Chiral Fermions in 4D (A)dS Gravity

立命館大学理工学部 池田憲明

The (anti) de Sitter gravity (MacDowell-Mansouri-Stelle-West gravity) is the gauge theory of gravitation whose gauge group G is SO(2,3) for anti de Sitter or SO(1,4) for de Sitter. We define a special internal vector $Z_A = Z_A(x)$ such that

$$Z_1^2 + Z_2^2 + Z_3^2 + Z_4^2 + Z_5^2 = \mp l^2, \tag{1}$$

where the capital Latin letter A = 1, 2, 3, 4, 5 denotes internal indices. The signatures on the right-hand side of Ed. (1) are $-l^2$ for SO(2,3) and $+l^2$ for SO(1,4).

We consider the SO(2,3) case. We consider a connection field $\omega_{\mu AB}$ and define the field strength

$$R_{\mu\nu AB} = \partial_{\mu}\omega_{\nu AB} - \partial_{\nu}\omega_{\mu AB} - \omega_{\mu AC}\omega_{\nu CB} + \omega_{\nu AC}\omega_{\mu CB}.$$
 (2)

We construct an SO(2,3) invariant Lagrangian

$$\mathcal{L}_{\text{grav}} = \epsilon^{ABCDE} \epsilon^{\mu\nu\rho\sigma} \left(\frac{Z_A}{il}\right) \left[\left(\frac{1}{16g^2}\right) R_{\mu\nu BC} R_{\lambda\rho DE} + \sigma(x) \left\{ \left(\frac{Z_F}{il}\right)^2 - 1 \right\} D_{\mu} Z_B D_{\nu} Z_C D_{\rho} Z_D D_{\sigma} Z_E \right],$$

where $\sigma(x)$ is an auxiliary field.

We break the SO(2,3) group to the local Lorentz group SO(1,3) as $Z_A = (0,0,0,0,il)$. This breaking derives the vierbein $e_{\mu a}$, $D_{\mu}Z_A = (\partial_{\mu}\delta_{AB} - \omega_{\mu AB})Z_B = \begin{cases} -i\omega_{\mu a5}l \equiv e_{\mu a} & \text{if } A = a, \\ 0 & \text{if } A = 5, \end{cases}$ where the small Latin letters are a = 1, 2, 3, 4. The field strength is $R_{\mu\nu ab} = \mathring{R}_{\mu\nu ab} + \frac{1}{l^2}e_{[\mu a}e_{\nu]b}$, where $\mathring{R}_{\mu\nu ab} = \partial_{\mu}\omega_{\nu ab} - \partial_{\nu}\omega_{\mu ab} - \omega_{\mu ac}\omega_{\nu cb} + \omega_{\nu ac}\omega_{\mu cb}$ is nothing but the gravitational Riemann tensor. $\mathcal{L}_{\text{grav}}$ takes the Einstein gravity form

$$\mathcal{L}_{\rm grav} = \partial_{\mu} \mathcal{C}^{\mu} - \frac{e}{16\pi G} \left(\mathring{R} + \frac{6}{l^2} \right).$$
(4)

Here, $\partial_{\mu}C^{\mu}$ is the topological Gauss-Bonnet term. $e = \det(e_{\mu a})$ and G is the gravitational constant derived from $16\pi G = g^2 l^2$. The cosmological constant is a negative term $-\left(+\frac{6}{l^2}\right)$ in the action.

In the SO(1,4) case, we can construct the Lagrangian in a similar manner.

1, **Dirac** Let ψ be an SO(2,3)(SO(1,4)) Dirac fermion.

First, we consider the AdS (SO(2,3)) gravity. An SO(2,3) invariant Dirac spinor action is defined as

$$\mathcal{L}_{\text{Dirac}} = \epsilon^{ABCDE} \epsilon^{\mu\nu\rho\sigma} \bar{\psi} \left(iS_{AB} \frac{\overleftarrow{D}_{\mu}}{3!} - i\lambda \frac{Z_A}{il} \frac{D_{\mu}Z_B}{4!} \right) \psi D_{\nu} Z_C D_{\rho} Z_D D_{\sigma} Z_E, \tag{5}$$

where $\bar{\psi} = \psi^{\dagger} \gamma^{(AdS)^5} \gamma^{(AdS)^4}$ and $S_{AB} = \frac{1}{4i} [\gamma^{(AdS)}{}_A, \gamma^{(AdS)}{}_B]$. By the symmetry breaking (??) $(Z^A = (0, 0, 0, 0, il))$ from SO(2, 3) to SO(1, 3), $\mathcal{L}_{\text{Dirac}}$ reduces to the Dirac action in the four-dimensional curved spacetime

$$\mathcal{L}_{\text{Dirac}} = -e\bar{\psi}\left(\gamma_a e^{\mu a} \overleftarrow{D}_{\mu} + \lambda\right)\psi, = -e\bar{\psi}\left(\frac{1}{2}e^{\mu a}\left(\gamma_a \overrightarrow{D}_{\mu} - \overleftarrow{D}_{\mu}\gamma_a\right) + \lambda\right)\psi, \quad (6)$$

where

$$\gamma^{(AdS)}{}_{a} \equiv -i\gamma_{5}\gamma_{a}, \qquad \gamma^{(AdS)}{}_{5} \equiv \gamma_{5},$$
(7)

and $\bar{\psi} = \psi^{\dagger} \gamma^4$.

In the dS SO(1,4) gravity, we consider an SO(1,4) invariant Dirac spinor action

$$\mathcal{L}_{Dirac} = -\epsilon^{ABCDE} \epsilon^{\mu\nu\rho\sigma} \bar{\psi} \left(\frac{Z_A}{l} \gamma^{(dS)}{}_B \frac{\overleftarrow{D}_{\mu}}{3!} + \lambda \frac{Z_A}{l} \frac{D_{\mu}Z_B}{4!} \right) \psi D_{\nu} Z_C D_{\rho} Z_D D_{\sigma} Z_E, \tag{8}$$

which is a slightly different form from the SO(2,3) case. Here, $\bar{\psi} = \psi^{\dagger} \gamma^{(dS)^4}$ and $\bar{\psi}\gamma^{(dS)}{}_B\overleftrightarrow{D}_{\mu}\psi = \frac{1}{2}(\bar{\psi}\gamma^{(dS)}{}_B D_{\mu}\psi - \bar{\psi}\overleftarrow{D}_{\mu}\gamma^{(dS)}{}_B\psi).$ By the symmetry breaking from SO(1,4)to SO(1,3), $\mathcal{L}_{\text{Dirac}}$ reduces to the Dirac action in the four-dimensional curved spacetime. if we set

$$\gamma^{(dS)}{}_A = \gamma_A,\tag{9}$$

2, Weyl Let ψ be an SO(2,3) Dirac spinor. We introduce a projection operator,

$$P_{\pm} \equiv \frac{1}{2} \left(1 \pm \sqrt{-\frac{l^2}{Z^2}} \frac{Z_A \gamma^{(AdS)}{}_A}{il} \right),\tag{10}$$

and define $\psi_{\pm} \equiv P_{\pm}\psi$. Since P_{\pm} is SO(2,3) covariant, ψ_{\pm} is a covariant spinor. We can construct an SO(2,3) invariant action by modifying (5),

$$\mathcal{L}_{Weyl} = \epsilon^{ABCDE} \epsilon^{\mu\nu\rho\sigma} \bar{\psi}_{+} \left(iS_{AB} \frac{\overleftarrow{D}_{\mu}}{3!} - i\lambda \frac{Z_A}{il} \frac{D_{\mu}Z_B}{4!} \right) \psi_{+} D_{\nu} Z_C D_{\rho} Z_D D_{\sigma} Z_E.$$
(11)

If we break the SO(2,3) symmetry P_{\pm} reduces to the chiral projections $P_{\pm} \longrightarrow \mathring{P}_{\pm} =$ $\frac{1\pm\gamma^{(AdS)}{5}}{2} = \frac{1\pm\gamma_5}{2}$. Then, ψ_{\pm} becomes Weyl spinors $\psi_{\pm} \longrightarrow \mathring{\psi}_{\pm} = \mathring{P}_{\pm}\psi$, respectively, which have definite chirality. The action (11) becomes a SO(1,3) massless Weyl fermion action

$$\mathcal{L}_{\text{Weyl}} = -e\bar{\psi}_{+} \left(\gamma_{a}e^{\mu a}\overleftrightarrow{D}_{\mu} + \lambda\right)\psi_{+} = -e\bar{\psi}_{+} \left(\gamma_{a}e^{\mu a}\overleftrightarrow{D}_{\mu}\right)\psi_{+}, \qquad (12)$$

In the SO(1,4) case, we can construct the Lagrangian in a similar manner.

3, Majorana A Majorana fermion ψ_M in four-dimensional spacetime with the local Lorentz symmetry is defined by $\psi_M = \psi_M^c \equiv C \bar{\psi}_M^T$, where C is the charge conjugation in four-dimensional spacetime. If we take the Dirac (Pauli) basis, C is $C = \gamma_2 \gamma_4$. However, generally C is not covariant under either SO(2,3) or SO(1,4). ψ_M is not consistent with the SO(2,3) (SO(1,4)) covariance.

The condition of the SO(2,3) or SO(1,4) 'charge conjugation' \tilde{C} is following: 1, $\tilde{C}^{-1}\gamma_A\tilde{C}$ is covariant under the symmetry $\tilde{C}^{-1}\gamma_A\tilde{C} = \pm\gamma_A^T$, in order to be consistent with the action.

2, B defined by $B\psi_M^* = \tilde{C}\bar{\psi}_M^T$ must satisfy $B^*B = 1$, since a charge conjugation has a Z_2 symmetry. $(B = \gamma_2 \text{ for } SO(1,3).)$

3, \tilde{C} reduces to $C = \gamma_2 \gamma_4$ by breaking the symmetry.

The SO(2,3) charge conjugation \tilde{C} which satisfies the condition 1 is

$$C_{1} = \gamma^{(AdS)}{}_{1}\gamma^{(AdS)}{}_{3}\gamma^{(AdS)}{}_{5}, \qquad C_{2} = \gamma^{(AdS)}{}_{2}\gamma^{(AdS)}{}_{4}.$$
(13)

from the properties of SO(2,3) gamma matrices $\gamma^{(AdS)}{}_A$, Since $C_2 = \gamma^{(AdS)}{}_2\gamma^{(AdS)}{}_4 = \gamma_2\gamma_4$ is equal to the SO(1,3) charge conjugation, C_2 satisfies the condition 2 and 3. Therefore, we can take $\tilde{C} = C_2$ as the SO(2,3) charge conjugation. Note that C_2 is not the same as the charge conjugation in the SO(2,3) spacetime symmetry in five dimensions. AdS 'Majorana' fermion ψ_M is defined by $\psi_M = \tilde{C} \bar{\psi}_M^T = C_2 \bar{\psi}_M^T$.

We propose a SO(2,3) invariant AdS 'Majorana' fermion action by replacing a Dirac spinor to an AdS 'Majorana' spinor in the action (5)

$$\mathcal{L}_{\text{Majorana}} = \epsilon^{ABCDE} \epsilon^{\mu\nu\rho\sigma} \bar{\psi}_M \left(iS_{AB} \frac{\overleftarrow{D}_{\mu}}{3!} - i\lambda \frac{Z_A}{il} \frac{D_{\mu}Z_B}{4!} \right) \psi_M D_{\nu} Z_C D_{\rho} Z_D D_{\sigma} Z_E.$$
(14)

Let us investigate the consistency of this action. Substituting the condition to the righthand of (14), we obtain $\epsilon^{ABCDE} \epsilon^{\mu\nu\rho\sigma} \left(\psi_M^T (\tilde{C}^T)^{-1} \right) \left(i S_{AB} \frac{\overleftarrow{D}_{\mu}}{3!} - i \lambda \frac{Z_A}{il} \frac{D_{\mu}Z_B}{4!} \right) \left(\tilde{C} \bar{\psi}_M^T \right) D_{\nu} Z_C D_{\rho} Z_D D_{\sigma} Z_E.$ We can easily check that this equation is equal to (14).

If we break the SO(2,3) symmetry by $Z_A = (0,0,0,0,il)$, (14) reduces to an SO(1,3)Majorana fermion action in the Einstein gravitational theory in four dimensions

$$\mathcal{L}_{\text{Majorana}} = -e\bar{\psi}_M \left(\gamma_a e^{\mu a} \overleftrightarrow{D}_{\mu} + \lambda\right) \psi_M.$$
(15)

Let us take two candidates for the 'charge conjugation' from the condition 1, from the SO(1,4) covariance of ψ_M and $C\bar{\psi}_M^T$,

$$C_3 \equiv \gamma^{(dS)}{}_1 \gamma^{(dS)}{}_3, \qquad C_4 \equiv \gamma^{(dS)}{}_2 \gamma^{(dS)}{}_4 \gamma^{(dS)}{}_5.$$
 (16)

Since B constructed from both C_3 and C_4 satisfy $B^*B = -1$, neither C_3 nor C_4 can be defined as a consistent charge conjugation.

Now, we consider a third candidate:

$$C_5 \equiv \left(\frac{Z_A \gamma^{(dS)}{}_A}{l} + \left|\sqrt{\frac{Z^2 - l^2}{l^2}}\right| i\right) \gamma^{(dS)}{}_2 \gamma^{(dS)}{}_4 \gamma^{(dS)}{}_5.$$
(17)

 C_5 satisfies the condition 1, 2 and 3. We define a dS 'Majorana' spinor $\psi_M = \tilde{C}\bar{\psi}_M^T = C_5\bar{\psi}_M^T$. We propose an SO(1,4) invariant dS 'Majorana' fermion action by replacing a Dirac spinor to a dS 'Majorana' spinor in the action (8)

$$\mathcal{L}_{\text{Majorana}} = -\epsilon^{ABCDE} \epsilon^{\mu\nu\rho\sigma} \bar{\psi}_M \left(\frac{Z_A}{l} \gamma^{(dS)}{}_B \frac{\overleftarrow{D}_{\mu}}{3!} + \lambda \frac{Z_A}{l} \frac{D_{\mu} Z_B}{4!} \right) \psi_M D_{\nu} Z_C D_{\rho} Z_D D_{\sigma} Z_E.$$
(18)

We can prove the consistency of the action (18) for the charge conjugation C_5 similar to SO(2,3) case.

If we break the SO(1, 4) symmetry by $Z_A = (0, 0, 0, 0, l)$, (18) becomes the Majorana fermion action in the Einstein gravitational theory in four dimensions.

References N. Ikeda and T. Fukuyama, "Fermions in (Anti) de Sitter Gravity in Four Dimensions," Prog. Theor. Phys. **122** (2009) 339 [arXiv:0904.1936 [hep-th]].