p) (s1 − α)(3/2−q)(p−1) ×
∫ s1

α

∫ 1

0

Eti−1

(∫ s2

α

∫ 1

0

Ss,y(s2, y2)2dyds

)p

dy2ds2.

Then using Gronwall’s inequality on supy∈[0,1] Eti−1

[∫ s1

α

∫ 1

0
Ss,y(s1, y1)2dyds

]p

we have the result.

Now we give a result on norm estimates used in Section 4.1. This result applied to various
situations that appear in that Section and uses ideas of the previous proof. This leads to an inequality
that allows to estimate various Dn,p

ti−1
-norms of random variables associated with the stochastic heat

equation.
Define for a ≤ b ≤ t

X = X0(t, a, b)+
∫ b

a

∫ 1

0

Gt−s(x, y)f(u′(s, y))
i0∏

i=1

Ii(s, y)dyds+
∫ b

a

∫ 1

0

Gt−s(x, y)g(u′(s, y))
i0∏

i=1

Ii(s, y)W (dy, ds).

Here X0(t, a, b) is a Fa measurable random variable and define for a smooth random variable X and
a smooth process u′(s, y), s, y ∈ [0, 1]2,

A(u′)j,p,a : =


Ea

(∫ b

a

∫ 1

0

...

∫ b

a

∫ 1

0

(
Dj

vu′(s, y)
)2

dvdsdy

)p/2



1/p

A(X)j,p,a : =


Ea

(∫ b

a

∫ 1

0

...

∫ b

a

∫ 1

0

(
Dj

vX
)2

dv

)p/2



1/p

.

Lemma 14 Suppose that f , g ∈ C∞b (R), u′ and I are smooth processes and that there exists con-
stants cu′(j, p, a, s) > 1 which are increasing in p and C(n, p) such that

A(u′(s, y))j,p,a ≤ cu′(j, p, a, s)
A (Ii(s, y))j,p,a ≤ C(n, p)(s− a)γαi ,

for any p > 0, a ≤ s ≤ t, y ∈ [0, 1], j = 0, ..., n and some γ ≥ 0, α1 > 0,...,αi0 > 0. Then X ∈ Dn,∞

and we have that, for p > 6, q = p
p−2 and α1 + ... + αi0 = α, there exists p′ and p∗ with p∗ = p if Ii

is a constant for all i and the following inequality is satisfied for all n ≥ 0 and p > 6

A(X)n,p,a

≤ A(X0(t, a, b))n,p,a + C(n, p)

{∫ b

a

(c∗u′(n− 1, p′, a, s)n + cu′(n, p∗, a, s))× (s− a)γαds

+
(
(t− a)3/2−q − (t− b)3/2−q

)(p−2)/(2p)
(∫ b

a

(c∗u′(n− 1, p′, a, s)pn + cu′(n, p∗, a, s)p)× (s− a)γαpds

)1/p


 .

We define cu′(−1, p, a, s) = 0 and cu′(0, p, a, s) as the constant such that A (f(u′)(s, y))0,p,a +
A (g(u′)(s, y))0,p,a ≤ cu′(0, p, a, s) and c∗u′(n− 1, p′, a, s) = maxj≤n−1 cu′(j, p′, a, s).
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Note that if we have Ii ≡constant we can take γ = 0. Another particular case occurs if we
suppose that all the constants cu′(j, p′, a, s) < 1 for j = 1, .., n. In such a case one has

A(X)n,p,a

≤ A(X0(t, a, b))n,p,a + C(n, p)

{∫ b

a

(c∗u′(n− 1, p′, a, s) + cu′(n, p∗, a, s))× (s− a)γαds

+
(
(t− a)3/2−q −(t− b)3/2−q

)(p−2)/(2p)
(∫ b

a

(c∗u′(n− 1, p′, a, s)p +cu′(n, p∗, a, s)p) (s− a)γαpds

)1/p


 .

Proof. One does the estimation in various steps. First we have for n ≥ 1

A(X)n,p,a ≤
∫ b

a

∫ 1

0

Gt−s(x, y)A(f(u′(s, y))
i0∏

i=1

Ii(s, y))n,p,adyds (13)

+A

(∫ b

a

∫ 1

0

Gt−s(x, y)g(u′(s, y))
i0∏

i=1

Ii(s, y)W (dy, ds)

)

n,p,a

.

To estimate the first term we first have that

Dn
v f(u′(s, y)) =

∑

k∈Θ(n)
σ∈Sn

f (k0)(u′(s, y))
n∏

l=1

kl∏

j=1

Dl
σ(K(l,j),K(l,j+1))u

′(s, y).

Here the summation is done for

k ∈ Θ(n) = {(k0, ..., kn) ∈ Nn+1; k1 + 2k2 + .... + nkn = n, k1 + ... + kn = k0}.
Sn denotes the set of permutations of the index set {1, ..., n}. We have used the following notation

σ(i1, i2) = (yσ(i1+1), sσ(i1+1), ..., yσ(i2), sσ(i2))
K(l, j) = k1 + ... + (l − 1)kl−1 + (j − 1)l.

Also one has that

Dn
v

i0∏

j=1

Imj (s, y) =
∑

ω∈Γ(n)
σ∈Sn

i0∏

j=1

D
ωj

σ(ωj−1,ωj)
Imj (s, y)

where
Γ(n) = {(ω1, ..., ωi0) ∈ {0, ..., n}i0 ; ω1 + ... + ωi0 = n}.

Finally one has that

Dn
v

(
f(u′(s, y))

i0∏

i=1

Ii(s, y)

)
=

n∑
r=0

∑

σ∈Sn

Dr
σ(0,r)f(u′(s, y))Dn−r

σ(r,n−r)

(
i0∏

i=1

Ii(s, y)

)
.

Then using the Cauchy Schwartz inequality we have that for n ≥ 1 (in the case that r = 0, kl = 0
or i0 = 0 we set the product equal to 1)

A

(
f(u′(s, y))

i0∏

i=1

Ii(s, y)

)p

n,p,a

≤ C(n, p)
n∑

r=0




∑

k∈Θ(r)
σ∈Sr

r∏

l=1

kl∏

j=1

A(u′(s, y))p
l,p(l,j),a




×




∑

ω∈Γ(n−r)
σ∈Sn−r

i0∏

i=1

A (Ii(s, y))p
ωi,q(ωi),a




≤ C(n, p) (c∗u′(n− 1, p′, a, s)n + cu′(n, p∗, a, s))p × (s− a)γαp.
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Here p′ = maxl=1,...,n
j=1,...,l

p(l, j) where p(l, j) > 1, q(ωl) > 1 are a set of positive real numbers such that
∑r

l=1

∑l
j=1 p(l, j)−1 +

∑i0
j=1 q(ωj)−1 = p−1 for each set of indices. p(n, 1) = p if Ii is a constant for

all i and therefore p∗ = p if Ii is a constant, otherwise p∗ = p′. Here we have used the assumption
that cu′ > 1. If one assumes that cu′(j, p′, a, s) ≤ 1 then note that the above bound becomes
C(n, p) (c∗u′(n− 1, p′, a, s) + cu′(n, p∗, a, s))p × (s− a)γαp. The case n = 0 follows directly as

A

(
f(u′(s, y))

i0∏

i=1

Ii(s, y)

)p

0,p,a

≤ cu′(0, p′, a, s)p(s− a)γαp.

The second term in (13) is a bit more involved but uses similar techniques. First note that for
s1, ..., sn ∈ [a, b] we have

Dn
v

(∫ b

a

∫ 1

0

Gt−s(x, y)g(u′(s, y))
i0∏

i=1

Ii(s, y)W (dy, ds)

)
= Gt−sn

(x, yn)
n∑

j=1

Dn−1
v(j)

(
g(u′(sj , yj))

i0∏

i=1

Ii(sj , yj)

)

+
∫ b

a∨s1∨...∨sn

∫ 1

0

Gt−s(x, y)Dn
v

(
g(u′(s, y))

i0∏

i=1

Ii(s, y)

)
W (dy, ds).

Here v(j) denotes the set v without the variables (sj , yj). Therefore we have

A

(∫ b

a

∫ 1

0

Gt−s(x, y)g(u′(s, y))
i0∏

i=1

Ii(s, y)W (dy, ds)

)p

n,p,a

(14)

≤ C(n, p)



A

(
Gt−·(x, ·)g(u′)

i0∏

i=1

Ii

)p

n−1,p,a

+

Ea




∫ b

a

∫ 1

0

...

∫ b

a

∫ 1

0

(∫ b

a∨s1∨...∨sn

∫ 1

0

Gt−s(x, y)Dn
v

(
g(u′(s, y))

i0∏

i=1

Ii(s, y)

)
W (dy, ds)

)2

dv




p/2




.

To estimate the first term we integrate with respect to the variables (sn, yn) last and apply Cauchy
Schwartz inequality to obtain that

A

(
Gt−·(x, ·)g(u′)

i0∏

i=1

Ii

)p

n−1,p,a

≤
(∫ b

a

∫ 1

0

Gt−sn(x, yn)2qdyndsn

)p/2q

×
∫ b

a

∫ 1

0

A

(
g(u′(sn, yn))

i0∏

i=1

Ii(sn, yn)

)p

n−1,p,a

dyndsn.

Here q = p
p−2 , p > 6. Now we estimate the first integral on the right using (6) and the second using

the same steps as in the first term of (13) to obtain that for n ≥ 1

A

(
Gt−·(x, ·)g(u′)

i0∏

i=1

Ii

)p

n−1,p,a

≤ C(n− 1, p)
(
(t− a)3/2−q − (t− b)3/2−q

)(p−2)/2
∫ b

a

c∗u′(n− 1, p′, a, s)(n−1)p(s− a)γαpds.

To estimate the second term in (14) one uses the Burkholder inequality for martingales in Hilbert
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spaces and Fubini’s theorem which gives that

Ea




∫ b

a

∫ 1

0

...

∫ b

a

∫ 1

0

(∫ b

a∨s1∨...∨sn

∫ 1

0

Gt−s(x, y)Dn
v

(
g(u′(s, y))

i0∏

i=1

Ii(s, y)

)
W (dy, ds)

)2

dv




p/2

≤ C(p)Ea




∫ b

a

∫ 1

0

Gt−s(x, y)2
∫ s

a

∫ 1

0

...

∫ s

a

∫ 1

0

(
Dn

v

(
g(u′(s, y))

i0∏

i=1

Ii(s, y)

))2

dvdyds




p/2

≤ C(p)

(∫ b

a

∫ 1

0

Gt−s(x, y)2qdyds

)p/2q ∫ b

a

∫ 1

0

A

(
g(u′(s, y))

i0∏

i=1

Ii(s, y)

)p

n,p,a

dyds

≤ C(n, p)
(
(t− a)3/2−q − (t− b)3/2−q

)(p−2)/2

×
∫ b

a

n∑
r=0




∑

k∈Θ(r)
σ∈Sr

r∏

l=1

kl∏

j=1

A(u′(s, y))p
l,p(l,j),a


×




∑

ω∈Γ(n−r)
σ∈Sn−r

i0∏

i=1

A (Ii(s, y))p
ωi,q(ωi),a


 ds

≤ C(n, p)
(
(t− a)3/2−q − (t− b)3/2−q

)(p−2)/2
∫ b

a

(c∗u′(n, p′, a, s)(n−1)p+cu′(n, p∗, a, s)p)(s− a)γαpds.

As before the case n = 0 is treated separately using the same proof line as in Lemma 13 obtaining
a similar bound. Putting all the above estimates together we have the result.
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Lecture Notes in Mathematics 1204 (1986) 68-80. Springer-Verlag, Berlin.

[4] Fefferman, C. L. and Sánchez-Calle, A.: Fundamental solutions for second order subelliptic
operators. Ann. of Math. (2) 124 (1986) 247–272.

[5] Gobet E.: LAMN property for elliptic diffusion: a Malliavin Calculus approach. Bernoulli 7
(2001) 899-912.

[6] Gobet E. : LAN property for ergodic diffusions with discrete observations. Ann. Inst. H.
Poincare Probab. Statist. 38 (2002) 711-737.

[7] Ikeda N. and Watanabe S.: Stochastic Differential Equations and Diffusion Processes. Amster-
dam Oxford New York: North-Holland/Kodansha 1989.

27



[8] Kloeden, P. E. and Platen, E.: Numerical Solution of Stochastic Differential Equations. Berlin
Heidelberg New York: Springer 1992.

[9] Kohatsu-Higa, A., Marquez-Carreras D. and Sanz-Solé, M.: Asymptotic behavior of the density
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