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Abstract. In this paper we obtain Gaussian type lower bounds for the density of solutions
to stochastic di�erential equations (sde's) driven by a fractional Brownian motion with Hurst
parameter H. In the one dimensional case with additive noise, our study encompasses all
parameters H ∈ (0, 1), while the multidimensional case is restricted to the case H > 1/2. We
rely on a mix of pathwise methods for stochastic di�erential equations and stochastic analysis
tools.
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1. Introduction

Let B = (B1, . . . , Bd) be a d dimensional fractional Brownian motion (fBm in the sequel)
de�ned on a complete probability space (Ω,F ,P), with Hurst parameter H ∈ (0, 1). Recall
that this means that B is a centered Gaussian process indexed in [0, 1], whose coordinate
processes are independent and their covariance structure is de�ned by

R (t, s) := E
[
Bj
s B

j
t

]
=

1

2

(
s2H + t2H − |t− s|2H

)
, for s, t ∈ [0, 1] and j = 1, . . . , d. (1)

This implies that the variance of an increment is given by

E
[(
Bj
t −Bj

s

)2
]

= |t− s|2H , for s, t ∈ [0, 1]. (2)

In particular, this process is γ-Hölder continuous a.s. for any γ < H and is an H-self similar
process. This converts fBm into a natural generalization of Brownian motion and explains
the fact that it is used in applications [17, 27, 29].

We are concerned here with the following class of stochastic di�erential equations (sde's)
in Rm driven by B on the time interval [0, 1]:

Xt = a+

∫ t

0

V0(Xs)ds+
d∑
i=1

∫ t

0

Vi(Xs)dB
i
s, (3)

where a ∈ Rm is a generic initial condition and {Vi; 0 ≤ i ≤ d} is a collection of smooth
and bounded vector �elds of Rm. Though equation (3) can be solved thanks to rough paths
methods in the general caseH ∈ (1/4, 1), d ≥ 1, we shall consider in the sequel three situations
which can be handled without recurring to this kind of technique:

(1) The one-dimensional case with additive noise and H ∈ (0, 1), which can be treated
via simple ODE techniques.

(2) The one-dimensional situation, namely m = d = 1 with H ∈ (1/2, 1), where the
equation can be solved thanks to a Doss-Sussman type methodology as mentioned
in [19].

(3) The case of a Hurst exponent H ∈ (1/2, 1), for which Young integration methods are
available (see e.g [14, 24, 31]).

Hence, we always understand the solution to equation (3) according to the three settings
mentioned above. We shall see however that rough path type arguments shall be involved in
some of our proofs.

The process de�ned as the solution of (3) is obviously worth studying, and a natural step
in this direction is to analyze the density of the random variable Xt for a �xed t > 0. To this
respect, the following results are available in our cases of interest:

(1) For m = d = 1, the existence of density for L(Xt) has been examined in [19].
(2) Whenever H > 1/2 and in a multidimensional setting, the existence of density is

established in [25], while smoothness under elliptic assumptions is handled in [15].

Let us also mention that for the multidimensional equation (3) and H ∈ (1/4, 1/2), rough
paths techniques also enable the study of densities of the solution. We refer to [6, 7] for
existence and [5] for smoothness results for L(Xt). However, the only Gaussian type estimate
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for the density we are aware of, is the one contained in [3], which relies heavily on a skew-
symmetric assumption for the vector �elds V1, . . . , Vd.

The current article is thus dedicated to give Gaussian type lower bounds for the density
of Xt. More speci�cally, we work under the following assumptions on the coe�cients of
equation (3):

Hypothesis 1.1. The coe�cients V0, . . . , Vd of equation (3) satisfy the following conditions:

(1) If m = d = 1, then V0, V1 ∈ C3
b and we also assume λ ≤ |V1| ≤ Λ.

(2) In the multidimensional case, the vector �elds V0, . . . , Vd belong to the space C∞b of
smooth functions bounded together with all their higher order derivatives. Furthermore,
if V (x) denotes the matrix (V1(x), . . . , Vd(x)) ∈ Rm×d for all x ∈ Rm, then we assume
the following uniform elliptic condition:

λ Idm ≤ V (x)V ∗(x) ≤ Λ Idm, for all x ∈ Rm, (4)

where the inequalities are understood in the matrix sense and where λ and Λ are two
given strictly positive constants which are independent of x.

With these hypotheses in hand, our main goal is to prove the following result:

Theorem 1.2. Consider equation (3), under the following three speci�c situations:

I. m = d = 1, H ∈ (0, 1), V0 ∈ C1
b and the noise is additive (i.e., V1 is a non vanishing

real constant).
II. m = d = 1, H ∈ (1/2, 1) and Hypothesis 1.1(1) is satis�ed for V0, V1.
III. Arbitrary m, d ∈ N, H ∈ (1/2, 1) and V0 . . . Vd satisfying Hypothesis 1.1 (2).

Then, the solution Xt of equation (3) possesses a density pt(x) such that for every x ∈ Rm

and t ∈ (0, 1] we have:

pt(x) ≥ c1

tmH
exp

(
−c2 |x− a|2

t2H

)
, (5)

for some constants c1, c2 only depending on d,m and V0, . . . , Vd.

As mentioned above, this is (to the best of our knowledge) the �rst Gaussian type lower
bounds obtained for the density of the solution of the sde driven by fBm in a general setting.
It should also be mentioned that the lower bound (5) can be complemented by a similar upper
bound contained in [4].

Let us say a few words about the methodology we rely on in order to obtain our lower
bound (5). Generally speaking it is based on Malliavin calculus tools, but the three results
mentioned in Theorem 1.2 are proved in di�erent ways:

(1) In the one dimensional additive case, we invoke a recent formula for densities introduced
in [20] which yields an easy way to estimate pt in the case of additive stochastic equations.
We thus include this study for didactical purposes, and also because we obtain (slightly non
optimal) Gaussian upper and lower bounds with elegant methods. Observe that this technique
proves to be useful (generally speaking) for equations with additive noise, as assessed in a
SPDE context by [23].

(2) The one dimensional case with multiplicative noise is based on the Doss-Sussmann's
transform and Girsanov type arguments. It is rather easy to implement and yields results
when the criterion of [20] can not be applied.
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(3) As far as the general case is concerned, it will be basically handled thanks to the decom-
position of random variables using increments of independent of Gaussian increments strategy
introduced in [2, 16], which has also been invoked successfully e.g in [9]. However, let us point
out two important di�erences between the fBm and the di�usion case:
(i) In the case of the sde (3) without drift coe�cient V0, the �rst step of the method imple-
mented (for a �xed t ∈ (0, 1]) in [2, 16] amounts to introduce a partition {tj; 0 ≤ j ≤ n} such
that t0 = 0 and tn = t, with n large enough, and then split Xt into small contributions of the
form

Xtj+1
−Xtj =

d∑
i=1

Vi(Xtj)
[
Bi
tj+1
−Bi

tj

]
+

d∑
i=1

∫ tj+1

tj

[
Vi(Xs)− Vi(Xtj)

]
dBi

s. (6)

Then a main conditionally Gaussian contribution Vi(Xtj)[B
i
tj+1
−Bi

tj
] is identi�ed in the right

hand side of equation (6), while the other terms are a small remainder in the Malliavin
calculus sense in comparison with the �rst. Roughly speaking, the Gaussian lower bound (5)
is then obtained by adding those main contributions and proving that the remainder does not
signi�cantly modify the estimate. However, let us highlight the fact that this general scheme
does not �t to the fractional Brownian motion setting.
Indeed, due to the fBm dependence structure, the main contributions to the variance of Xt

in the current situation come from the cross terms E[(Bi
tj+1
− Bi

tj
)(Bi

tk+1
− Bi

tk
)] for j 6= k.

We have thus decided to express equation (3) as an anticipative Stratonovich type equation
with respect to the Wiener process induced by B. This is known to be an ine�cient way to
solve the original equation, but turns out to be very useful in order to analyze the law of Xt.
We shall detail this strategy at Section 5.1.
(ii) In the case of an equation driven by usual Brownian motion, the Malliavin-Sobolev norms
involved in the computations give deterministic contributions after conditioning, due to the
independence of increments of the Wiener process. This is not true anymore in the fBm case,
and we thus need to add a proper localization to the arguments of [2, 16].
The adaptation of the Brownian methodology to our fBm context is thus nontrivial. Note
that we could also have tried to resort to the powerful global bounds given in [18] in order to
get our Gaussian lower bounds. Unfortunately, the exponential moments conditions imposed
in the latter reference are too restrictive to be applied to Malliavin derivatives of sde's driven
by fBm.

Our article is structured as follows: Section 2 is devoted to recall some useful facts on frac-
tional Brownian motion and stochastic di�erential equations. We handle the one dimensional
case with additive noise at Section 3 and the one dimensional case with multiplicative noise in
Section 4 with di�erent methodologies. Finally, the bulk of our article focuses on the general
multidimensional case contained in Section 5. Some auxiliary results used in Section 5 dealing
with stochastic derivatives are given in an Appendix.

Notations: Throughout this paper, unless otherwise speci�ed we use | · | for Euclidean norms
and ‖ · ‖Lp for the Lp(Ω) norm with respect to the underlying probability measure P. For a
random variable X, L(X) denotes its law and for a σ-�eld F , X ∈ F denotes the fact that
X is F -measurable.
Consider a �nite-dimensional vector space V and a subset U ⊂ Rd. The space of V -valued

Hölder continuous functions de�ned on U , with k-derivatives which are γ- Hölder continuous
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with γ ∈ (0, 1), will be denoted by Ck+γ(U ;V ), or just Ck+γ when U = [0, 1]. For a function
g ∈ Cγ(V ) and 0 ≤ s < t ≤ 1, we shall consider the semi-norms

‖g‖s,t,γ = sup
s≤u<v≤t

|gv − gu|V
|v − u|γ

, (7)

The semi-norm ‖g‖0,1,γ will simply be denoted by ‖g‖γ. Similarly, for an open set U , C1
b (U ;V )

denotes the space of bounded continuously di�erentiable functions with bounded �rst deriva-
tive. For x, y ∈ Rm, we set 1{y≥x} :=

∏m
k=1 1{yk≥xk} . Vectors x ∈ Rm denote column vectors,

their j-th component is denoted by xj and the transpose of x is denoted by x∗. The identity
matrix of order m×m is denoted by Idm.
Finally, let us mention that generic constants will be denoted by c, cH , cV , etc. indepen-

dently of their actual value which may change from one line to the next. This rule will also
apply for the constants M and M ′ which will appear as localization parameters, with the
following additional convention: each time a localization constant appears, it increases its
value by the addition of a �xed universal constant from the previous value. For a detailed
explanation, see (16).

2. Stochastic calculus for fractional Brownian motion

This section is devoted to give some of the basic elements of stochastic calculus with respect
to B. For some �xed H ∈ (0, 1), we consider (Ω,F ,P) the canonical probability space
associated with the fractional Brownian motion (in short fBm) with Hurst parameter H. That
is, Ω = C0([0, 1];Rd) is the Banach space of continuous functions vanishing at 0 equipped with
the supremum norm, F is the Borel sigma-algebra and P is the unique probability measure
on Ω such that the canonical process B = {Bt = (B1

t , . . . , B
d
t ), t ∈ [0, 1]} is a fBm with

Hurst parameter H. In this context, let us recall that B is a d-dimensional centered Gaussian
process, whose covariance structure is induced by equation (2).

2.1. Malliavin calculus tools. Gaussian techniques are obviously essential in the analysis
of fBm driven di�erential equations like (3), and we proceed here to introduce some of them
(see Chapter 5 in [21] for further details).

2.1.1. Wiener space associated to fBm. Let E be the space of Rd-valued step functions on
[0, 1], and H the closure of E under the distance de�ned by the scalar product:

〈(1[0,t1], · · · ,1[0,td]), (1[0,s1], · · · ,1[0,sd])〉H =
d∑
i=1

R(ti, si).

The space H is isometric to the reproducing kernel Hilbert space associated to B.

Furthermore, if (e1, . . . , ed) designates the canonical basis of Rd, one constructs an isometry
K∗: H → L2([0, 1];Rd) such that K∗(1[0,t] ei) = 1[0,t] KH(t, ·) ei, where the kernel K = KH is
given by

K(t, s) = cH s
1
2
−H
∫ t

s

(u− s)H−
3
2uH−

1
2 du, H >

1

2
, (8)

K(t, s) = cH,1

(s
t

)1/2−H
(t− s)H−1/2 + cH,2 s

1/2−H
∫ t

s

(u− s)H−
1
2uH−

3
2 du, H <

1

2
,
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for 0 ≤ s ≤ t and some explicit universal constants cH , cH,1, cH,2. With a slight abuse of
notation we will denote the associated integral operator by Kf(x) =

∫ x
0
f(s)K(x, s)ds. Note

that we have that R(s, t) =
∫ s∧t

0
K(t, r)K(s, r) dr. Moreover, let us observe that K∗ can be

represented in the following form: for H ∈ (1/2, 1) we have

[K∗ϕ]t =

∫ 1

t

ϕr ∂rK(r, t) dr

while for H ∈ (0, 1/2) it holds that

[K∗ϕ]t = K(1, t)ϕt +

∫ 1

t

(ϕr − ϕt) ∂rK(r, t) dr.

When H ∈ (1/2, 1) it can be shown that L1/H([0, 1],Rd) ⊂ H, and when H ∈ (0, 1/2) one has
Cγ ⊂ H ⊂ L2([0, 1]) for all γ > 1

2
−H. We shall also use the following representations of the

inner product in H:
(i) For H ∈ (1/2, 1) and φ, ψ ∈ H we have

〈K∗φ,K∗ψ〉L2([0,1]) = 〈φ, ψ〉H = cH

∫ 1

0

∫ 1

0

|s− t|2H−2 〈φs, ψt〉Rd dsdt . (9)

(ii) For H ∈ (0, 1/2), consider any family of partitions π = (tj) of [0, 1], and set Qjk =∑d
i=1 E[∆i

j(B)∆i
k(B)] with ∆i

j(B) = Bi
tj
−Bi

tj−1
. Then, for φ, ψ ∈ H we have

〈φ, ψ〉H = lim
|π|→0

∑
j,k

〈φtj−1
, ψtk−1

〉Rd Qjk. (10)

Let us also recall that there exists a d-dimensional Wiener process W de�ned on (Ω,F ,P)
such that B can be expressed as

Bt =

∫ t

0

K(t, r) dWr, t ∈ [0, 1]. (11)

This formula will be referred to as Volterra's representation of fBm. Formula (11) has various
important implications. For example, it is readily checked that Ft ≡ σ{Bs; 0 ≤ s ≤ t} =
σ{Ws; 0 ≤ s ≤ t}. This �ltration will appear in the sequel.

2.1.2. Malliavin calculus for B. Isometry arguments allow to de�ne the Wiener integral
B(h) =

∫ 1

0
〈hs, dBs〉 for any element h ∈ H, such that it satis�es E[B(h1) B(h2)] = 〈h1, h2〉H

for any h1, h2 ∈ H. A F -measurable real valued random variable F is then said to be cylin-
drical if it can be written, for a given n ≥ 1, as

F = f
(
B(h1), . . . , B(hn)

)
= f

(∫ 1

0

〈h1
s, dBs〉, . . . ,

∫ 1

0

〈hns , dBs〉
)
,

where hi ∈ H and f : Rn → R is a C∞ bounded function with bounded derivatives. The set
of cylindrical random variables is denoted by S.
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The Malliavin derivative with respect to B is de�ned as follows: for F ∈ S, the derivative
of F is the Rd valued stochastic process (DtF )0≤t≤1 given by

DtF =
n∑
i=1

hit
∂f

∂xi

(
B(h1), . . . , B(hn)

)
.

More generally, we can introduce iterated derivatives. We will use the following two notations
depending on the situation. For F ∈ S, we set for i = (i1, ..., ik) and t = (t1, . . . , tk)

Dk
t = Dk

t1,...,tk
F = Dt1 . . .DtkF or Di

tF = Di1,...,ik
t1,...,tk

F = Di1
t1 . . .D

ik
tk
F.

For any p ≥ 1, it can be checked that the operator Dk is closable from S into Lp(Ω;H⊗k).
We denote by DDDk,p the closure of the class of cylindrical random variables with respect to the
norm

‖‖‖F‖‖‖k,p =

(
E [F p] +

k∑
j=1

E
[∥∥DjF

∥∥p
H⊗j
]) 1

p

,

for k ≥ 0 and p ≥ 1. In particular, ‖‖‖F‖‖‖0,p ≡ ‖‖‖F‖‖‖p = (E [F p])1/p. As it is usually the case in
Malliavin Calculus with respect toW , the spacesDDDk,p(H) are also de�ned. The dual operator
of D is denoted by δδδ, which corresponds to the Skorohod integral with respect to the fBm
B on the interval [0, 1]. The space of smooth processes LLLk,p(H) is induced by the following
norm:

‖u‖p
LLLk,p(H)

= E [‖u‖pH] +
k∑
l=1

E
[
‖DDDlu‖pH⊗(l+1)

]
.

Finally, the set of smooth integrands is de�ned asDDD∞(H) = ∩k,p≥1DDD
k,p(H), and the Malliavin

covariance matrix of F is denoted by ΓF .

As mentioned in the introduction, our lower bound (5) will be obtained by considering
equation (3) as an equation driven by the underlying Wiener process W de�ned in (11),
meaning that we shall also use stochastic analysis estimates with respect to W . We refer to
Chapter 1 in [21] for this classical setting, and just mention here a few notations: we denote
by D the di�erentiation operator with respect to W and by δ the corresponding dual operator
(Skorohod integral). The respective norms in the Sobolev spaces Dk,p(L2([0, 1])) are denoted
by ‖ · ‖k,p and the space of smooth integrands by Lk,p. The following simple relation between
D and D is then shown in [21], Proposition 5.2.1:

Proposition 2.1. Let D1,2 is the Malliavin-Sobolev space corresponding to the Wiener process
W . Then DDD1,2 = (K∗)−1D1,2 and for any F ∈ D1,2 we have DF = K∗DF whenever both
members of the relation are well de�ned.

In fact the above proposition says that the derivatives DDD and D are somewhat interchange-
able. Indeed, using formula (5.14) in [21] which gives an explicit formula for (K∗)−1 one
obtains such a property. In particular, we will use that for F ∈ Ft with F ∈ Dk,p and for
u = (u1, . . . , uk) ∈ [0, 1]k and r = (r1, ..., rn) we have

|Dk
uF | ≤ ess supui≤ri; i=1,...,k|Dk

rF |K(t, u1)...K(t, uk). (12)

For the proof of (12) and other useful properties see Appendix 6.
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Some of our computations in Section 5 will rely on some conditional Malliavin calculus
arguments, for which some de�nitions need to be recalled. First, for a given t ∈ [0, 1] and
F ∈ L2(Ω), we shorten notations and write

Et[F ] := E[F | Ft],
and also set Pt for the respective conditional probability and Covt(G) for the conditional
covariance matrix of a Gaussian vector G. We shall only use conditional Malliavin calculus
with respect to the underlying Wiener processW , for which we recall the following de�nitions:
For a random variable F and t ∈ [0, 1], let ‖F‖k,p,t and ΓF,t be the quantities de�ned (for
k ≥ 0, p > 0) by:

‖F‖k,p,t =

(
Et [F p] +

k∑
j=1

Et

[∥∥DjF
∥∥p

(L2
t )
⊗j

]) 1
p

and ΓF,t =
(
〈F i, F j〉L2

t

)
1≤i, j≤d , (13)

where we have set L2
t ≡ L2([t, 1]).

With this notation in hand, we give a conditional version of the integration by parts formula
with respect to the Wiener process W borrowed from [21, Proposition 2.1.4].

Proposition 2.2. Fix n ≥ 1. Let F, Zs, G ∈ (D∞)d be three random vectors where Zs is Fs-
measurable and (detΓF+Zs

)−1 has �nite moments of all orders. Let g ∈ C∞p (Rd). Then, for any
multi-index α = (α1, . . . , αn) ∈ {1, . . . , d}n, there exists a r.v. Hs

α(F,G) ∈ ∩p≥1 ∩m≥0 D
m,p

such that
E [(∂αg)(F + Zs)G|Fs] = E [g(F + Zs)H

s
α(F,G)|Fs] , (14)

where Hs
α(F,G) is recursively de�ned by

Hs
(i)(F,G) =

d∑
j=1

δs

(
G
(
Γ−1
F,s

)
ij
DF j

)
, Hs

α(F,G) = Hs
(αn)(F,H

s
(α1, ..., αn−1)(F,G)).

Here δs denotes the Skorohod integral with respect to the Wiener process W on the interval
[s, 1]. Furthermore, the following norm estimates with 1

p
= 1

q1
+ 1

q2
+ 1

q3
hold true:

‖Hs
α(F,G)‖p,s ≤ c‖ det(ΓF,s)

−1‖n2n−1q1,s
‖F‖2(dn+1)

n+2,2nq2,s
‖G‖n,q3,s.

We will also resort to a localized version of the above bounds. Namely, we introduce a
family of functions ΦM,ε : R+ → R+ indexed by M, ε > 0, which are regularizations of
1{x≤M}. Speci�cally, we de�ne a function φε = ε−1φ : R→ R with

φ(x) := cφ exp

(
− 1

1− x2

)
1{|x|<1},

where cφ is a normalization constant chosen in order to have
∫
R φ(x) dx = 1. Then, we de�ne

ΦM,ε(z) := 1−
∫ z

−∞
φε (x−M) dx. (15)

It is then readily checked that ΦM,ε(z) = 0 for z > M + ε, ΦM,ε(z) = 1 on [0,M − ε] and
ΦM,ε ∈ C∞b . We will use the above localization function in two situations: one for M >> 1,
ε = 1 and in that case we simplify the notation using ΦM ≡ ΦM,1. In a second case M will
not be a large quantity and therefore we will have to choose ε accordingly.
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Consider now Z ∈ D∞. Under the same conditions as for Proposition 2.2 we get a con-
ditional integration by parts formula of the form (14) localized by Z, with the following
modi�cation on the estimation of the norms of Hs

α :

‖Hs
α(F,GΦM(Z))‖p,s ≤ c‖ det(ΓF,s)

−1ΦM ′(Z)‖k3p3,s‖F ΦM ′(Z)‖k4k2,p2,s‖GΦM ′(Z)‖k1,p1,s, (16)

for some appropriate positive integers k1, p1, k2, p2, k3, p3, k4, and where we recall our conven-
tion on increasing constants M ′ > M . In fact, to obtain the above inequality is enough to
notice that there exist constants M ′ and C which may depend on M and k ∈ N such that
ΦM(Z) ≤ CΦM ′(Z)k and |∂kzΦM(Z)| ≤ CΦM ′(Z). Notice that (16) is valid for localizations
of the form ΦM,ε(Z) as well.

2.2. Di�erential equations driven by fBm. Recall that X is the solution of (3), and
that our working assumptions are summarized in Hypothesis 1.1. We have distinguished 3
situations:

(1) The one dimensional additive case, for which equation (3) can be reduced to an ordi-
nary di�erential equation by considering the process Z = X −B.

(2) The one dimensional multiplicative case, handled thanks to the Doss-Sussman trans-
form (see e.g [19]).

(3) The multidimensional case with H ∈ (1/2, 1), solved in a pathwise way by interpreting
stochastic integrals as generalized Riemann-Stieljes type integrals.

In this section we give a brief account on the known results in the last situation.

In the case H ∈ (1/2, 1), (3) is solved thanks to a �xed point argument, after interpreting
the stochastic integral in the (pathwise) Young sense (see e.g. [14]). Let us recall that Young's
integral can be de�ned in the following way:

Proposition 2.3. Let f ∈ Cγ, g ∈ Cκ with γ + κ > 1, and 0 ≤ s ≤ t ≤ 1. Then the integral∫ t
s
gξ dfξ is well-de�ned as a Riemann-Stieltjes integral. Moreover, the following estimation is

ful�lled: ∣∣∣∣∫ t

s

gξ dfξ

∣∣∣∣ ≤ C‖f‖γ‖g‖κ|t− s|γ,

where the constant C only depends on γ and κ.

With this de�nition in mind and under Hypothesis 1.1, we can solve uniquely (3) in the
Young sense. Speci�cally, it is proven in [24] that equation (3) driven by B admits a unique γ-
Hölder continuous solution X, for any 1

2
< γ < H. Moreover, the following moments bounds

are shown in [15]:

Proposition 2.4. Let H ∈ (1/2, 1) and assume that V0, . . . , Vd satisfy Hypothesis 1.1. Then
for t ∈ [0, 1] and 1

2
< γ < H, we have

‖X‖0,t,∞ ≤ |a|+ cV ‖B‖1/γ
0,t,γ, (17)

where we have set ‖X‖0,t,∞ := sup{|Xs|; 0 ≤ s ≤ t} and where we recall that ‖B‖0,t,γ is de�ned
by (7). Moreover Xt ∈ DDD∞ and for n ≥ 1, i = (i1, . . . , in) ∈ {1, . . . , d}n and 0 ≤ s < t ≤ 1
the following bound holds true:

sup
s≤u, r1...rn≤t

|Di
rXu| ≤ CV,n exp

(
cV,n‖B‖1/γ

s,t,γ

)
. (18)
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We remark that Di1...in
r1...rn

Xu is a continuous function except if ri = u for some i, where it is
càdlàg and therefore the above supremum is well de�ned.
Furthermore, a bound for γ-Hölder norms with 1

2
< γ < H is provided by [11, Eq.(10.15)]

for X together with its Malliavin derivatives:

Proposition 2.5. Under the same assumptions as for Proposition 2.4 we have

‖X‖s,t,γ ≤ c1,V

(
‖B‖s,t,γ ∨ ‖B‖

1
γ

s,t,γ

)
, ‖Di

rXu‖s,t,γ ≤ c2,V,n exp

(
c3,V,n‖B‖

1
γ

s,t,γ

)
.

Remark 2.6. Assume H > 1/2 and the other hypothesis of Proposition 2.4 again. As men-

tioned e.g in [8, Section 7], the Young type integrals
∫ t

0
Vi(Xs)dB

i
s in (3) coincide with Russo-

Vallois' de�nition of integral and also with the Stratonovich integral of Malliavin calculus.
We shall use those identi�cations later on, and they will be detailed in Section 5.2. For the
time being, let us just stress the following fact: in order to harmonize notations, we shall
often write

∫ t
0
Vi(Xs) ◦ dBi

s for the Young integral (instead of
∫ t

0
Vi(Xs)dB

i
s), in order to recall

that it can also be interpreted in the Stratonovich sense.

3. One dimensional additive case

This section is devoted to prove our main Theorem 1.2 in the particular case m = d = 1
with additive noise. In this context, one can take advantage of the results obtained by Nourdin
and Viens in [20] in order to derive Gaussian type upper and lower bounds for pt. Let us then
�rst recall what those results are.

3.1. General bounds on densities of one-dimensional random variables. Recall that
we denote the Malliavin-Sobolev spaces with respect to the fBm B by DDDk,p, and consider a
real-valued centered random variable F ∈DDD1,2. We de�ne a function g on R by:

g(z) := E
[〈

DF,−DL−1F
〉
H |F = z

]
,

where the operator L is the Ornstein-Uhlenbeck operator associated to the fBm B (see [21]
for further details), which can be de�ned using the chaos expansion by the formula L =
−
∑∞

n=0 nJn. Based on the function g, the following simple criterion for Gaussian type bounds
has been obtained in [20]:

Proposition 3.1. Let F ∈DDD1,2 with E[F ] = 0. If there exist c1, c2 > 0 such that

c1 ≤ g(F ) ≤ c2, P− a.s, (19)

then the law of F has a density ρ satisfying, for almost all z ∈ R,
E[|F |]

2c2

exp

(
− z2

2c1

)
≤ ρ(z) ≤ E[|F |]

2c1

exp

(
− z2

2c2

)
.

Interestingly enough, [20, Proposition 3.7] also gives an alternative formula for g(F ) which
is suitable for computational purposes. Indeed, if we write DF = ΦF (B) in the above
Proposition, where ΦF : RH → H is a measurable mapping, then the following relation
holds true:

g(F ) =

∫ ∞
0

e−θ E
[〈

ΦF (B),ΦF (e−θB +
√

1− e−2θB′)
〉
H

∣∣∣F] dθ, (20)
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where B′ stands for an independent copy of B, and is such that B and B′ are de�ned on the
product probability space (Ω × Ω′,F ⊗ F ′,P × P′). Here we abuse the notation by letting
E be the mathematical expectation with respect to P × P′, while E′ is the mathematical
expectation with respect to P′ only. One can thus recast relation (20) as

g(F ) =

∫ ∞
0

E
[
E′
[〈

DF,DF θ
〉
H

] ∣∣∣F] dθ, (21)

where, for any random variable X de�ned in (Ω,F ,P), Xθ denotes the following shifted
random variable in Ω× Ω′:

Xθ(ω, ω′) = X
(
e−θω +

√
1− e−2θω′

)
, ω ∈ Ω, ω′ ∈ Ω′.

3.2. Main result in the additive one-dimensional case. Before stating our result let us
point out that we assume through this subsection V1 ≡ σ. That is, X is the solution of

Xt = x+

∫ t

0

V0(Xs)ds+ σ Bt, t ∈ [0, 1] (22)

where σ > 0 is a strictly positive constant, V0 satis�es ‖V ′0‖∞ ≤M for some constant M > 0
and B is a fBm with H ∈ (0, 1). Under this setting, we are able to get the following bounds:

Theorem 3.2. Assume that V0 satis�es that ‖V ′0‖∞ ≤ M , for some constant M > 0, σ > 0
and H ∈ (0, 1). Then, for all t ∈ (0, 1], Xt possesses a density pt and there exist some strictly
positive constants c1 < c3 and c2 < c4 depending only on M and H such that for all z ∈ R

c1

σtH
exp

(
−(z −m)2

c2σ2t2H

)
≤ pt(z) ≤ c3

σtH
exp

(
−(z −m)2

c4σ2t2H

)
. (23)

Remark 3.3. The advantage of the Nourdin-Viens method of estimating densities is that
upper and lower bounds are obtained with similar proofs. The drawback is the restriction
to one dimensional additive situations. Also notice that the exponents in equation (24) are
optimal, meaning that our density bounds mimic the fBm case. See also Theorem 4.3 for the
non-constant di�usion case.

Strategy of the proof. We �rst notice that we can reduce our problem to prove that:

E[|Xt −m|]
c1σ2t2H

exp

(
−(z −m)2

c2σ2t2H

)
≤ pt(z) ≤ E[|Xt −m|]

c2σ2t2H
exp

(
−(z −m)2

c1σ2t2H

)
. (24)

Indeed, one can check in our context that E[|Xt −m|] � σ tH . This easy step is left to the
reader for the sake of conciseness, and it naturally allows to go from (24) to (23). Now in order
to prove (24), we obviously rely heavily on Proposition 3.1. We thus de�ne F = Xt − E[Xt],
where Xt is the solution of (22). We get a centered random variable, and we shall prove that
there exists two constants 0 < K1 < K2 such that

K1σ
2t2H ≤ g(F ) ≤ K2σ

2t2H . (25)

Notice �rst that in the present case, it is easily seen that for any t > 0 we have Xt ∈ DDD1,2

(this is a particular case of [25]). Furthermore, the Malliavin derivative of Xt satis�es the
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following equation for r ≤ t:

DrXt =

∫ t

r

V ′0(Xs)DrXsds+ σ.

This equation can be solved explicitly, and we obtain

DrXt = σe
∫ t
r V
′
0(Xs)ds. (26)

In particular, the bound

σ e−tM ≤ DrXt ≤ σ etM (27)

holds true almost surely for M = ‖V ′0‖∞.
Observe that we shall bound g(F ) thanks to relation (27). More speci�cally, we will show

that for each θ ∈ R+ we have (almost surely):

c3 t
2H σ2 ≤

〈
DF,DF θ

〉
H ≤ c4 t

2H σ2, (28)

for two strictly positive constants c3 < c4. This deterministic bound easily yields (19) and
thus (24). We now separate the cases H ∈ (1/2, 1) and H ∈ (0, 1/2) in order to get rela-
tion (28). Notice that the Brownian case, i.e. H = 1/2, is well known and it is thus omitted
here for the sake of conciseness. �

3.3. Case H > 1
2
. Recall that we wish to prove (28) thanks to relation (27). Furthermore,

owing to expression (9) for the inner product in H we can write 〈DF,DF θ〉H as:〈
DF,DF θ

〉
H = cH

∫ t

0

∫ t

0

DuXt DvX
θ
t |u− v|2H−2dudv (29)

= cHσ
2

∫ t

0

∫ t

0

e
∫ t
u V
′
0(Xs)dse

∫ t
v V
′
0(Xθ

s )ds|u− v|2H−2dudv.

Therefore the lower and upper bounds in (27) follow from plugging inequality (27) into rela-
tion (29).

3.4. Case 0 < H < 1
2
. As in the case H > 1

2
, our aim is to prove (27). We thus go back to

equation (21) and we observe that we can reduce the problem to the existence of two constants
0 < c1 < c2 such that

c1t
2H ≤

〈
DXt,DX

θ
t

〉
H ≤ c2t

2H . (30)

The proof of these inequalities will rely on the following quadratic programming lemma, which
is a slight variation of [5, Lemma 6.2]:

Lemma 3.4. Let Q ∈ Rn⊗Rn be a strictly positive symmetric matrix such that
∑n

j=1 Qij ≥ 0

for all i = 1, . . . , n. For two positive constants a and b, consider the sets A = [a,∞)n and
B = [b,∞)n. Then

inf {x∗Qx̃; x̃ ∈ A, x ∈ B} = ab
n∑

i,j=1

Qij.
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Proof. Set a = a1 ∈ Rn and b = b1 ∈ Rn. The Lagrangian of our quadratic programming
problem is a function L : Rn × Rn × Rn

+ × Rn
+ → R de�ned as

L(x, x̃, λ1, λ2) = x∗Qx̃− λ∗1 (x− b)− λ∗2 (x̃− a) .

It is readily checked that ∇xL(x, x̃, λ1, λ2) = Qx̃−λ1 and ∇x̃L(x, x̃, λ1, λ2) = Qx−λ2, which
vanishes for x = Q−1λ2 and x̃ = Q−1λ1. Therefore,

inf {L(x, x̃, λ1, λ2); x, x̃ ∈ Rn} = L
(
Q−1λ2, Q

−1λ1, λ1, λ2

)
= −λ∗1Q−1λ2 + λ∗1b + λ∗2a =: G(λ1, λ2).

We have thus obtained a dual problem of the form

max
{
G(λ1, λ2);λ1, λ2 ∈ Rn

+

}
. (31)

Let us now solve Problem (31). We �rst maximize G without positivity constraints on
λ1 and λ2: we get ∇λ1G(λ1, λ2) = −Q−1λ2 + b and ∇λ2G(λ1, λ2) = −λ∗1Q−1 + a, which
vanishes for λ◦1 = Qa and λ◦2 = Qb . Observe now that our assumption

∑n
j=1Qij ≥ 0 for all

i = 1, . . . , n implies λ◦1, λ
◦
2 ≥ 0, so that λ◦1 and λ◦2 are feasible for the dual problem. Hence

max
{
G(λ1, λ2);λ1, λ2 ∈ Rn

+

}
= G(λ◦1, λ

◦
2) = ab

n∑
i,j=1

Qij,

which �nishes the proof. �

Importantly enough, Lemma 3.4 can be applied in order to get a lower bound on H norms:

Proposition 3.5. Let B be a 1-dimensional fBm on [0, τ ], let H ≡ Hτ be the associated

reproducing kernel Hilbert space and f, f̃ ∈ H such that fu ≥ b and f̃u ≥ a for any u ∈ [0, τ ].

Then 〈f, f̃〉H ≥ a b τ 2H .

Proof. Recall that, owing to relation (10), we have 〈f, f̃〉H = lim|π|→0 Iπ(f, f̃), where π stands
for a generic partition {0 = t0 < · · · < tn = τ} and

Iπ(f, f̃) =
n∑

i,j=1

fti−1
Qij f̃tj−1

, with Qij = E[∆i(B)∆j(B)],

where we recall that ∆i(B) = Bti − Bti−1
. We assume for the moment that Q satis�es the

hypothesis of Lemma 3.4, and we get

Iπ(f, f̃) ≥ ab
n∑

i,j=1

Qij = ab
n∑

i,j=1

E [∆i(B)∆j(B)] = abE
[
B2
τ

]
= ab τ 2H ,

which is our claim.

Let us now prove that Q satis�es the hypothesis of Lemma 3.4. First, the strict positivity
of Q stems from the local non determinism of B (see e.g [30]). Indeed, for u ∈ Rn we have

u∗Qu = Var

(
n−1∑
j=0

uj ∆j(B)

)
≥ cn

n∑
j=1

u2
j |tj − tj−1|2H ,

where the lower bound is the de�nition of local nondeterminism. Thus u∗Qu > 0 as long as
u 6= 0.
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Let us now check that for a �xed i we have
∑n

j=1 Qij ≥ 0. To this aim, write

n∑
j=1

Qij = E [∆i(B)Bτ ] =

∫ ti+1

ti

∂uR(τ, u) du.

Going back to expression (1), it is now easily seen that for u < τ we have

∂uR(τ, u) = H
(
u2H−1 + (τ − u)2H−1

)
> 0,

which completes the proof. �

We can now go back to the proof of relation (30), which is divided again in two steps:

Step 1: Lower bound. Thanks to relation (27), we have that σe−tM ≤ DrXt. Thus we just
have to apply Proposition 3.5 to the Malliavin derivative in order to obtain〈

DXt,DX
θ
t

〉
H ≥ σ2t2He−2M , (32)

which is our desired lower bound.

Step 2: Upper bound. In order to obtain an upper bound for g(F ) we will use the representation
of H through fractional derivatives. Indeed, apply �rst Cauchy-Schwarz inequality in order
to get 〈

DXt,DX
θ
t

〉
H ≤ ‖DXt‖H ‖DX

θ
t ‖H. (33)

We then invoke Lemma 6.1 to bound ‖DXθ
t ‖H. This boils down to estimate

a = sup
r∈[0,t]

|DrX
θ
t |, and b = sup

r,v∈[0,t]

DrX
θ
t −DvX

θ
t

(v − r)γ
,

with 1/2−H < γ < 1/2 and any θ ≥ 0.

Now starting from expression (26) and owing to the fact that V ′0 is uniformly bounded by
M , we trivially get a ≤ σ eM . As far as b is concerned, we write∣∣DrX

θ
t −DvX

θ
t

∣∣ ≤ σ e
∫ t
v V
′
0(Xθ

s )ds
∣∣∣1− e∫ vr V ′0(Xθ

s )ds
∣∣∣ ≤ σM e2M (v − r).

We thus end up with the inequalities

a ≤ σ eM , and b ≤ σM e2M t1−γ.

We now apply Lemma 6.1 with constants a and b and we obtain

‖DXt‖H ≤ cH
(
σ eM tH + σM e2M t1+H

)
≤ 2cH σM e2M tH ,

and hence 〈
DXt,DX

θ
t

〉
H ≤ 4cHσ

2M2 e4M t2H .

Finally, putting together the last bound and (32), we get (25) in the case H ∈ (0, 1/2), which
�nishes the proof of Theorem 3.2.



GAUSSIAN TYPE LOWER BOUNDS FOR DENSITY OF FRACTIONAL SDES 15

4. One dimensional non-vanishing diffusion coefficient case

We turn now to the case m = d = 1, H ∈ (1
2
, 1) for a non constant elliptic coe�cient σ.

Observe that this special case is treated in a separate section because: (i) The Gaussian bound
is obtained with weaker conditions on the coe�cients than in the multidimensional case. (ii)
The proof is shorter due to speci�c one-dimensional techniques based on Doss-Sussman's
transform and Girsanov's theorem. This is detailed below.

Remark 4.1. The Doss-Sussman transform can be justi�ed for any H ∈ (0, 1) in our context.
However, the computations related to Girsanov's transform become much more involved when
H < 1/2, and this is why we restrict our analysis to H > 1/2 in the sequel.

4.1. Doss-Sussmann transformation. The idea of the method is to �rst consider a one
dimensional equation of Stratonovich type without drift and then apply Girsanov's theorem
for fBm in order to obtain a characterization of the density.
In order to carry out this strategy, we start by using an independent copy of (Ω,F ,P) called

(Ω′,F ′,P′) supporting a fBm denoted by B′. On (Ω′,F ′,P′), let Y be the unique solution to:

Yt = a+

∫ t

0

V1(Ys) ◦ dB′s, (34)

where the integral is interpreted either in the Young or Stratonovich sense (as recalled in
Remark 2.6), and where V1 ∈ C1(R;R), V1 6= 0 and H ∈ (1

2
, 1). We also callW ′ the underlying

Wiener process appearing in the Volterra type representation (11) for B′. We now recall here
some details from Doss and Sussmann's classical computations adapted to our fBm context.

Indeed, as in [19], let us recall that the solution of equation (34) can be expressed as
Yt = F (B′t, a), t > 0, where F : R2 → R is the �ow associated to V1:

∂F

∂x
(x, y) = V1(F (x, y)), F (0, y) = y. (35)

We remark that if V1 is bounded then F satis�es |F (x, y)| ≤ c(1 + |x|+ |y|).
Next we relate the solution X of equation (3) to the process Y de�ned by (34). This step

is partially borrowed from [22], and we refer to that paper for further details. Indeed, thanks
to a Girsanov type transform, the following characterization of the law of the solution to (3)
is shown for m = d = 1: For any bounded measurable function U : R→ R, one has

EP [U(Xt)] = EP′ [U (F (B′t, a)) ξ] , (36)

where ξ ≡ ξt = dP
dP′

is the random variable de�ned by

ξ = exp

(∫ t

0

[
Ms dW

′
s −

1

2
M2

s ds

])
, (37)

where we have setM = K−1(
∫ ·

0
V0V

−1
1 (Yu)du).

Notice that in de�nition (37), the operator K has been alluded to at Section 2.1.1. It should
be observed that K,K−1 can also be de�ned respectively, for H ≥ 1

2
and an appropriate

function h, by (see details in [21, Chapter 5]):

K(h)(s) = I1
0+(sH−

1
2 (I

H− 1
2

0+ (s
1
2
−Hh)))(s), and K−1(h)(s) = sH−

1
2 (D

H− 1
2

0+ (s
1
2
−Hh′))(s).
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We also recall that in the last equation, Iα0+ and Dα
0+ denote the fractional integral and

fractional derivative, whose expressions are:

Iα0+f(x) =
1

Γ(α)

∫ x

a

(x− y)α−1f(y)dy,

and

Dα
0+f(x) =

1

Γ(1− α)

(
f(x)

xα
+ α

∫ x

a

f(x)− f(y)

(x− y)α+1
dy

)
.

It is easily seen from the expressions of K−1
H and D

H− 1
2

0+ that K−1
H h is an adapted trans-

formation (see also expression (39) below). Hence the term ξ in (36) corresponds to the
usual Girsanov correction term. Furthermore, notice that in order for (36) to be satis�ed

it is required that
∫ ·

0
V0V

−1
1 (Yu)du ∈ I

H+ 1
2

0+ (L2[0, 1]). This condition is satis�ed due to the
γ-Hölderianity of Y for any γ < H.
Actually one should prove that Novikov's type conditions are satis�ed for ξ in order to

apply Girsanov's transform and get relation (36). This is achieved in the following lemma:

Lemma 4.2. Let ξ be the random variable de�ned by (37), and assume that Hypothesis 1.1-(1)
is satis�ed. Then

Ms ≤ cV βs, with βs := s
1
2
−H + ‖B′‖H− 1

2
+ε, (38)

for any arbitrarily small ε > 0. Furthermore EP′ [ξ] = 1, which justi�es the Girsanov iden-
tity (36). That is, under P, B = B′ +

∫ ·
0
V0V

−1
1 (Yu)du is a H-fBm.

Proof. According to the expression of K−1
H we have:

Ms =
1

Γ(H − 1
2
)

(
M1

s +

(
H − 1

2

)
M2

s

)
, (39)

where we have set

M1
s ≡

V0V
−1

1 (Ys)

sH−
1
2

, M2
s ≡ sH−

1
2

∫ s

0

s
1
2
−HV0V

−1
1 (Ys)− u

1
2
−HV0V

−1
1 (Yu)

(s− u)H+ 1
2

du.

The termM1
s is easily bounded: we invoke the uniform ellipticity of V1 and the regularity of

V0 and V1, which yieldsM1
s ≤ c s−(H− 1

2
). We now boundM2

s: let us decompose this term as
M2

s =M21
s +M22

s , with

M21
s =

∫ s

0

1− (s/u)H−
1
2

(s− u)H+ 1
2

V0V
−1

1 (Yu) du, and M22
s =

∫ s

0

V0V
−1

1 (Ys)− V0V
−1

1 (Yu)

(s− u)H+ 1
2

du.

Then, resorting again to the fact that V0V
−1

1 is bounded and with the obvious change of
variable r = u/s we get:

|M21
s | ≤

cV
sH−1/2

∫ 1

0

rH−1/2 − 1

rH−1/2(1− r)H+1/2
dr ≤ cV,H

sH−1/2
.

In order to handle the termM22
s , we start by writing:

M22
s ≤ cV

∫ s

0

|F (B′s, a)− F (B′u, a)|
(s− u)H+ 1

2

du,
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and thanks to the Lipschitz properties of F plus elementary integral computations we obtain:

M22
s ≤ cV,H‖B′‖H− 1

2
+ε.

Therefore, summarizing our estimates on M1,M21 and M22, the proof of our claim (38) is
now completed.

Now let us have a closer look at the process β: it is readily checked that ‖B′‖γ admits
quadratic exponential moments for any γ < H (see Theorem 3 in [22]). In particular, one
can choose γ = H − 1/2 + ε for ε small enough, and hence there exists λ > 0 such that

the expected value E[exp(λ
∫ t

0
β2(s)ds)] is a �nite quantity. Owing to a version of Novikov's

condition stated in [12, Theorem 1.1] we deduce that E[ξ] = 1. This concludes the proof. �

4.2. Main result in the Doss-Sussman framework. As in the additive case of Section 3,
we are able to get both upper and lower Gaussian bounds in a one dimensional context:

Theorem 4.3. Assume that H ∈ (1/2, 1) and V0, V1 satisfy the assumptions of Hypothe-
sis 1.1-(1). Then, there exist constants C1 and C2 such that for all t ∈ (0, 1], the solution Xt

to equation (3) possesses a density pt satisfying for all x ∈ R:

1

C1

√
2πt2H

exp

(
−C1

(x− a)2

2t2H

)
≤ pt(x) ≤ 1

C2

√
2πt2H

exp

(
−C2

(x− a)2

2t2H

)
. (40)

Proof. In this proof one should separate 4 cases: (a) λ ≤ V1(z) ≤ Λ with subcases x > a and
x ≤ a. (b) −Λ ≤ V1(z) ≤ −λ with subcases x < −a and x ≥ −a. These situations are treated
thanks to the same kind of arguments, and we will thus assume in the proof that x ≥ a and
λ ≤ V1(z) ≤ Λ for all z ∈ R. We now divide our proof in two steps.

Step 1: Upper bound. We start from an equivalent of (36) for densities, which is justi�ed
by [15, Theorem 7] and a duality argument:

pt(x) = EP′ [δx (F (B′t, a)) ξ] , (41)

where ξ is the random variable de�ned in (37). We now integrate by parts in order to get

pt(x) = EP′
[
1{F (B′t, a)≥x}H (F (B′t, a), ξ)

]
,

with

H (F (B′t, a), ξ) = δ

(
ξDF (B′t, a)

‖DF (B′t, a)‖2
L2([0,t])

)
, (42)

where D, δ respectively stand (with a slight abuse of notation) for the Malliavin derivative
and divergence operator for the Brownian motion W ′ under P′. Let us further simplify
the expression for the random variable H(F (B′t, a), ξ): setting Kt(u) ≡ K(t, u)1[0,t](u), it is
readily checked that we have

DuF (B′t, a) = ∂xF (B′t, a)Kt(u) and ‖DF (B′t, a)‖2
L2([0,t]) = |∂xF (B′t, a)|2 t2H .

Plugging this information into (42), and de�ning Z := ξ (∂xF (B′t, a))−1, we end up with

H (F (B′t, a), ξ) =
δ (Z Kt)

t2H
= K1 −K2,
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where

K1 =
Z B′t
t2H

, and K2 =
〈DZ, Kt〉L2([0,t])

t2H
.

We have thus obtained

pt(x) = EP′
[
1{F (B′t, a)≥x}K1

]
− EP′

[
1{F (B′t, a)≥x}K2

]
=: p1

t (x)− p2
t (x), (43)

and we shall upper bound these two terms separately.

The term p1
t (x) can be bounded as follows: for q1, q2, q3 > 1 large enough and a parameter

1 < q4 = 1 + ε with an arbitrary small ε > 0 we have

p1
t (x) ≤ E

1/q1
P′ [|B′t|q1 ]
t2H

P′
1/q2 (F (B′t, a) ≥ x) E

1/q3
P′

[
|∂xF (B′t, a)|−q3

]
E

1/q4
P′ [ξq4 ] (44)

We now bound the right hand side of this inequality:

(i) We obviously have
E

1/q1
P′ [|B′t|q1 ]

t2H
≤ ct−H , since B′ is a P′-fBm.

(ii) Let us prove that there exists two positive constants c1 and c2 such that, for all x ≥ 0:

P′
1/q2 (F (B′t, a) ≥ x) ≤ c1 exp

(
−c2(x− a)2

t2H

)
. (45)

Indeed, for a �xed a ∈ R set Q ≡ P′(F (B′t, a) ≥ x), and decompose this term as Q = Q1 +Q2

with:

Q1 = P′ (F (B′t, a) ≥ x, B′t ≥ 0) , and Q2 = P′ (F (B′t, a) ≥ x, B′t < 0) .

Since we have assumed x > a and V1 > λ > 0, it is readily checked that Q2 = 0. In the sequel
we thus bound the term Q1. Towards this aim, appealing to relation (35), we write:

Q1 = P′

(∫ B′t

0

V1 (F (z, a)) dz ≥ x− a, B′t ≥ 0

)
.

Next recall that we have assumed λ ≤ V1(z) ≤ Λ for all z ∈ R. Hence we have
∫ ζ

0
V1 (F (z, a)) dz

≤ Λζ for all ζ ≥ 0, and thus:

Q1 ≤ P′ (ΛB′t ≥ x− a, B′t ≥ 0) = P′ (ΛB′t ≥ x− a) ≤ exp

(
−(x− a)2

Λ2t2H

)
,

which is consistent with relation (45). The proof is now completed by a similar analysis of
the term Q2.

(iii) Equation (35) and the non-degeneracy assumptions on V1 show that ∂xF is bounded
from below by a constant, so that we get the trivial bound:

E
1/q3
P′

[
|∂xF (B′t, a)|−q3

]
≤ c.

(iv) Set S =
∫ t

0
Ms dW

′
s and D =

∫ t
0
M2

s ds, whereM≡ K−1
H (
∫ ·

0
V0V

−1
1 (Yu)du) as above, and

where we recall that q4 = 1 + ε with an arbitrarily small ε > 0. It is readily checked that

ξq4 = exp
(
q4S −

q4

2
D
)

= exp

(
q4S −

q2
4

2
D

)
exp

(qε
2
D
)
,
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where qε = q2
4 − q4 = ε(1 + ε). Now observe that the term exp(q4S − q24

2
D) is a Girsanov

change of measure which corresponds to a shift on B′ of the form

B̂ = B′ − q4

∫ ·
0

V0V
−1

1 (Yu)du = B − (q4 − 1)

∫ ·
0

V0V
−1

1 (Yu)du.

Calling P̂′ the probability under which B̂ is a fBm, we get

EP′ [ξ
q4 ] = EP̂′

[
exp

(qε
2
D
)]
. (46)

Now plug the estimate (38) into (46). This yields:

D ≤ cV

(
1 + ‖B′‖2

H− 1
2

)
≤ cV

(
1 + ‖B̂ + q4

∫ ·
0

V0V
−1

1 (Yu)du‖2
H− 1

2

)
≤ cV

(
1 + ‖B̂‖2

H− 1
2

)
.

Going back to relation (46) and taking into account the fact that qε can be chosen arbitrarily
small, we get EP′ [ξ

q4 ] <∞.

Gathering all the above estimates into (44), we have thus obtained that

p1
t (x) ≤ c1

tH
exp

(
−c2(x− a)2

t2H

)
.

The upper bound for p2
t (x) (de�ned in (43)) is obtained along the same lines, and we spare the

details to the reader. Let us just mention that more Malliavin derivatives of ξ and F (B′, a)
are involved in the computations, and this is where we use both the non-degeneracy and
smoothness assumptions on V . Then taking into account the estimates on p1

t (x) and p2
t (x)

in (43), we end up with our global upper bound in (40).

Step 2: Lower bound. Our strategy to obtain the lower bound in (40) is based on the following
decomposition:

pt(x) = EP′ [δx(F (B′t, a))(ξt − ξc1t)] + EP′ [δx(F (B′t, a))ξc1t] =: ρ1
t + ρ2

t , (47)

where c1 is a constant to be determined later. Observe that the main term will be ρ2
t , which

means that we consider a two point partition of the interval [0, t] and we perform a one-step
decomposition of Xt (or Yt) on [0, c1t] and [c1t, t], as opposed to the general time interval
partition in Section 5.
First, we start studying the main term ρ2

t : Note that due to (11), we can apply Girsanov's
Theorem in order to get:

ρ2
t = EP′

[
EP′

[
δx(F (B′t, a))

∣∣∣Fc1t] ξc1t]
= EP′

exp

(
−

(F−1(x, a)−
∫ c1t

0
K(t, s)dW ′

s)
2

2
∫ t
c1t
K2(t, s)ds

)
∂xF

−1(x, a)√
2π
∫ t
c1t
K2(t, s)ds

ξc1t

 = EP[Lc1,t],
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where we have set

Lc1,t := exp

(
−

(F−1(x, a)−
∫ c1t

0
K(t, s)dWs +

∫ c1t
0

V0V
−1

1 (Xs)ds)
2

2
∫ t
c1t
K2(t, s)ds

)
∂xF

−1(x, a)√
2π
∫ t
c1t
K2(t, s)ds

.

In order to determine a lower bound for the above expression, we use the following informa-
tion:
(i) We have ∂xF

−1(x, a)≥ [V1(F (x, a))]−1 ≥ Λ−1.

(ii) We apply the inequality (m+ a)2 ≥ 1
2
m2 − 2a2 to m ≡ F−1(x, a)−

∫ c1t
0

K(t, s)dWs and a

de�ned by a2 ≡ (
∫ c1t

0
V0V

−1
1 (Xs)ds)

2 ≤ cV t
2.

(iii) Gaussian convolution identities can be invoked in order to compose the quadratic ex-
ponential term de�ning Lc1,t with the expected value with respect to the Gaussian random

variable
∫ c1t

0
K(t, s)dWs.

(iv) The following trivial bound holds true:
∫ t
c1t
K2(t, s) ds ≤

∫ t
0
K2(t, s) ds = t2H .

These ingredients easily entail that

ρ2
t ≥

c√
2πσ̂2

exp

(
−F

−1(x, a)2

2σ̂2

)
,

for σ̂2 = 2
∫ t
c1t
K2(t, s)ds+

∫ c1t
0

K2(t, s)ds, and we observe that σ2 ≤ σ̂2 ≤ 2σ2.

Now we estimate the �rst term ρ1
t in (47) and prove that it is upper bounded by a quantity

which is smaller than half of the lower bound we have just obtained. For this term we need
to use again the integration by parts estimates carried out in (41). In order not to repeat
arguments we just mention the main steps: we start by writing

ρ1
t = EP′ [δx(F (B′t, a))(ξt − ξc1t)] = EP′

[
1{F (B′t, a)≤x}H (F (B′t, a), ξt − ξc1t)

]
,

and we decompose this expression into p1 − p2 like in (43), except for the fact that this time
Z is replaced by Zt := ((ξt − ξc1t) ∂xF (B′t, a))−1.

We wish to take advantage of the fact that ξt− ξc1t is a small quantity whenever c1 is close
to 1. For this, de�ne the processMc1t,· asMc1t,s = K−1

H (
∫ ·
c1t
V0V

−1
1 (Yu)du), consider θ ∈ [0, 1]

and de�ne

ξt(θ) := ξc1t exp

(
θ

∫ t

c1t

Mc1t,s dW
′
s −

θ2

2

∫ t

c1t

M2
c1t,s

ds

)
.

Then by the mean value theorem, we have

ξt − ξc1t =

∫ 1

0

dθ ξt(θ)

(∫ t

c1t

Ms dW
′
s − θ

∫ t

c1t

M2
s ds

)
.

Applying Fubini's theorem, one sees that the same estimates as in (44), appear again with the

exception that (i) The last term in the decomposition becomes E
1/q4
P′ [(ξt(θ))

q4 ] which is handled
in the same fashion as before. (ii) There is another term appearing in the decomposition,
namely

E
1/q5
P′

[(∫ t

c1t

Ms dW
′
s − θ

∫ t

c1t

M2
s ds

)q5]
.

Using (38) and the same estimates for stochastic integrals as in Step 1, one obtains that the
latter term is upper bounded by c(1− c2−2H

1 )t2−2H . Therefore taking c1 su�ciently close to 1
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one obtains that this upper bound is smaller than 1/2 of the lower bound previously obtained.
The proof is now complete. �

5. General lower bound

We now wish to obtain Gaussian type lower bounds for the multi-dimensional case of
equation (3). However, the computations in this section will be performed on the following
simpli�ed version for notational sake (adaptation of our calculations to the drift case are
straightforward):

Xt = a+
d∑
i=1

∫ t

0

Vi(Xs) ◦ dBi
s, (48)

where a ∈ Rm is a generic initial condition, Vi : Rm → Rm i = 1, . . . , d is a collection of smooth
and bounded vectors �elds and B1, . . . , Bd are d independent fBm's with H ∈ (1/2, 1). Recall
that our goal is then to prove relation (5) in this context. To this aim, we shall assume that
Hypothesis 1.1 (especially relation (4)) is satis�ed for the remainder of the article. Observe
that, as in Section 4, equation (48) is written in the Stratonovich sense. Relations between
Stratonovich and Young's integrals will be investigated at Section 5.2.

5.1. Preliminary considerations. Let us recall brie�y the strategy used in [2, 16] in order to
obtain Gaussian lower bounds for solutions of stochastic di�erential equations. The argument
starts with some additional notation: Recall that the natural �ltration of B, which is also the
natural �ltration of the underlying Wiener process W de�ned by (11), is denoted by Ft. As
we have introduced in section 2.1, we write Et for the conditional expectation with respect
to Ft. Under our working Hypothesis 1.1, let us also mention that the following result is
available (see [4, 15] for further details):

Proposition 5.1. Under Hypothesis 1.1, there exists a unique solution to (48). Then for
any t ∈ (0, 1], the random variable Xt is non degenerate in the sense of De�nition 2.1.1 in
[21], namely: (i) Xt ∈ DDD∞ (ii) The Malliavin matrix ΓXt is almost surely invertible and
satis�es Γ−1

Xt
∈ ∩p≥1L

p(Ω). In particular, the density of Xt admits the representation pt(x) =
E[δx(Xt)], where δx stands for the Dirac measure at point x.

With this preliminary result in hand, the quantity E[δx(Xt)] will be analyzed by means of
the succesive evaluation of conditional densities of an approximation sequence {Fj; 0 ≤ j ≤ n}
such that Xt = Fn. We thus consider pt(x) = E[δx(Fn)]. The discretization procedure is based
on a corresponding partition of the time interval as π : 0 = t0 < · · · < tn = t, and the sequence
of random variables Fj which satisfy the relation Fj ∈ Ftj .
Let us give some hints about the general strategy for the discretization: it is designed to

take advantage of conditional Malliavin calculus, which allows to capture the convolution
property of Gaussian distributions. We shall thus assume for the moment a structure of the
form

Fj = Fj−1 + Ij +Rj, (49)

where we recall that Fj−1 ∈ Ftj−1
. In formula (49), the term Ij will stand for a Gaussian

random variable (conditionally to Ftj−1
) and Rj refers to a small remainder term, whose

contribution to the density of Fj can be neglected with respect to the one induced by Ij just
like in the argument in (47). The local Gaussian bound (5) will be obtained from the density
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of the sum
∑n

j=1 Ij. The argument will �nish by an application of the Chapman-Kolmogorov
formula.

As suggested by equation (6) and setting ∆i
j+1(B) := Bi

tj+1
− Bi

tj
, a natural candidate

consists in taking Fj = Xtj , which yields

Ij =
d∑
i=1

Vi(Xtj) ∆i
j+1(B), and Rj =

d∑
i=1

∫ tj

tj−1

[
Vi(Xs)− Vi(Xtj)

]
dBi

s. (50)

However, this simple and natural guess is not suitable for the fBm case. Indeed, the analysis
of the variances of Ij induced from the decomposition (50) reveals that a signi�cant amount
is generated by the covariances between the increments ∆i

j(B). Now, if we write

t2H = E
[(
Bi
t

)2
]

= E

( n∑
j=1

∆i
j(B)

)2
 =

n∑
j,k=1

E
[
∆i
j(B)∆i

k(B)
]
, (51)

we realize that the diagonal terms in the right hand side expression only accounts for a term
of the form

∑
j |tj − tj−1|2H , which vanishes as the mesh of the partition goes to 0 when

H ∈ (1/2, 1). This means that our decomposition (50) will not be able to capture the correct
amount of variance contained in Xt, and has to be modi�ed.

There are at least two natural generalizations of the Euler type scheme method described
above:

(1) Take into account the o�-diagonal terms in (51), and perform a block type analysis.
(2) Express the equation as an equation driven by the Wiener process W de�ned by

relation (11) and take advantage of the independence of the increments of W .

We haven't been able to implement the strategy (1) above without cumbersome calculations,
and we have thus chosen to follow the second approach. Towards this aim, we �rst recall how
to de�ne equation (48) as a Stratonovich equation with respect to W .

5.2. Fractional equations as Stratonovich type equations. In order to handle equa-
tion (48) as an equation with respect to W , let us �rst introduce the following functional
space:

De�nition 5.2. Let |H| be the space of measurable functions φ : [0, 1]→ Rd such that

‖φ‖2
|H| := αH

∫ 1

0

(∫ 1

0

|φr||φu||r − u|2H−2dr

)
du < +∞.

Note that |H| endowed with the norm ‖ · ‖|H| is a Banach space of functions, which is also a
subspace of H.

In the sequel we also consider random elements with values in |H|. In particular, the norm
of φ in DDD1,2(|H|) is given by

‖φ‖DDD1,2(|H|) = E
[
‖φ‖2

|H|
]

+ E
[
‖Dφ‖2

|H|⊗|H|
]
.

As mentioned before, the Young type integrals we have handled so far can be identi�ed
with Stratonovich type integrals with respect to B, and �nally as anticipative Stratonovich
type integrals with respect to W . In order to state these results more formally, let us recall
what we mean by Stratonovich integrals with respect to B:
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De�nition 5.3. Let u = {ut, t ∈ [0, 1]} be a Rd-valued process de�ned on (Ω,F ,P), whose
paths are supposed to be integrable. The Stratonovich (or symmetric, or Russo-Vallois) integral

of u with respect to B is denoted by
∑d

k=1

∫ 1

0
uks ◦ dBk

s and is de�ned as:

d∑
k=1

∫ 1

0

uks ◦ dBk
s = lim

ε→0

1

2ε

d∑
k=1

∫ 1

0

uks
(
Bk
s+ε −Bk

s−ε
)
ds,

whenever the limit exists. In the same way, the inde�nite Stratonovich integral is de�ned as:
d∑

k=1

∫ t

0

uks ◦ dBk
s =

d∑
k=1

∫ 1

0

(
uks 1[0,t](s)

)
◦ dBk

s , for t ∈ [0, 1]. (52)

The following result is borrowed from [1, Proposition 3] and [10, Proposition 4.2 and p.
193] (we also refer to [1, Section 5] for considerations on the inde�nite Stratonovich integral).
It gives the link between Stratonovich and Young integrals with respect to B.

Proposition 5.4. Let u = {ut, t ∈ [0, 1]} ∈DDD1,2(|H|), such that∫ 1

0

∫ 1

0

|Dsut||t− s|2H−2dsdt <∞. (53)

Then

(i) The Stratonovich integral
∑d

k=1

∫ 1

0
uks ◦ dBk

s in the sense of De�nition 5.3 exists and we
also have:

d∑
k=1

∫ 1

0

uks ◦ dBk
s = δδδ(u) + αH

d∑
k=1

∫ 1

0

∫ 1

0

Dk
sut|t− s|2H−2dsdt. (54)

(ii) Whenever u ∈ Cγ a.s. with γ > 1/2 and H ∈ (1/2, 1), the Stratonovich integral∑d
k=1

∫ 1

0
uks ◦ dBk

s coincides with the Young integral
∑d

k=1

∫ 1

0
uks dB

k
s .

Remark 5.5. In the Brownian case (which corresponds to the limiting case H ↘ 1/2), one
may wonder about the relation between our pathwise type Stratonovich integral and the
Stratonovich integral of a square integrable adapted process u ∈ L2

a. The easiest way to carry
out this comparison might be starting from relation (54). Indeed, in the right hand side of
this identity, the Skorohod integral δδδ(u) coincides with Itô's integral as long as u ∈ L2

a. As far

as the terms αH
∫ 1

0

∫ 1

0
Dk
sut|t− s|2H−2dsdt is concerned, let us �rst mention that the measure

2αH |t− s|2H−2dsdt converges to the Lebesgue measure on the diagonal {(s, t) ∈ [0, 1]2; s = t}
as H ↘ 1/2. We thus end up morally with a sum of terms of the form 1

2

∫ 1

0
Dk
t ut dt. The

identi�cation of this term with the bracket 1
2
〈u,W 〉1 is then standard, and detailed in [21,

Remark 2 p. 175].

The next Proposition allows us to interpret the stochastic integral appearing in (48) as a
Stratonovich type integral.

Proposition 5.6. Let X = {Xt, t ∈ [0, 1]} be the solution to (48), and assume Hypothesis 1.1
holds true. Then X ∈DDD1,2(|H|) and satis�es the equation:

Xt = a+
d∑

k=1

∫ t

0

Vk(Xu) ◦ dBk
u,
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where the inde�nite Stratonovich integral is de�ned by (52), and can be decomposed as a
Skorohod integral plus a trace term as in (54).

Proof. According to Propositions 2.4 and 5.4, we just have to prove that X ∈ DDD1,2(|H|) and
satis�es relation (53). We �rst focus on proving the relation

E
[
‖X‖2

|H|
]

+ E
[
‖DX‖2

|H|⊗|H|
]
<∞.

In order to see the �rst part of this inequality, invoke relation (17) and write

E
[
‖X‖2

|H|
]

= αH

∫ 1

0

∫ 1

0

E [|Xr||Xs|] |r − s|2H−2 drds

≤ cE
[
‖X‖2

∞
] ∫ 1

0

∫ 1

0

|r − s|2H−2 drds < c1.

Along the same lines and owing to (18), it is also readily checked that E[‖DX‖2
|H|⊗|H|] < ∞

and that relation (53) holds true, which ends the proof. Note that due to Proposition 5.4 (ii)
and Proposition 2.5, we obtain the other assertions. �

Finally, the following corollary is the key to the e�ective decomposition we shall use in
order to get our Gaussian lower bound on pt:

Corollary 5.7. Let the same assumptions as for Proposition 5.6 hold true. For 0 ≤ s ≤ t ≤ 1
and ϕ ∈ |H| we de�ne:

K∗t (ϕ)s :=

∫ t

s

ϕr ∂rK(r, s) dr.

Then the process K∗t (Vk(X))· ∈ Dom(δ) and satis�es the equation

Xt = a+
d∑

k=1

∫ t

0

[K∗t (Vk(X))]s ◦ dW
k
s = a+

d∑
k=1

∫ t

0

(∫ t

s

∂uK(u, s)Vk(Xu) du

)
◦ dW k

s , (55)

where the anticipative Stratonovich integrals with respect to W can be decomposed as a Sko-
rohod integral plus a trace term as follows:

d∑
k=1

∫ t

0

[K∗t (Vk(X))]s ◦ dW
k
s = δ (K∗t (V (X))) +

d∑
k=1

∫ t

0

Dk
s [K∗t (Vk(X))]s ds. (56)

Proof. For notational sake, we give some details of the proof for n = d = 1, the easy adaptation
to the multidimensional case being omitted. We also set V ≡ V1. According to Proposition 5.6
and relation (54), we have Xt = a+ St + cH Tt, with

St = δδδ
(
V (X)1[0,t]

)
, and Tt =

∫ 1

0

∫ 1

0

Dr

(
V (X)1[0,t]

)
s
|r − s|2H−2 drds.

Then owing to [21, Proposition 5.2.2], we have St = δ(K∗(V (X)1[0,t])). In addition, a direct
and easy computation shows thatK∗(V (X)1[0,t]) = K∗t (Vk(X))1[0,t], so that we have obtained:

St = δ (K∗t (Vk(X))) ,

that is the �rst term in (56).
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Next, for a function ϕ : [0, 1]2 → R set:[
K∗,⊗2ϕ

]
r1,r2

=

∫ 1

r1

∫ 1

r2

∂s1K(s1, r1)∂s2K(s2, r2)ϕs1s2 ds1ds2.

Thanks to a slight extension of (9), we get:

Tt =

∫ 1

0

[
K∗,⊗2

(
DDDV (X)1[0,t]

)]
s,s
ds =

∫ 1

0

Ds

[
K∗(V (X)1[0,t])

]
s
ds =

∫ t

0

Ds [K∗t (V (X))]s ds,

where the second relation is due to Proposition 2.1 and the third one stems from the fact that
K∗(V (X)1[0,t]) = K∗t (Vk(X))1[0,t]. Gathering the expressions we have obtained for the two
terms St and Tt, the proof of our claim (56) is now �nished. �

5.3. Discretization procedure. We now proceed to the decomposition of Fn := Xt as
announced in (49), starting from the expression of Fj for j = 0, . . . , n. Indeed, according to
expression (55), a natural approximation sequence for Xt based on a partition 0 = t0 < . . . <
tn = t of [0, t] is the following:

Fi = Fi−1 + Ii +Ri, (57)

where, introducing the additional notations

ηi(u) := inf(u, ti), and gki,s :=

∫ t

s

∂uK(u, s)Vk(Xηi(u)) du (58)

we set (note that gki−1,s ∈ Fti−1
)

Fi−1 :=
d∑

k=1

∫ ti−1

0

gki−1,s ◦ dW k
s ,

Ii :=
d∑

k=1

∫ ti

ti−1

gki−1,s ◦ dW k
s =

d∑
k=1

Vk(Xti−1
)

∫ ti

ti−1

K(t, s) dW k
s , (59)

where the last integral above is simply a Wiener integral with respect toW . We also introduce
a family of random variables Ri de�ned by:

Ri :=
d∑

k=1

∫ ti

ti−1

Qk
s ◦ dW k

s , (60)

where Q is the process de�ned by

Qk
s :=

∫ t

s

∂uK(u, s)[Vk(Xηi(u))− Vk(Xti−1
)]du. (61)

Observe that if V is elliptic and bounded, it is clear from expression (59) that
∑

i Covti−1
(Ii) �

t2HIdm up to a constant, independently of the particular values of the ti's. We shall see
however how to choose those values at Condition 5.10.

Finally we introduce some random variables ΦM(Ni
γ,p(B)) for i = 1, . . . , n which allow us

to control the supremum norm of the solution of the equation (48) and of their stochastic
derivatives. This argument needs to be added in the methodology of [2, 16] and therefore we
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have to tailor the arguments therein to our situation. The localization random variables are
based on the family of functionals Ni

γ,p(B) de�ned by

Ni
γ,p(B) =

∫ ti

ti−1

∫ ti

ti−1

|Bv −Bu|2p

|v − u|2γp+2
dudv,

which can be compared to Hölder type norms and have the advantage that they can be
di�erentiated with respect to B. In fact, we can see the aim of introducing this functional in
the following proposition which is direct consequence of Garsia-Rodemich-Rumsey's Lemma
(see e.g [13]).

Proposition 5.8. Let H > 1
2
and p such that 0 < γ < H − 1

2p
, then we have ‖B‖ti−1,ti,γ ≤

cγ,p[N
i
γ,p(B)]1/2p.

The next step is to study the conditional densities of the approximation sequence Fi. To this
aim, one has to control various terms for which the localization technique of Malliavin Calculus
turns out to be useful. Speci�cally, recall that we have introduced families of functions
ΦM ,ΦM,ε given by expression (15). In the sequel we localize our expectations using functionals

of the type ΦM(Ni
γ,p(B)) and Φci,ε(

∑d
j=1

∫ ti
ti−1
|Dj

rRi|2dr) for some constants ci, ε of the form:

ci :=
λ

4

∫ ti

ti−1

K2(t, s)ds > 0, and εi :=
ci
2
> 0. (62)

Furthermore, in order to ease notations, notice that we will simply write:

ΦM ≡ ΦM(Ni
γ,p(B)), and Φci,εi ≡ Φci,εi

(
d∑
j=1

∫ ti

ti−1

|Dj
rRi|2dr

)
. (63)

With this additional notation in hand, we can proceed to the �rst step of our approximation
scheme: since Fi is Fti−1

conditionally non-degenerate and the localizations ΦM and Φci,εi ∈
D∞, we can write

Eti−1
[δx(Fi)] = Eti−1

[δx(Fi) ΦM Φci,εi ] + Eti−1
[δx(Fi) (1− ΦM Φci,εi)],

and due to the non-negativity of the second term, we have

Eti−1
[δx(Fi)] ≥ Eti−1

[δx(Fi) ΦMΦci,εi ].

Recalling that Fi = Fi−1 + Ii +Ri, we then obtain the following decomposition:

Eti−1
[δx(Fi)ΦMΦci,εi ] = J1,i + J2,i + J3,i, (64)

where
J1,i = Eti−1

[δx(Fi−1 + Ii)], J2,i = Eti−1
[δx(Fi−1 + Ii)(ΦMΦci,εi − 1)], (65)

and

J3,i =
m∑
j=1

Eti−1

[
ΦMΦci,εi

∫ 1

0

∂xjδx(Fi−1 + Ii + ρRi)R
j
i dρ

]
. (66)

Our aim is now to prove that in this decomposition J1,i should yield the main contribution,
while J2,i is small because of the quantity (ΦMΦci,εi − 1) whenever M and n are large enough
and J3,i is small due to the presence of the di�erence between Xti − Xti−1

in Ri. We shall
implement this strategy in the next subsections.
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5.4. Upper and lower bounds on J1,i. The main information which will be used about
J1,i is the following:

Proposition 5.9. Let J1,i be de�ned by (65). Then under Hypothesis 1.1 we have

J1,i = Eti−1
[δx(Fi−1 + Ii)] =

exp
(
−1

2
(x− Fi−1)∗Σ−1

i−1(x− Fi−1)
)

(2π)m/2 |Σi−1|1/2
, (67)

where Σi−1 is a deterministic (conditionally to Fti−1
) matrix such that

λ

(∫ ti

ti−1

K2(t, u) du

)
Idm ≤ Σi−1 ≤ Λ

(∫ ti

ti−1

K2(t, u) du

)
Idm,

and where the two strictly positive constants λ,Λ satisfy (4).

Proof. The fact that Ii−1 is conditionally Gaussian is clear from expression (59), and this
immediately yields our claim (67). Furthermore,

Σi−1 := Covti−1
(Ii) = Eti−1

[Ii I
∗
i ]

= Eti−1

[(
d∑

k=1

Vk(Xti−1
)

∫ ti

ti−1

K(t, u) dW k
u

)(
d∑
l=1

V ∗l (Xti−1
)

∫ ti

ti−1

K(t, u) dW l
u

)]

=
d∑

k=1

Vk(Xti−1
)V ∗k (Xti−1

)

∫ ti

ti−1

K2(t, u) du,

which �nishes the proof of our second claim thanks to Hypothesis 1.1. �

The previous proposition induces a natural choice for the partition (ti) in terms of the
kernel K:

Condition 5.10. We choose the partition 0 = t0 < . . . < tn = t of [0, t] such that we have∫ ti
ti−1

K2(t, u) du = t2H

n
=: σ2

n for all i = 1, . . . , n.

With this choice in hand, let us note the following properties for further use:

Lemma 5.11. Let t0, . . . , tn be the partition of [0, t] de�ned by Condition 5.10. Then

(i) The partition is constructed in a unique way.

(ii) We have 0 ≤ ti − ti−1 ≤ cH n
−1/(2H) for all i = 1, . . . , n.

(iii) The parameters ci de�ned at (62) are all equal to λt2H

4n
.

Proof. Our �rst claim stems from the fact that
∫ t

0
K2(t, u) du = t2H and v 7→

∫ τ
v
K2(t, u) du

is a strictly decreasing function for all 0 ≤ v ≤ τ ≤ t.

In order to prove our item (ii) recall expression (8), from which we easily deduce the bound

K(t, s) ≥ cH(t− s)H−1/2. (68)

Consider now a �xed point τ ∈ (0, t] and 0 ≤ v ≡ vτ < τ ≤ t such that
∫ τ
v
K2(t, u) du = t2H

n
.

Thanks to the bound (68) we have vτ ≥ wτ where wτ ≡ w is de�ned by

cH

∫ τ

w

(t− u)2H−1 du =
t2H

n
⇐⇒ cH

[
(t− w)2H − (t− τ)2H

]
=
t2H

n
.
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In addition, since 2H > 1 we have (t − w)2H − (t − τ)2H ≥ (τ − w)2H for w < τ < t, which

means that wτ ≥ xτ where xτ is de�ned by the equation (τ − x)2H = cH t
2H

n
. The latter

equation can be solved explicitly as xτ = τ − cH t
n1/(2H) , and summarizing our last considerations

we end up with the relation

τ − vτ ≤
cHt

n1/(2H)
,

which easily yields our assertion (ii). The proof of (iii) is straightforward. �

Now we state the following Corollary to Proposition 5.9, whose immediate proof is left to
the reader:

Corollary 5.12. Let J1,i be de�ned by (65). Then under Hypothesis 1.1 and Condition 5.10

we have for σ2
n = t2H

n

J1,i ≥
1

(2π)m/2(Λσ2
n)m/2

exp

(
−|x− Fi−1|2

2λσ2
n

)
, (69)

Summarizing the considerations of this section, we have obtained that the main contribution
to Eti−1

[δx(Fi)], J1,i, is of the order given by (69). Most of our work is now devoted to prove
that the contributions of J2,i and J3,i are smaller than a fraction of (69) ifM,n are conveniently
chosen.

5.5. Upper bounds for J2,i. We start the control of J2,i by stating a bound in terms of the
localization we have chosen:

Proposition 5.13. Let J2,i be the quantity de�ned by (65). Then there exists positive con-
stants cλ,Λ, k1, k2 and p1 independent of n such that:

|J2,i| ≤ cλ,Λ
(
σ2
n

)−k2 Lγ,pn,i (k1, p1), where Lγ,pn,i (k1, p1) ≡ ‖1− ΦMΦci,εi‖k1,p1,ti−1
,

with σ2
n = t2H

n
, and where we recall that the norms ‖·‖k,p,t have been introduced at equation (13)

and the random variables ΦM ,Φci,εi at equation (63).

Proof. Our strategy hinges on the conditional integration by parts formula we have introduced
in Proposition 2.2 , which gives for some constants ki, pi, i = 1, ..., 4,

|J2,i| =
∣∣∣Eti−1

[
1{Fi−1+Ii>x}H

ti−1

(1,...,m)(Ii, 1− ΦMΦci,εi)
]∣∣∣

≤ c1,q‖ det(ΓIi,ti−1
)−1‖k3p3,ti−1

‖Ii‖k4k2,p2,ti−1
‖1− ΦMΦci,εi‖k1,p1,ti−1

. (70)

Here, we have used that 1{Fi−1+Ii>x} ≤ 1.

In order to bound the right hand side of (70) we start by computing the Malliavin derivatives
of Ii. Recall that due to (59), we have for j = 1, . . . , d, α > 1 and r, r1, . . . , rα > ti−1 that

Dj
rIi = Vj(Xti−1

)K(t, r) 1[ti−1,ti](r), and Dα
r1...rα

Ii = 0.



GAUSSIAN TYPE LOWER BOUNDS FOR DENSITY OF FRACTIONAL SDES 29

As far as ΓIi,ti−1
is concerned, it is a conditionally deterministic quantity such that for i, j =

1, . . . , d, we can write

ΓIi,ti−1
=

d∑
j=1

〈
DjIi,D

jI∗i
〉
L2([ti−1,ti])

=
d∑
j=1

Vj(Xti−1
)V ∗j (Xti−1

)

∫ ti

ti−1

K2(t, s)ds = σ2
n V (Xti−1

)V ∗(Xti−1
).

Using the ellipticity condition of Hypothesis 1.1(2) for V , we thus obtain that

0 ≤ Γ−1
Ii,ti−1

≤ 1

λσ2
n

Idm.

Therefore ‖Ii‖k4k2,p2,ti−1
≤ C (σ2

nΛ)
k4
2 and

‖ det(ΓIi,ti−1
)−1‖k3p3,ti−1

≤
(

1

λσ2
n

)mk3
.

Substituting these inequalities in (70), our proof is now �nished. �

From the above Proposition 5.13, we see that in order to get a convenient bound for J2,i

we need to study the random variable ‖1 − ΦMΦci,εi‖k1,p1,ti−1
. A suitable information for us

will be the following bound:

Proposition 5.14. Assume Condition 5.10 and consider any γ ∈ (1
2
, H) and k1, p1 ≥ 1. Let

Lγ,pn,i (k1, p1) = ‖1−ΦMΦci,εi‖k1,p1,ti−1
be the random variable de�ned at Proposition 5.13. Then

for any p ≥ k1
2
, γ > 0 (recall that ΦM ≡ ΦM(Ni

γ,p(B))) such that 2p(H − γ) − 2 > k1H the
following holds true: For any η > 0 there exists cp,k1,p1,γ,H,M,η > 0 such that

E[Lγ,pn,i (k1, p1)] ≤ cp,k1,p1,γ,H,M,η n
−η. (71)

Proof. Let us �rst highlight what the parameters involved in the proof are: recall that ci
and εi were de�ned in (62). And although not explicitly written, ΦM depends on γ and p.
From now on, and through the proof we �x the values of γ, H, k1, p1, n and p satisfying the
inequalities in the statement of the Proposition.

As a preliminary step, we also observe that, due to the Hölder inequality, it is enough to
�nd a proper bound for ‖1 − ΦM‖k1,p1,ti−1

and ‖ΦM(1 − Φci,εi)‖k1,p1,ti−1
separately. We �rst

handle the term ‖1− ΦM‖k1,p1,ti−1
.

Now we will obtain a general estimate to be used in the proof. By Chebyshev's inequality,
for any k2 ≥ 1 and 1

2
< γ < H:

E
[
|1− ΦM |2

]
≤ P(Ni

γ,p(B) > M − 1) ≤
E
[
|Ni

γ,p(B)|k2
]

(M − 1)k2
. (72)
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We now �nd an upper bound for E[|Ni
γ,p(B)|k2 ]. A simple application of Jensen's inequality

yields:

E
[
|Ni

γ,p(B))|k2
]

= E

[(∫ ti

ti−1

∫ ti

ti−1

|Bv −Bu|2p

|v − u|2pγ+2
dudv

)k2]

≤ c |ti − ti−1|2(k2−1)

(∫ ti

ti−1

∫ ti

ti−1

E
[
|Bv −Bu|2pk2

]
|v − u|(2pγ+2)k2

dudv

)
≤ ck2,p,γ,H |ti − ti−1|2k2p(H−γ). (73)

We remark that all above integrals and expectations are �nite due to the condition 2p(H −
γ)− 2 > k1H. Furthermore, the quantity |ti− ti−1|2k2p(H−γ) can be made as small as we wish
by taking k2, p and n large enough. We will play on these parameters later on.

Let us start the estimation for the high order derivatives of 1−ΦM . For this, we �rst notice
that, for any r of length greater or equal to 1 and any i, we have Di

r(1 − ΦM) = −Di
rΦM ,

so that we shall bound Di
rΦM in the sequel. Next we need to de�ne the set of multi-indices

An = {(l1, ..., ln); li ∈ {0, ..., n}, l1 + ... + ln = n}. In fact, one can easily check that there
exists (explicit) random variables µi

p,l,γ,H(r), de�ned for l ≤ n ≤ k1, r = (r1, ..., rn) with
r1 ≤ ... ≤ rn and i = (i1, ..., in) ∈ {1, ..., d}n, such that the following inequality holds for a
positive constant Cp,l,γ,H(i, r):

|Di
rΦM | ≤

n∑
l=1

|∂lzΦM(Ni
γ,p(B))||µi

p,l,γ,H(r)|, (74)

and where the random variables µi
p,l,γ,H(r) satisfy:

|µi
p,l,γ,H(r)| ≤ Cp,l,γ,H

l∏
l∈Al;j=1

µp,lj ,γ,H , with µp,l,γ,H =

∫ ti

ti−1

∫ ti

ti−1

|Bξ −Bη|2p−l

|ξ − η|2γp+2
dξ dη.

Note that all the integrals above are well de�ned due to the restrictions 2p ≥ k1 and 2p(H −
γ)− 2 > k1H.

Next, we estimate the moments of µi
p,l,γ,H(r) as follows. For any κ ∈ N, we have

E[|µp,l,γ,H |κ] ≤ Cp,l,γ,H(ti − ti−1)2(κ−1)

∫ ti

ti−1

∫ ti

ti−1

E
[
|Bξ −Bη|(2p−l)κ

]
|ξ − η|(2γp+2)κ

dξdη

≤ cp,l,κ,γ,H |ti − ti−1|2pκ(H−γ)−lκH . (75)

Therefore ‖µp,l,γ,H‖κ ≤ cp,l,κ,γ,H |ti − ti−1|2p(H−γ)−lH . Note again that here, we have used the
hypothesis 2p(H − γ)− 2 > k1H.

Let us now turn to the estimation of Dn
rΦM . Starting from relation (74), we get for n ≥ 1:

‖Dn
rΦM‖2

|H([ti−1,ti])|⊗n ≤
n∑

l,m=1

l∏
l∈Al;j=1

m∏
l∈Am;k=1

|µp,lj ,γ,H ||µp,mk,γ,H |

× |∂lzΦM(Ni
γ,p(B))||∂mz ΦM(Ni

γ,p(B))|
∫

[ti−1,ti]2n

n∏
i=1

|ri − si|2(H−1)dridsi.
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Finally, plugging our previous inequalities (73) and (75) and resorting to Hölder's inequality
with q = (q1, ..., ql+m+1) where q−1

1 + ...+ q−1
l+m+1 = 1, we have for k1 ≥ 1:

E
[
‖Dk1ΦM‖p1L2([ti−1,ti]n)

]
≤ cp,k1,κ,γ,H ‖ΦM‖p1k1,∞P1/q1(Ni

γ,p(B) > M − 1)

×
k1∑

l,m=1

l∏
l∈Al;j=1

m∏
l∈Am;k=1

‖µp,lj ,γ,H‖p1qj+1
‖µp,mk,γ,H‖p1ql+1+k

(∫
[ti−1,ti]2n

k1∏
i=1

|ri − si|2(H−1)dridsi

)p1

≤ cp,k1,p1,q,γ,H,k2‖ΦM‖p1n,∞|ti − ti−1|(k2q
−1
1 +4)pp1(H−γ),

where we have set ‖ΦM‖n,∞ :=
∑n

l=0 ‖∂lzΦM‖∞. Therefore the result follows from (73) and
the above inequality by noting that |ti − ti−1| ≤ cH n

−1/(2H) and taking k2 big enough. We
remark that this result also gives that ‖ΦM‖k1,p1,ti−1

≤ cp,k1,p1,q,γ,H .

The calculation for ‖ΦM(1−Φci,εi)‖k1,p1,ti−1
is similar, recalling that the norm of the Malli-

avin derivatives of ΦM are bounded, and noting that instead of applying the operator Dk1
r it

is better to use directly the derivative operator Dk1
r with Lemma 6.2. We skip details for sake

of conciseness. Observe however that in this case, the derivatives of 1−Φci,εi blow up as ci, εi
get small. Still, one remarks that the �nal proof is based on the fact that for any k6 > 0,
Chebyshev's inequality and Lemma 6.4's proof (postponed to the Appendix) imply that:

P

(
d∑
j=1

∫ ti

ti−1

|Dj
rRi|2dr >

λ

8

∫ ti

ti−1

K2(t, s)ds

)

≤
(
λ

8

∫ ti

ti−1

K2(t, s)ds

)−k6
E

( d∑
j=1

∫ ti

ti−1

|Dj
rRi|2dr

)k6


≤ c
(
λσ2

n

)−k6 (ti − ti−1)(2γ+1)k6 ≤ cn−
γ
H
k6 .

Here we have used the result in Lemma 5.11 (ii) and Condition 5.10. �

5.6. Upper bounds for J3,i. We now turn to the main technical issue in our computations,
namely the bound on J3,i. Our aim is thus to prove the following proposition:

Proposition 5.15. Let J3,i be the quantity de�ned by (66). Then there exist c > 0 and k > 0
such that for any H − 1

2
< γ < H.

|J3,i| ≤
cM,V,m(ti − ti−1)γ

(σ2
n)m/2

≤ cM,V,m

nγ/2H (σ2
n)m/2

. (76)

Proof. We start from expression (66) and normalize Ii + ρRi in the following way: we just set
Ii + ρRi = σn Ui, where Ui := σ−1

n (Ii + ρRi). We thus have

J3,i =
m∑
j=1

Eti−1

[
ΦMΦci,εi

∫ 1

0

∂xjδx(Fi−1 + σn Ui)Rj
i dρ

]
.

Along the same lines as in (70), the integration by parts formula (16) now yields

J3,i = σ−(m+1)
n

m∑
j=1

∫ 1

0

Eti−1

[
1{Ii+ρRi>x−Fi−1}H

ti−1

(j,1,...,m)(Ui, R
j
iΦMΦci,εi)

]
dρ.
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Hence the following bound holds true (see [21, p. 102]):

|J3,i| ≤ c1,q σ
−(m+1)
n A1

∫ 1

0

A2(ρ)A3(ρ) dρ,

where the quantities A1, A2(ρ), A3(ρ) are respectively de�ned by

A1 = max
j=1,..,m

‖Rj
i ΦM ′‖k1,p1,ti−1

, A2(ρ) = ‖ det(Γ−1
Ui,ti−1

)ΦM ′Φci,εi‖
k3
p3,ti−1

and

A3(ρ) = ‖Ui ΦM ′‖k4k2,p2,ti−1
,

and where we also recall that Rj
i is de�ned by (60). Then the �rst inequality in (76) follows

from Lemmas 6.4, 6.5 and 6.6 which have been postponed to the Appendix, and by choosing
γ such that H − 1

2
< γ. In order to go from the �rst inequality in (76) to the second one, we

simply apply Lemma 5.11. �

5.7. Lower bound. Let us �rst summarize the considerations of the previous section: start-
ing from decomposition (64) and applying Corollary 5.12, Propositions 5.13, 5.14 and 5.15
and the forthcoming relation (86), we have obtained the following facts: The inequality
Eti−1

[δx(Fi)] ≥ J1,i + J2,i + J3,i holds true, and thus

Eti−1
[δx(Fi)] ≥

1

(2π)m/2(Λσ2
n)m/2

exp

(
−|x− Fi−1|2

2λσ2
n

)
− cλ,Λ

(
σ2
n

)−k2 Lγ,pn,i (k1, p1)− cM,V,m

nγ/2H (σ2
n)m/2

, (77)

with the additional information E[Lγ,pn,i (k1, p1)] ≤ CM,η n
−η for an arbitrarily large exponent

η.

We are now ready to prove the main theorem of this article:

Proof of Theorem 1.2. With equation (77) in hand, we shall follow the strategy designed
in [2, 16]: Fix x−a throughout the proof and de�ne the balls Bi = B(yi, c1σn) for i = 1, . . . , n
where yi = a+ i

n
(x− a). We also de�ne below an additional sequence {xi; i = 1 . . . , n}, such

that xi ∈ Bi and xn = x. The constant c1 will be �xed later on.

We shall now proceed in a backward recursive way on the index i. For instance in order to
go from n to n− 1, we resort to (77) in order to write:

E [δx(Fn)] = E[Etn−1 [δx(Fn)]] ≥ cV,m
σmn

E

[
exp

(
−|x− Fn−1|2

2λσ2
n

)
− cM,V,m n

−κ
]
,

for a certain strictly positive constant κ. Hence

E [δx(Fn)] ≥ cV,m
σmn

∫
R

E

[(
exp

(
−|x− Fn−1|2

2λσ2
n

)
− cM,V,m n

−κ
)
δxn−1(Fn−1)

]
dxn−1

≥ cV,m
σmn

∫
Bn−1

E

[(
exp

(
−|x− Fn−1|2

2λσ2
n

)
− cM,V,m n

−κ
)
δxn−1(Fn−1)

]
dxn−1.
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a

y0 y1 · · · yi−1

Bi

xi

yi

c1σn

yi+1 · · · yn−1

x

yn

x−a
n

Figure 1. Space partition for the lower bound, with sequence y1, . . . , yn and xi.

We now observe the following: if we wish the term δxn−1(Fn−1) to give a non null contribution,
the relations

xn−1 ∈ B(yn−1, c1σn), x− yn−1 =
x− a
n

, σn =
tH

n1/2
, |Fn−1 − xn−1| ≤ c1σn

must be satis�ed. Moreover, from these conditions, it is easily seen that |x − Fn−1| ≤ 4c1σn
whenever n ≥ |x−a|2

c1t2H
. We thus de�ne a constant c2 ≥ 1

4c1
such that

n =
c2 |x− a|2

t2H
. (78)

Then if we take c1 such that exp
(
−8c21

λ

)
≥ 1

2
and n such that cM,V,m n

−κ ≤ 1/4, we obtain

E [δx(Fn)] ≥ cV,m
4σmn

∫
Bn−1

E
[
δxn−1(Fn−1)

]
dxn−1.

These arguments can now be iterated backward from i = n−1 to 1, and the reader can easily
check that the only additional required condition is the compatibility relation yi+1−yi ≤ c1σn
(this will be veri�ed below). Denoting by αm the volume of a unit ball in Rm (namely
αm = πm/2/Γ(m

2
+ 1)), we end up with

E [δx(Fn)] ≥
(
cV,m
4σmn

)n
|B(0, c1σn)|n−1 =

(cV,m
4

)n(n1/2

tH

)nm(
c1t

H

n1/2

)m(n−1)

αn−1
m (79)

=
(cV,m

4

)n
(cm1 αm)n−1

(
n1/2

tH

)m
=

1

αm (c1tH)m
exp

(
n ln

(
cV,mc

m
1 αm

4

)
+
m

2
ln(n)

)
.

Once here, we are reduced to tune our parameters according to the following constraints:

(i) Recalling (78), we have that if c1 is taken small enough so that ρ ≡ − ln(cV,mc
m
1 αm/4) > 0

and (as alluded to above) such that exp(−8c2
1/λ) ≥ 1

2
and n ln(ρ) +m ln(n) ≥ 0 for all n ∈ N,
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we get

exp

(
n ln

(
cV,mc

m
1 αm

4

))
= exp

(
−ρc2 ‖x− a‖2

t2H

)
.

We remark here that the values of c1, c2 and cM,V,m are �xed independently of n. It is now
easily seen that our bound (79) is of the form (5).

(ii) We now choose the constant c2 in (78) so that the compatibility relation yi+1− yi ≤ c1σn
is satis�ed. Towards this aim, recall that

|yi+1 − yi| =
|x− a|
n

=
|x− a|
n1/2

1

n1/2
,

and since n = c2
|x−a|2
t2H

, we get

|yi+1 − yi| =
|x− a|
n1/2

c
−1/2
2

tH

|x− a|
= c

−1/2
2 σn.

It is thus su�cient to take c
−1/2
2 ≤ c1 ∧ (2c

1/2
1 ), which also satis�es that n ≥ |x−a|2

4c1t2H
. This

completes our proof. �

6. Appendix: Some properties of stochastic derivatives

We start this technical section with a general bound on the space H related to fBm.

Lemma 6.1. Let H ∈ (0, 1/2), t ∈ (0, 1] and consider the space H de�ned on [0, t] as in
Section 2.1. Let f be an element of Cγ([0, t]) for 1/2 − H < γ < 1/2, with ‖f‖∞ ≤ a and
‖f‖0,t,γ ≤ b. Then

‖f‖H ≤ cH
(
a tH + b tγ+H

)
.

Proof. For a function g de�ned on [0, t], recall that its fractional derivative is given by

D
1/2−H
t− gu =

gu
(t− u)1/2−H +

∫ t

u

gu − gv
(v − u)3/2−H dv. (80)

Consider now f ∈ Cγ([0, t]) satisfying the conditions above, and set gu = u−(1/2−H)fu. Ac-
cording to [21, formula 5.31], we have

‖f‖2
H ≤ cH

∫ t

0

s1−2H
∣∣∣D1/2−H

t− gs

∣∣∣2 ds. (81)

We now proceed to estimate the right hand side of relation (81).

Indeed, plugging de�nition (80) into (81), it is readily checked that

‖f‖2
H ≤ cH

(∫ t

0

A2
s ds+

∫ t

0

B2
s ds

)
, with As =

fs
(t− s)1/2−H , Bs =

∫ t

s

fs − ψv fv
(v − s)3/2−H dv,

where we have set ψv = (s/v)1/2−H . It is then easily seen that
∫ t

0
A2
s ds ≤ cH a

2 t2H . In order
to bound B, notice that the function ψ is well de�ned on [s, t] and satis�es ψs = 1, ψv ≤ 1
and |ψ′v| ≤ v−1.

|fs − ψv fv| ≤ |fs − fv|ψv + |fs||1− ψv| ≤ b (v − s)γ + a|1− ψv|γ ≤
(
b+

a

sγ

)
(v − s)γ.
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Dividing this inequality by (v− s)3/2−H , recalling that γ ≤ 1/2 and integrating over [s, t], we
get

|Bs| ≤ cH

(
b+

a

sγ

)
(t− s)γ−(1/2−H),

which entails that ∫ t

0

B2
s ds ≤ cH

(
a2 t2H + b2 t2(γ+H)

)
.

Gathering our bounds on
∫ t

0
A2
s ds and

∫ t
0
B2
s ds, our proof is now �nished.

�

Let us now state a bound on Malliavin derivatives.

Proof of relation (12). We focus on the �rst derivative case, the other ones being handled in
a similar fashion. We will thus prove that

|DuF | ≤ ess supu≤r|DrF |K(t, u).

Indeed, according to Proposition 2.1, we have that for F ∈ Ft

|DuF | = |[K∗t DF ]u| = |
∫ t

u

DrF∂rK(r, u)dr| ≤ ess supu≤r≤t|DrF |K(t, u),

which is exactly our claim. �

We now turn to the bounds on the process Q featuring in the de�nition of our remainders
Ri (see decomposition (57) of Xt):

Lemma 6.2. Let X be the solution to (48), let ηi be the function de�ned by (58) and Q the
process given by (61). If r1, s ∈ (ti−1, ti) then the following bounds hold true:∣∣Qk

s

∣∣ ≤ cVK(t, s)|ti − ti−1|γZi
0 (82)∣∣Dl

r1
Qk
s

∣∣ ≤ cVK(t, s)K(t, r1)Zi
1, (83)

for F1-measurable random variables Zi
0, Z

i
1 de�ned by Zi

0 = ‖B‖ti−1,t,γ ∨ ‖B‖
γ
ti−1,t,γ and

Zi
1 = sup

{
|Dl

r1
(Xv −Xti−1

)|, ti−1 ≤ r1 ≤ v ≤ ti
}
, (84)

admitting moments of all orders. In general, we can extend these results to Malliavin deriva-
tives of arbitrary order ` ≥ 1 in the following way: for r1, s ∈ (ti−1, ti) and r2, . . . , r` < ti we
have

|Dj1...j`
r1...r`

Qk
s | ≤ cV K(t, s)Zi

`

n∏
j=1

K(t, rj), (85)

for Zi
` ≡ sup

{
|Dj1...j`

r1...r`
(Xv −Xti−1

)|, ti−1 ≤ ri ≤ v ≤ ti, i = 1, . . . , n
}
, which is a F1-measurable

random variable with moments of all orders.

Proof. The bound (82) is an easy consequence of (61), Proposition 2.5 and the fact that
∂uK(u, s) ≥ 0. Moreover, observe that whenever r1 > ti−1 we have Dr1Vk(Xti−1

) = 0. Hence,
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using Proposition 2.1 we get:

|Dl
r1
Qk
s | =

∣∣∣∣∫ t

s∨r1
∂uK(u, s) Dl

r1
Vk(Xηi(u))du

∣∣∣∣ =

∣∣∣∣∫ t

s∨r1
∂uK(u, s)[K∗t D

l
·Vk(Xηi(u))]r1du

∣∣∣∣
=

∣∣∣∣∫ t

s∨r1
∂uK(u, s)

(∫ t

r1

Dl
r2
Vk(Xηi(u))∂r2K(r2, r1)dr2

)
du

∣∣∣∣ .
It is thus readily checked that

|Dl
r1
Qk
s | ≤ cVZ

i
1

∣∣∣∣∫ t

s∨r1
∂uK(u, s)K(t, r1)du

∣∣∣∣ ≤ cVZ
i
1K(t, s)K(t, r1).

The general result (85) is now obtained by means of an induction argument and resorting to
the same techniques as in the case of the �rst order derivative (namely ` = 1). �

Remark 6.3. Note that due to the de�nition (84) of Zi
l and Proposition 2.5 which controls

the derivatives of X using the Hölder norms of B, the random variables Z verify:

|Zi
j| ≤ CV exp

(
CV ‖B‖

1
γ

ti−1,ti,γ

)
,

for any γ ∈ (1
2
, H). Hence, applying Proposition 5.8 we obtain

|Zi
j| ≤ CV exp

(
CV,γ

(
Ni
γ,p(B)

) 1
2γp

)
,

for any p such that 0 < γ < H − 1
2p
. This relation yields in particular that Zi

j ∈ ∩q≥1L
q(Ω).

Furthermore, once we localize by the random variables ΦM or ΦM ′ , we end up with:

max
0≤l≤k

(
Zi
l ΦM ′

)
≤ cM,V,m, with cM,V,m = cV,m exp(cV,m(M ′)

1
2γp ). (86)

In the next proposition, we give norm estimates for the remainder terms Ri needed in the
upper bound for J3,i.

Lemma 6.4. In the setting of Proposition 5.6 and Corollary 5.7, with the de�nition (60) and
(63), the following estimate is valid:

‖Rj
iΦM ′‖k1,p1,ti−1

≤ cV,M (ti − ti−1)γ σn. (87)

Proof. This result obviously involves the control of many derivative terms. For the sake of
conciseness, we only sketch the bound for DRi. Now recall that

Ri =
d∑

k=1

∫ ti

ti−1

Qk
s ◦ dW k

s .

We now apply a small variant of [21, Proposition 1.3.8] to Stratonovich integrals, which states
that for r ∈ [ti−1, ti] we have

Dj
rRi = Qj

r +
d∑

k=1

∫ ti

ti−1

Dj
rQ

k
s ◦ dW k

s . (88)
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Let us now evaluate the L2[ti−1, ti] norm of Dj
rRi. The main contribution for this norm comes

from the term Q in the right hand side of (88), for which we obtain, according to (82),∫ ti

ti−1

(
Qj
r

)2
dr ≤ cV |ti − ti−1|2γ

(
Zi

0

)2
∫ ti

ti−1

K2(t, r) dr

= cV
(
Zi

0

)2 |ti − ti−1|2γ σ2
n,

and thus

E
1/p1
ti−1

[
‖Q‖p1L2([ti−1,ti])

ΦM ′

]
≤ cV |ti − ti−1|γ σn E p1

ti−1

[(
Zi

0

)p1 ΦM ′
]
≤ cV,M |ti − ti−1|γ σn,

which is consistent with our claim (87).

Let us give another example of term which has to be analyzed in order to bound the norm
of Dj

rRi: the term A de�ned as

A := E
1/p1
ti−1

[(∫ ti

ti−1

dr

∫ ti

ti−1

ds
[
Dj
rQ

k
s

]2) p1
2

ΦM ′

]
.

Along the same lines as above, using (82), we �nd

A ≤ cM,V

∫ ti

ti−1

dsK2(t, s)

∫ ti

ti−1

drK2(t, r) = cM,V σ
4
n,

which is a remainder term with respect to (87). Notice that many other higher order terms
have to be evaluated in order to complete the proof. We omit these cumbersome but routine
developments for sake of conciseness. �

We now turn to the bound on A2(ρ):

Lemma 6.5. Recall that A2(ρ) is de�ned as A2(ρ) = ‖ det(ΓUi,ti−1
)−1ΦM ′Φci,εi‖

k3
p3,ti−1

. Then
this quantity is uniformly bounded in n, ρ and ω ∈ Ω.

Proof. Recall that Ui = σ−1
n (Ii + ρRi) and remark that using Proposition 4 in [2], we have

that

det(ΓUi,ti−1
)−1Φci,εi ≤ σ2m

n

(
1

2
λ

∫ ti

ti−1

K2(t, s)ds−
d∑
j=1

∫ ti

ti−1

|Dj
rRi|2dr

)−m
Φci,εi .

Moreover, we have localized
∑d

j=1

∫ ti
ti−1
|Dj

rRi|2dr by Φci,εi with ci = λσ2
n

8
. Thus we end up

with

det(ΓUi,ti−1
)−1Φci,εi ≤ σ2

n

(
λ

4

∫ ti

ti−1

K2(t, s)ds

)−1

,

from which the result follows. �

The estimates for A3(ρ) are obtained in a similar fashion. In fact, we have:

Lemma 6.6. The same conclusion as in Lemma 6.5 holds true for the quantity A3(ρ) =
‖Ui ΦM ′‖k4k2,p2,ti−1

.
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Proof. With respect to Lemma 6.4, we only need to consider additionally the bound for

‖IiΦM ′‖k2,p2,ti−1
≤ c‖Ii‖k2,p3,ti−1

‖ΦM ′‖k2,p4,ti−1
.

The above follows from Hölder's inequality. Therefore the result follows from straightforward
calculations for Ii as in the proof of Proposition 5.13. �
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