
Advanced Engineering Informatics, 2004 (To appear)

- 1 -

Deployment of an Ontological Framework of Functional Design Knowledge

Yoshinobu Kitamuraa,*, Masakazu Kashiwaseb, Masayoshi Fuseb,1, and Riichiro Mizoguchia

a The Institute of Scientific and Industrial Research, Osaka University,
8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 Japan

b Plant and Production Systems Engineering Division, Sumitomo Electric Industries, Ltd.
1-1-1, Koya-kita, Itami, Hyogo, 664-0016 Japan

Abstract

Although the importance of knowledge sharing among designers has been widely recognized, knowledge about
functionality in the conceptual design phase is hard to capture and is often scattered across technical domains. Aimed at
capturing such functional knowledge that can easily be applied to other domains, we developed an ontological
framework to systematically describe it. It includes six kinds of knowledge about functionality, i.e., two types of
functional models, two types of organization of generic knowledge, and two ontologies of functionality. This paper
reports on the successful deployment of the framework in a production company. The Plant and Production Systems
Engineering Division of Sumitomo Electric Industries has used our framework to share functional design knowledge on
production systems since May, 2001. An empirical evaluation by Sumitomo’s engineers was unanimously positive.
They said that this framework enabled them to make implicit knowledge possessed by each designer explicit and to
share it among team members. This paper discusses some successful use-cases in tasks such as a design review, a patent
application, and solving a quality problem. We also discuss effects of our ontological framework as a consistent
viewpoint for capturing implicit functional knowledge and as a conceptual inter-lingua among designers. The limitations
of our framework are also discussed.
Keywords: Ontology, Knowledge systematization, Functional knowledge, Knowledge sharing, Design

1. Introduction

The importance of knowledge sharing among
designers and engineers has been widely recognized in
knowledge-intensive engineering. Although CAD data
has been shared well using the recent CAD and
computer network technologies, that of knowledge
about functionality has been left undeveloped. While
there is no common understanding of what a function
is [1]- [4], people share the idea that functional
knowledge is tightly related to design intention. For
example, a functional structure [5] of a product shows
users how its topmost goal is achieved through
sub-functions of components and sub-systems
(so-called “how things work”). Such a product model
from the viewpoint of functionality is called a
functional model. Functional models represent a part
of (but not all of) the designer’s intentions, so-called
design rationale [6].

As has been discussed in the research on knowledge
management, making such subjective and hence
implicit knowledge of a product explicit is highly
needed for knowledge sharing within a community.
The same applies to the design community and design
knowledge sharing is expected to drastically improve
the design process. For example, in activities related to

design review, an explicit description of the designer’s
intentions helps other people to understand the
original design more effectively. Moreover, it can
facilitate deeper insights into the designs by the
designers themselves.

Much research has been conducted on the
representation of functionality in Value Engineering
 [7], engineering design [4], [5], [8]- [10], and Functional
Representation [11]- [20]. Practical design diagrams
such as QFD (Quality Function Development), FMEA
(Failure Mode and Effect Analysis) sheets, and fault
trees in FTA (Fault Tree Analysis) also include
functional knowledge. However, there is a gap
between the theoretical and practical work being done
in companies. From the experience of two of the
authors who have worked in a production company,
engineers have suffered from the difficulties of
sharing technical (functional) knowledge for many
years. They have regularly written various kinds of
technical reports/documents for each of the jobs such
as design review, maintenance report, reliability
analysis, troubleshooting and have stored much of
those in databases. Unfortunately, however, it has
been difficult for them to understand documents
written by other engineers and hence few such
technical documents have been efficiently reused. The
reasons include:
• It has been hard to describe implicit functional

knowledge systematically.
• To retrieve appropriate knowledge has been hard.

* Corresponding author. Tel.: +81-6-6879-8416; fax.: +81-6-6879-2123.
Email address; kita@ei.sanken.osaka-u.ac.jp (Y.Kitamura)

1 Currently, Sumitomo Wiring Systems, Ltd.

- 2 -

• Knowledge has been often specific to a target
product or equipment.

• Representation frameworks, such as FMEA and
FTA, have been task-specific.

The authors have been tackling these real problems in
the industry for many years on the basis of
Ontological Engineering and have established an
ontological framework for functional knowledge
 [22]- [24]. This is based on functional ontologies,
which provide viewpoints and the vocabulary for
capturing functional knowledge that can be used to
solve these problems (discussed in the next section).

Although a great deal of research on Ontological
Engineering has been done in the last decade, little is
known about its deployment in industry. This research
has not focused on the generic mechanism for
ontological models but on the real content of
well-focused target knowledge, that is, functional
knowledge that is still so generic that it could be
applied to all artifacts. This framework was
successfully deployed in the Production Systems
Division of Sumitomo Electric Industries, Ltd.

This paper discusses use experiences and effects of the
ontological framework deployed in Section 4 after a
detailed analysis of the problems in Section 2 and an
overview of our framework in Section 3. A knowledge
management program named SOFAST® was
developed for the deployment. Its architecture is
described in Section 5. The success factors and
limitations are analyzed in Section 6. Then, related
work is discussed followed by some concluding
remarks.

2. Ontological approach to sharing
functional knowledge

A functional representation of a product consists of
descriptions of the functionality of components (or
(sub-)systems) and the relationship between them. Our
claim is that it is not trivial to clearly identify
function-related concepts and relations as we explain
below. We think it is one of the deep causes of the
difficulties in the industry mentioned in the
Introduction.

In Value Engineering (or in similar ways in functional
representation), functionality of a component is
denoted as a “verb+noun” style for representing the
component’s activities (or actions) and its operands (in
the terminology in [10]). However, such
representations cannot prevent inappropriate modeling.
For example, one might describe “to weld metals” as a
function of manufacturing equipment. However, “to
weld” implies not only “what to achieve”, say, “to
join”, but also “how to achieve” in which the metals
are fused. From the functional point of view, the
fusion is not regarded as a goal (“what to achieve”)

but just the method by which the goal is achieved
(where fusion is the goal, its generalized goal (i.e., the
super-concept in an is-a hierarchy) can be “to melt” or
“to mix”.). In fact, the same goal can be achieved with
different methods (e.g., using nuts and bolts) without
fusion. To allow freedom in design and to make the
selection of “nut & bolt” instead of “welding” possible,
the achieved function of both methods should be the
same, say, “to join”. Of course, some of the
characteristics of the results of joining using fusion
and with “nut & bolt” are different (e.g., ease of
disassembly). Such characteristics can be regarded as
the conditions for selecting a method for a specific
function. It is true that a functional term loses some
amount of information by this information
decomposition. However, what is lost is added to the
information on methods. In total, functional terms can
successfully be made very generic without any loss of
information.

Pahl and Beitz defined some sets of a few (4-16)
generally-valid functions [5] . However, they are too
abstract to describe details on the designer’s intentions.
In fact, there are general-specific relations (so-called
is-a, a-kind-of, abstraction, or specialization relations)
between functions. For example, in Hubka and Eder
 [10], the hierarchy for the “degree of abstraction” of
functions represents the specialization of functions
with additional conditions. The conditions, however,
may sometimes (not always) include the
characteristics of a specific method of achieving a
function such as “transportation by sea” [10] which
has the same difficulty as “welding”.

This difficulty in capturing functions and their
relations is a special case of a general problem treated
in Ontological Engineering where it is hard to
distinguish the is-a (general-specific) relation from the
part-of relation (so-called whole-part, micro-macro,
decomposition, or aggregation relation). The part-of
relation between functions represents how a function
is achieved by finer-grained functions (we call this the
“is-achieved-by” relation) and has been captured as
function decomposition [5], whole-part relation [15],
and “degree of complexity” [10]. Nevertheless,
engineers are still easily confused as the above
examples demonstrate.

These observations suggest the necessity of an
ontological schema for functional knowledge. An
ontological schema specifies not only the data
structure but also the conceptual viewpoint for
capturing the target world (called specification of
conceptualization [25]). It provides guidelines or
constraints on modeling, which helps knowledge
authors describe knowledge consistently. An
ontological schema for functional knowledge includes
the fundamental ontology for capturing functions and
the clear organization of concepts and relationships,
which help the knowledge author separate “what to
achieve” from “how to achieve”.

- 3 -

This paper mainly concentrates on such roles of
ontologies in the knowledge capturing and organizing
phase. The roles of ontologies in knowledge exchange
and communication in engineering, on the other hand,
have been investigated elsewhere [26]- [29].

In the design literature, German systematic design
approach [5] has provided us with a basic viewpoint to
capture functions, in which they are regarded as the
input-output relations of a black-box. The black-boxes
are connected and aggregated (or decomposed). In
Ontological Engineering, such a device-centered
viewpoint originating from systems dynamics theory
is called device ontology. There are several examples
of this [3], [30]- [33]. A device ontology is suitable as a
basis for establishing ontologies of functional world,
since functions are usually considered as what
components or devices achieve.

We have established an ontological modeling
framework, whose features include:
• An extended device ontology: Refined device

ontology for capturing behaviors of components
 [24].

• A functional concept ontology: to provide generic
functional concepts representing verbs of functions
in is-a hierarchies [21].

• Conceptualization of “ways of function
achievement” and their is-a hierarchy for detaching
them from functions [22].

• Four types of functional knowledge and
ontological modeling guidelines [23].

• Integration of information on unintended use for
maintenance [34], [35].

Such ontological commitments help designers
explicate their own thoughts on the design and share it
with a design team. This paper discusses such effects
in the deployment in Section 4. The last feature is to
solve the last problem (i.e., task specific representation

such as FMEA) mentioned in the Introduction.

3. Ontological Modeling Framework

Our framework for functional-knowledge modeling is
described in Fig. 1. This framework is an extension of
our functional modeling language FBRL (abbreviation
of a Function and Behavior Representation Language)
 [36]. It shows the modeling process from the
functional model of a concrete artifact to
well-organized generic knowledge. It includes six
kinds of knowledge about functionality.

This modeling framework is based on an extended
device ontology (Fig. 1(f)) as a basis for
conceptualizing the functional world. We extended the
conventional one mentioned in the previous section by
redefining the concepts of “conduit” and “medium” to
provide knowledge authors better ontological
guidance and to cope with mechanical domains that
seemingly do not fit the device ontology [24], [37].
The extended device ontology specifies “roles” played
by physical things (“participants”) taking part in the
physical world.

Based on the extended device ontology, the
“behavior” of a device is defined as the objective
(independent of designer’s intentions) interpretation of
its input-output relations considering the device as a
black box. The description of the behavior is
independent of the system (i.e. context) in which it is
embedded. A device is connected to one another
through its input or output ports. A device plays a role
as an “agent”, which changes the states of things being
input (called “operand”, i.e., the thing being processed
by the device) such as fluid, energy, motion, force,
and information. The input-output relation of the
behavior is, more precisely, the difference between the
states of the operand at the input port and that at the
output port. A device can be a mechanical element, a
mechanical pair, a component, an assembly, a

Ways for

(e) Functional
concept
ontology

(c) The is-a hierarchies of
ways of function achievement

(for each macro-function)

way

is-ais-a

function

(a) Function
decomposition tree
(specific to each system)

(b) General function
decomposition tree
(specific to systems
to share top-function)

way

Way of function achievement

Function (functional concept)

Characteristics of ways
Is-a (general-specific) relation
is-achieved-by (whole-part)
relation with way

Ways for

is-a

is-achieved-by
OR

OR

ANDAND
AND

(f) Extended device ontology

(d) ad hoc classification
trees of ways
(specific to
each viewpoint)

macro-
function
micro-
functions

Figure 1. Framework for functional-knowledge modeling.

- 4 -

sub-system, or a system. These include both products
and manufacturing machines.

A “conduit” is defined as a special type of device that
can be considered as transmitting an operand to the
output port without any change in the ideal situation.
Examples include a pipe for liquid and a shaft for
torque. One of the reasons for having the conduit
concept is that we can neglect the “to transmit”
function common to all devices that transmit input
things to the output. A “medium” is something that
holds an operand and enables it to flow among devices.
One example is steam for heat energy. In some
domains, the thing playing the conduit role can play
the role of medium as well. For example, while a shaft
is a conduit for force and motion, at the same time, it
is also the medium for them.

A function is defined as the teleological interpretation
of a behavior under an intended goal [21], [36].
Although the selection of a function (i.e.,
interpretation of behavior) is dependent on the
(sub-)system in which it is embedded, the definitions
of functions themselves can be done locally. Such
definition of function which distinguishes the
functional interpretation from the micro-macro
relation is different from those in [12], [17] which are
based on the micro-macro relationship. The definitions
of functions in the literature [10], [15], [16] also
distinguish them. However, we explicate mapping
primitives between behavior and function (called
functional toppings (FTs) [36]) and the operational
conceptualization of functional concepts.

We developed an ontology of generic functions (called
functional concept ontology) shown in Fig. 1(e) with
such operational definitions [21]. It defines about 220
concepts in four kinds of is-a hierarchies.

On the basis of these two ontologies, a function
decomposition tree (Fig. 1(a) and examples are in Figs.
2 and 3) first models the functional structure of a
specific device. All functions (rounded box nodes in
the tree) in the function decomposition tree are
instances of generic functions defined in the functional
concept ontology. This basically represents that a
required function (called a macro-function) can be
achieved by the sequence of specific sub(micro)-
functions. This relation is a kind of “part-of” relations
or aggregation relations between functions.

In this framework, “the reason why a function can be
achieved” is conceptualized as a “way of function
achievement”. It explicates background knowledge on
functional decomposition such as physical principles
and theories. In Figs. 1(a) and 2, the way is
represented by the small dark squares that connect the
whole function to sub-functions.Moreover, the
framework includes unintended behaviors [34], [35]. It
is needed for explicating the design rationale for
supplementary functions to prevent them from

occurring. It is important in design review activities
and equipment improvements as discussed in Section
4.

Second, a general function decomposition tree (b) is
composed of some function decomposition trees for
similar devices with the same whole-function. It
includes alternative ways of function achievement in
an OR relationship. It represents possible ways to
achieve a specific function. Fig. 4 shows an example.

Last, a concrete way of function achievement in a
(general) function decomposition tree is generalized
into a generic way of function achievement (called
functional way knowledge). Then, ways to achieve the
same function are organized in is-a relations according
to their principles (called an is-a hierarchy of ways of
function achievement (c) and some examples are
shown in Fig. 5). We distinguish the organization as
an is-a hierarchy from the other derivative
organizations depending on viewpoints (called an ad
hoc classification tree (d)). The ad hoc classification
trees can be reorganized by a functional way server
according to a given viewpoint [22]. Such generic
functional knowledge is somewhat similar to that
presented in [8], [16], [17]. We will discuss the
differences in Section 7.

Of most importance in this conceptualization is that
these types of trees concerning functions in Fig. 1 are
different from one another despite the superficial
similarity. The function decomposition tree (a)
represents is-achieved-by (a kind of part-of) relations
between functions. The is-a hierarchies of ways of
function achievement (c) represent abstractions of key
information about how to achieve the function, while
the is-a hierarchies in the functional concept ontology
(e) represent abstractions of functions themselves, i.e.,
what to achieve. Moreover, the number of ways to
achieve a function is huge in nature, while the number
of functional concepts is small.

Currently, the guidelines for building these trees are
being developed and are concerned with agents and
operands of functions, relations between sub-functions,
and “is-achieved-by” relations [23]. They help a
modeler capture functional structures based on the
extended device ontology. For example, one of the
guidelines prescribes that sub-functions must
contribute to achieving the macro-function clearly on
the basis of the physical principles represented as the
way of function achievement. According to this
guideline, a modeler should check for the existence of
implicit functions.

4. Deployment

The ontology and the modeling framework for
functional knowledge have been deployed for over
three years at the Plant and Production Systems
Engineering Division of Sumitomo Electric Industries,

- 5 -

Ltd. (hereinafter referred to as SEI). The purpose was
to share functional knowledge among engineers in the
division about the production facilities used in their
daily work.

After a one-year study of our framework, test use was
commenced in February 2001. In May, 2001, use on
real problems encountered in daily work was started.
A knowledge management software named SOFAST
(discussed in the next section) has been deployed since
December, 2002. Currently, about 50 people in three
factories use the framework in their daily duties. The
database for the SOFAST software includes 103
(generic) function decomposition trees for machines
used in real work. The targets are manufacturing
facilities that are mainly used in semiconductor
manufacturing processes including machines to slice
semiconductor ingots (wire-saw and inner-blade
types), machines to polish wafers, a tension control
system, a machine to adjust optical fiber connections
and inspection machines.

First, function decomposition trees were described to
share understanding of the target facilities as discussed
in Section 4.1 and Fig. 2. They were also used for
improving facilities as discussed in Section 4.2 and
Fig. 3. Next, general function decomposition trees
were used for the design review (Section 4.3) and
patent application (Section 4.4 and Fig. 4). Such
function decomposition trees could be shared with
different types of engineers and in different tasks as
discussed in Section 4.5. Last, specific ways of
function achievement in function decomposition trees
were generalized and organized in is-a hierarchies.
Such kinds of knowledge base can be used to explore
ways of doing conceptual design as discussed in
Section 4.6.

A users’ group of SOFAST software for companies
was established in April, 2003. There are currently 13
member companies where test use has been done.

4.1 Understanding and Sharing DRs

Figure 2 shows a function decomposition tree of a
production machine called a wire-saw. It has been
designed to slice semiconductor ingots with moving
wires. The top function is “to split” rather than “to
slice”, since “to slice” implies how to split and
specific information about the thinness of the split part.
The former information is regarded as a way of
function achievement. The latter information is
regarded as the quantitative degree of results of a
function. Such specific information about the degree
of a function can de used as the conditions for
selecting a way of function achievement from the
available ways for achieving the function. Splitting is
achieved with two sub-functions; losing the
combination force of the part (kerf loss, i.e., part lost
by cutting) and moving the part away. This way of
function achievement is conceptualized as the
“removing way” based on the separation of the kerf
loss part. The sub-functions are further decomposed
into smaller sub-functions.

Figure 2 includes possible unintended behaviors of the
device (phenomena) and supplementary functions to
avoid them. For example, the cooling function for the
moving wire has been designed to keep the wire from
snapping due to heat caused by friction. The relation
between wire snapping as a possible unintended
phenomena (or trouble) and frictional heat as its cause
is explicitly described. In other words, our framework
provides knowledge media on such designer’s
intentions.

Give wire
tension

Cool
wire

Adjust
tension

Keep large
friction coff.

Remove
scrapings

Fix ingot

Measure
tension

Adjust the
length of wire

Change torque
of bobbin

Place grinding
compound

AND

AND

Exert vertical
force to ingot

and wire

Flow slurry

Coolant way
heat conduction
Coolant way
heat conduction

Get coolant
to touch

Grinding
compound
flow way Fluid

Grinding
compound
flow way Fluid

Give linear
motion in the
wire direction

Transform
rotation to linear

Exert force
on ingot in the
wire direction

Give shaft
rotation motion

Split ingot

Fluid impact
way Shock

Fluid impact
way Shock

AND

Tension way
Tension of wire
Tension way
Tension of wire

Rotation
motion
way Rotation

Rotation
motion
way Rotation

Roller

Wire Motor

Ingot
Table

Shaft

wafer

Linear friction way
Friction of linear motion
Linear friction way
Friction of linear motion

Lose combination force
of kerf-loss part

Move
part away

Exert force
on part

Removing way
Separation of
kerf-loss part

Removing way
Separation of
kerf-loss part

Physical force way
External force
Physical force way
External force

AND

AND

existence of
scrapings

existence of
scrapings

Increase of
temperature
Increase of
temperatureChange of tensionChange of tension

stuffingstuffing

snappingsnappingsnappingsnapping

Supplementary functions

Roller

MotorsTable

Roller Table Slurry supplier

Decrease combination
force (by external force)

Make
friction

force

way of function
achievement

Whole(macro)-function
is-achieved-by relation

Symptom possibly caused by
functions
Possible troubles

Components (function carrier)

Name
principle

Name
principle

Sub(micro)-functions

Legend

Remove
heat

Length way
Change of length
Length way
Change of length Force way

Change of force
Force way
Change of force

AND

Keep large
friction coff.

High-friction
stuff way
High friction coff.

High-friction
stuff way
High friction coff.

AND
AND

AND

Flow way
Fluid
Flow way
Fluid

AND

AND

Place grinding
compound

AND

Give wire
tension

Cool
wire

Adjust
tension

Keep large
friction coff.

Remove
scrapings

Fix ingot

Measure
tension

Adjust the
length of wire

Change torque
of bobbin

Place grinding
compound

AND

AND

Exert vertical
force to ingot

and wire

Flow slurry

Coolant way
heat conduction
Coolant way
heat conduction

Get coolant
to touch

Grinding
compound
flow way Fluid

Grinding
compound
flow way Fluid

Give linear
motion in the
wire direction

Transform
rotation to linear

Exert force
on ingot in the
wire direction

Give shaft
rotation motion

Split ingot

Fluid impact
way Shock

Fluid impact
way Shock

AND

Tension way
Tension of wire
Tension way
Tension of wire

Rotation
motion
way Rotation

Rotation
motion
way Rotation

Roller

Wire Motor

Ingot
Table

Shaft

wafer

Roller

Wire Motor

Ingot
Table

Shaft

wafer

Linear friction way
Friction of linear motion
Linear friction way
Friction of linear motion

Lose combination force
of kerf-loss part

Move
part away

Exert force
on part

Removing way
Separation of
kerf-loss part

Removing way
Separation of
kerf-loss part

Physical force way
External force
Physical force way
External force

AND

AND

existence of
scrapings

existence of
scrapings

Increase of
temperature
Increase of
temperatureChange of tensionChange of tension

stuffingstuffing

snappingsnappingsnappingsnapping

Supplementary functions

Roller

MotorsTable

Roller Table Slurry supplier

Decrease combination
force (by external force)

Make
friction

force

way of function
achievement

Whole(macro)-function
is-achieved-by relation

Symptom possibly caused by
functions
Possible troubles

Components (function carrier)

Name
principle

Name
principle

Sub(micro)-functions

Legend

Remove
heat

Length way
Change of length
Length way
Change of length Force way

Change of force
Force way
Change of force

AND

Keep large
friction coff.

High-friction
stuff way
High friction coff.

High-friction
stuff way
High friction coff.

AND
AND

AND

Flow way
Fluid
Flow way
Fluid

AND

AND

Place grinding
compound

AND

Figure 2. Function decomposition tree of a wire-saw for slicing ingots (portion).

- 6 -

Such a function decomposition tree shows the
designer’s intentions on how to achieve the goal,
which is not included in either the structural or
behavioral model. This effect is basically the same as
in the conventional function decomposition tree [5].
The main distinctive features of our framework
include (1) the concept of “way of function
achievement” and its relationship with functions, (2)
the extended device ontology, and (3) integration of
unintended behaviors explained as follows. First, the
concept of “way of function achievement” and
definitions of relationships with functions discussed in
Section 3 help knowledge authors to keep functions
representing “what to achieve”. For example, as
mentioned in Section 2, the pseudo function “to weld”
can be decomposed into the “joining function” and the
“fusion way of function achievement”. The
characteristics of welding such as the melting of
objects are described as properties of the fusion way.
To use the way of function achievement is not
mandatory, since it can be left anonymous when there
is no necessity to conceptualize it. Therefore, its
introduction is not restrictive in building a function
decomposition tree.

Second, the extended device ontology provides
concepts for assigning “roles” for each object in the
target world. In Fig. 2, the wire can be considered as
an agent (exerting force on ingots), an operand
(moved by the roller) or a conduit (transmitting
tension). According to semantic constraints in the
extended device ontology, a possible way to
consistently assign roles is to decompose the wire into
two parts, a working wire as an agent and a
transmitting wire as both the medium (a sub-concept
of the operand) and conduit. One extension to the
device ontology is to accept the last situation.

Last, the integration of unintended behaviors into the
function decomposition tree enables us to understand

the intention of the supplementary functions, which
often give important information. For example,
another designer can understand that the reason for the
existence of the supplementary function “to cool wire”
in Fig. 2 is to avoid snapping by removing the cause,
i.e., frictional heat.

The experiential evaluation on this aspect by the SEI
engineers was unanimously positive. They said that
this framework enabled them to explicate implicit
knowledge possessed by all designers and to share it
among team members. It was easy for designers to
become familiar with the framework based on the
device ontology. They said that the explication of their
own implicit design knowledge helped them reflect on
the design and/or the target devices. This benefit
provided them with strong motivation for describing
the functional models.

4.2 Equipment Improvement

This section reports on a real example of making
implicit knowledge about the functionality of the
manufacturing equipment explicit and the
improvement resulting from the explicated knowledge.
The target manufacturing equipment was a machine
for polishing semiconductor wafers. As we can see
from Fig. 3, a weighted rotating disk polishes the
wafer on a table with slurry containing diamond
powder as the grinding ingredient. The rotating disk
moved freely inside an outer ring called the guide ring.
The goal for improvement was to reduce the time
necessary to grind a wafer to 63%. To do this, an
engineer initially tried to adjust the values of the
working parameters of the machine such as the
rotating speed of the disk and the weight and amount
of slurry. After four months of investigations, however,
the results were still not conclusive to reach this goal.

Then, to establish another (unknown) working
parameter, he described the function decomposition

Exert horizontal force on surface

Place diamonds into
grooves of the table

Rotate
table

AND

Rotate
wafers

Exert force
on wafers

Remove
scraps

Keep large
friction coff.

Place diamond powder
between wafers and table

Flow slurry

Fluid way
Flow
Fluid way
Flow

Slurry supplier

High-friction stuff way
High-friction coff. stuff
High-friction stuff way
High-friction coff. stuff

Rotate
disk

Press disk
on wafers

Guide ring

Indirect moving
way Moving
Indirect moving
way Moving

Polish wafers Physical force way
Physical force
Physical force way
Physical force

Joint disk
with wafers

Guide
disk

Guide ring

Motor

Rotating friction way
Rotating frictional force
Rotating friction way
Rotating frictional force

Table

Guide ring

Wafer

Slurry supply

Table

Guide
ring

WaferDiamond powder

Disk

Weight

Rotating jig diskChange surface

Keep large
friction coff.

AND

AND AND

AND

Exert horizontal force on surface

Place diamonds into
grooves of the table

Rotate
table

AND

Rotate
wafers

Exert force
on wafers

Remove
scraps

Keep large
friction coff.

Place diamond powder
between wafers and table

Flow slurry

Fluid way
Flow
Fluid way
Flow

Slurry supplier

High-friction stuff way
High-friction coff. stuff
High-friction stuff way
High-friction coff. stuff

Rotate
disk

Press disk
on wafers

Guide ring

Indirect moving
way Moving
Indirect moving
way Moving

Polish wafers Physical force way
Physical force
Physical force way
Physical force

Joint disk
with wafers

Guide
disk

Guide ring

Motor

Rotating friction way
Rotating frictional force
Rotating friction way
Rotating frictional force

Table

Guide ring

Wafer

Slurry supply

Table

Guide
ring

WaferDiamond powder

Disk

Weight

Rotating jig disk

Table

Guide ring

Wafer

Slurry supply

Table

Guide
ring

WaferDiamond powder

Disk

Weight

Rotating jig diskChange surface

Keep large
friction coff.

AND

AND AND

AND

Figure 3. Function decomposition tree of a polisher to find parameters

- 7 -

tree of the machine (Fig. 3). He referred to another
function decomposition tree of the wire-saw (Fig. 2),
which had been stored in the database discussed in
Section 5. Although these two machines had different
main functions, he found a shared function “to
maintain a large friction coefficient” and its
sub-function “to place diamond powder between the
wafers and the table” by referring to the function “to
place grinding compound” in the function
decomposition tree of the wire-saw. This reused
intermediate sub-function clarified a part of the
mechanism required to achieve the high time
efficiency. As a result, he became aware of the
additional (and implicit) function of the guide ring, i.e.,
to place the diamond powder in the slurry into the
grooves of the table to achieve the function “to place
diamond powder between the wafers and the table”.
Thus, he changed the width of the guide ring so that
more diamond powder could be placed into the gaps
between the wafer and the table. Eventually, the
necessary time was reduced to 76%, which was better
than the initial goal. This improvement was achieved
within three weeks.

4.3 Design Review

Design review is a team activity to double-check the
original design and explore possible alternatives. To
explain the original design, the SEI engineers had
been using a comparative table with a text, which
described alternative designs in columns with their
features in rows.

The Production Systems Division of SEI adopted a
general function decomposition tree as the regular
schema for design-review documents. It showed
alternative ways of achieving functions for each (sub)
function, their features in comparison, and reasons for
adopting a specific way, or not, in the one figure. It
was difficult to describe all alternatives exhaustively
for each function in the comparative table. Thus, the
design review had to be done thrice on average. After
adopting our framework, however, the number of

times the design reviews had to be done was reduced
to one third.

The description of unintended behaviors and
supplementary functions played an especially crucial
role in design for reliability. It showed the original
design took into account what phenomena could
possibly occur and how to avoid these with additional
supplementary functions (Fig. 2).

4.4 Patent Map and Patent Applications

Another use for the general function decomposition
tree is as a kind of “patent map” to indicate applicable
ways to achieve a function. For example, Figure 4
shows a general function decomposition tree including
patented ways of handling wafers. The italics are
abbreviated names of companies which adopt each
way for manufacturing wafers. The differences in
working principles and features of patents are
organized in each level of function decomposition. It
includes possible unintended (undesirable) phenomena
and problems such as wafer chipping for each way.
Differences (originality) in the new patent from
conventional ones can be explicitly described in patent
applications as new ways of function achievement
and/or new features of ways.

In applying for a new patent, it is difficult for
engineers and patent attorneys to clarify its originality
and to make the proper claims. At SEI, it took a lot of
hard effort over a long period, on average, three or
four weeks. When a patent application was completed
with the general function decomposition tree in Fig. 4
(plus new ways of function achievement to create new
patent), the period was reduced to just one week (i.e.,
one third the usual time). Moreover, the patent claims
were increased, in some cases doubled. This was
because the patent attorney found additional
differences with other patents by checking each level
of function decomposition in the general function
decomposition tree.

Move wafers

Manual waysAutomatic ways

Pickup
wafers

Move wafers
horizontally

Turn wafers
over

Set
wafers

Outside
way

Adhesion
way Liquid

way
In air
way

Fluid
way

Holding
way

Fluid
way

Horizontal
way

Vertical
way

Liquid and
holding way

(MM) (TC)

alien
substance

alien
substance

chippingchippingchippingchipping
Flow
liquid

Float
wafers

Float
wafers

Hold
wafers

Hold
wafers

Float
wafers

Provide
fluid

Put
wafers

Push
wafers

Water jet way Vessel
way

Adhesion
way

Gas floating
way

Gravity
way

Individual
way

Fluid way
(TC, H) (TC) (OP) (NE, NT) (OP) (OP) (MM)

AND

OR

OR OR OR OR

OR

AND AND AND AND

Move wafers

Manual waysAutomatic ways

Pickup
wafers

Move wafers
horizontally

Turn wafers
over

Set
wafers

Outside
way

Adhesion
way Liquid

way
In air
way

Fluid
way

Holding
way

Fluid
way

Horizontal
way

Vertical
way

Liquid and
holding way

(MM) (TC)

alien
substance

alien
substance

chippingchippingchippingchipping
Flow
liquid

Float
wafers

Float
wafers

Hold
wafers

Hold
wafers

Float
wafers

Provide
fluid

Put
wafers

Push
wafers

Water jet way Vessel
way

Adhesion
way

Gas floating
way

Gravity
way

Individual
way

Fluid way
(TC, H) (TC) (OP) (NE, NT) (OP) (OP) (MM)

AND

OR

OR OR OR OR

OR

AND AND AND AND

Figure 4. A patent survey for handing semiconductor wafers

- 8 -

4.5 Sharing with Different Types of Engineers
and Sharing in Different Tasks

In addition to designers and patent attorneys using our
framework as knowledge media for communication,
designers, manufacturing engineers, manufacturing
equipment engineers, equipment operators, and
equipment maintenance personnel, all used it in
collaborative work. Although mutual understanding
and collaboration are urgently required, this rarely
happens because they have their own viewpoints and
use different knowledge representations such as design
drawings, QFD, FMEA sheets, and FTA diagrams.
The problem is in that each representation uses its own
vocabulary and lacks interoperability with the others.
The use of our framework, however, facilitated their
mutual understanding and collaboration in a project to
improve equipment where it worked as a common
vocabulary, which was lacking before.

Another kind of interoperability of knowledge in our
framework was among different tasks (engineering
activities) such as design, solving quality problems,
and patent applications. For example, the function
decomposition tree described to review designs (as
discussed in Section 4.3) was reused to diagnose a
problem with equipment deployed on the
manufacturing line and to improve the equipment. It
was derived from a sub-system that adjusted the angle
at which ingots were cut with the wire saw (Fig. 2). A
new FTA diagram might have been described to solve
the problem in conventional work. Moreover, we
applied a new patent to adjust the sub-system using
the same function decomposition tree plus information
from existing patents that were related. This means
that the same knowledge representation was reused in
different tasks, i.e., design, diagnosis, improvements,
and patent applications, which was impossible before
at SEI.

4.6 Expanding Alternative Ways of Function
Achievement using Generic Ways

The specific ways of function achievement are
generalized into generic ways and then organized in
is-a hierarchies. Figure 5 shows is-a hierarchies for
ways of function achievement for split functions and
others. They have been generalized from specific ways
used with the wire-saw (Fig. 2) and other cutting
machines such as water jets and electrolysis. Within
this organization, the differences between the
wire-saw and other cutting machines are explicitly
represented. Wire-sawing uses three ways, i.e., the
removing way for splitting, the physical force way for
losing combination force, and the linear friction way
for exerting force. Moreover, the ways of exerting
force can also be used for other machines, e.g.,
washing machines. For example, dirt is separated from
clothes by random friction force caused by the rotating
screw in a screw-type washing machine. This suggests
that these pieces of knowledge are general and can be
applied to different domains. The conventional
organization for ways of cutting found in text books in
the field does not mainly show principles but “what
something is used for” such as wires and blades. “The
wire-saw way” found in text books is not a single way
of function achievement but a composite made up of
three primitive ways.

Although knowledge on such organization of ways of
function achievement has not been fully deployed yet,
a feasible new improvement to wire-sawing was found
in the knowledge-base, i.e., we manually found a way
of using the magnetic fluid that is used in the textile
industry to control the tension of the wire. This simple
invention could have been done by a computer system
called the functional way server [22]. This indicates
the utility of our framework for general functional
knowledge.

Techniques of shedding light used in inspection
machines were also systematized in deployment.
Consulting systematized generic ways in the

Breaking wayBreaking way

Make stress

Ways for splittingWays for splitting

Electrolysis wayElectrolysis way

Removing wayRemoving way

Separation

Lose combination
force of a part
(the kerf loss)

Ways for losing combination forceWays for losing combination force

Breaking by stress

Impact wayImpact way

Fluid collision
way

Fluid collision
way

Water-jet
Electrolysis cutting

Random
friction way
Random

friction way

Move the part away

Melting wayMelting way

Changing wayChanging way Physical force wayPhysical force way

Chemical wayChemical way Exert force

Ways for exerting forceWays for exerting force

Tensile stress wayTensile stress way

Shearing stress wayShearing stress way

Force

is-a

Linear
friction way

Linear
friction way

Falling object
way

Falling object
way

Screw-type
washing machine

is-a
Friction wayFriction way

Drum-type
washing machine

Wire-saw

Lateral pressure
cutting

is-a

Decrease
combination force

A principle of
achievement

Name of wayName of way

Micro(sub)-function

Legend

ExampleBreaking wayBreaking way

Make stress

Ways for splittingWays for splitting

Electrolysis wayElectrolysis way

Removing wayRemoving way

Separation

Lose combination
force of a part
(the kerf loss)

Ways for losing combination forceWays for losing combination force

Breaking by stress

Impact wayImpact way

Fluid collision
way

Fluid collision
way

Water-jet
Electrolysis cutting

Random
friction way
Random

friction way

Move the part away

Melting wayMelting way

Changing wayChanging way Physical force wayPhysical force way

Chemical wayChemical way Exert force

Ways for exerting forceWays for exerting force

Tensile stress wayTensile stress way

Shearing stress wayShearing stress way

Force

is-a

Linear
friction way

Linear
friction way

Falling object
way

Falling object
way

Screw-type
washing machine

is-a
Friction wayFriction way

Drum-type
washing machine

Wire-saw

Lateral pressure
cutting

is-a

Decrease
combination force

A principle of
achievement

Name of wayName of way

Micro(sub)-function

Legend

Example

Figure 5. An example of organizing generic ways in is-a hierarchies

- 9 -

knowledge-base, a novice engineer developed an
inspection machine in three days. Experts usually need
two weeks for such developments.

5. SOFAST® software

We developed a knowledge management software
named SOFAST® (abbreviation for Sumitomo
Osaka-university Function Analysis and
Systematization Tool and registered trademark of
SEI.), which was designed to support the description
of functional knowledge and sharing in an
intra-network. It consists of client software and an
SQL server (Fig. 6(a)). Using the client software, a
user can describe function decomposition trees on a
graphical user-interface. Figure 6(b) has a screen
snapshot, where both main panes display a general
function decomposition tree in different styles in
Japanese. As we can see from the right pane, users can
attach related documents including bitmap images,
graphs, and spreadsheets to the tree. The small
window in the middle is an overview of the whole tree
for scrolling.

The described models are stored in the SQL server and
can be accessed by users with the client software (or
any SQL-support software) from other hosts. Because
the server stores each way of function achievement at
each level separately, a user can retrieve many ways of
function achievement from different facilities or
products to achieve the specified function by
specifying a goal function. For example, 56 instances
of ways of function achievement for “to shed light”
from many facilities (including different applications
of the same generic way) can be found from the
current SOFAST database, which includes the 103
(general or specific) function decomposition trees.

Since April, 2003, we have provided SOFAST to 13

other companies in the SOFAST users’ group. The
authors regularly hold meetings with the
member-companies for lectures, training, reports on
use, and discussions on further improvements.

The current implementation of SOFAST is, as
discussed in detail in Section 6.2, data storage
software rather than an intelligent design support
system. The success of the deployment discussed thus
far is accomplished not only by the functionality of the
SOFAST software but also by the lectures and training
in the collaborative work done between Osaka
University, SEI, and the users’ group. The lectures and
training are aimed at reinforcing the constraints of the
ontologies discussed in Section 3 on knowledge
authors. As we will discuss in the next section, the
factors for success mainly result from such ontological
commitments. Moreover, the management capability
of is-a hierarchies of generic ways of function
achievement is missing. The built-in vocabulary of
functional concepts is not based on the functional
concept ontology. Improvement in this respect is
discussed in Section 6.2.

6. Discussion

6.1 Success Factors for Deployment

The successful deployment discussed thus far is a kind
of knowledge management activity. In general,
difficulties with knowledge management activities
include:

• Difficulty in explicating implicit knowledge,
• Difficulty in retrieving useful knowledge, and
• Lack of motivation in writing own knowledge.

First, it is difficult to explicate one’s own implicit
knowledge. Functional knowledge is intrinsically
subjective, not objective. Without guideline, novice

- To store specific ways in
functional models and
generic ways

- To store related documents
- To retrieve them

ServerServer

LAN

K
no

w
le

dg
e An SQL server

Clients

SQL
queries

- To edit functional models
- To edit generic ways
- To search ways by a goal
function

A client software

Figure 6. Knowledge management software SOFAST.
(a) Architecture (left) and (b) screen snapshot of client software (right)

- 10 -

modelers would be puzzled in describing functional
models. Functional ontologies provide conceptual
rules or guidelines to capture the target world, i.e.,
conceptual and subjective functions. Extended device
ontologies, especially, provide users with hints on
interpreting how a device works consistently as
discussed in Section 4.1. The concept of “way of
function achievement” also helps modelers to
eliminate the confusion between “what to achieve”
and “how to achieve it”. A clear distinction between a
general-specific hierarchy (is-a relations) and a
whole-part hierarchy (is-achieved-by relations) helps
knowledge authors to have consistent descriptions of
function decomposition trees and is-a hierarchies of
ways of function achievement. This avoids the
confusion between the two, which has often occurred.

Although difficulty in retrieval is sometimes treated as
a technical issue in information searches, we believe
that the retrieval problem with functional knowledge
is due to the dependence of content on “how to
achieve functions” and “how to use information”.
When functional terms used are composites of “how to
achieve” and “what to achieve” like they were before
(e.g., “to weld”), the terms are very domain- and
equipment-dependent and hence generality is low.
This has caused the low retrievability of knowledge.
This issue can be avoided by the concept of “way of
function achievement” as previously discussed
because its detachment from functional concepts
makes the functional terms very general.

“How to use information” is also important in the
knowledge management context. The knowledge
found has to be ready for use in the task at hand. To do
this, well-prepared knowledge representation needs to
be available which the knowledge should fit. This
issue is partially resolved by our functional ontology
framework which is an integration of knowledge about
functional structures representing intended behaviors
and unintended behaviors at an appropriate level of
abstraction, i.e., the functional level. This enables the
same model (representation) to be used in different
tasks as discussed in Section 4.5. Such applicability in
multiple tasks reduces the effort required by
knowledge authors. Furthermore, it augments
interoperability among task-dependent knowledge
representation via our framework.

Last, in general, knowledge authors have no effective
motivation to write their own knowledge and share it
with others. In deployment, however, engineers
themselves say that they obtain benefits from writing
functional models of their own equipment, since it
gives them the chance to reflect and obtain good
stimuli, which leads them to an in-depth understanding
of the equipment. This is enabled by our modeling
framework operating as a knowledge medium, which
externalizes the engineers’ understanding, which had
been implicit, to an appropriate level of abstraction
with consistent guidance. There was a real example in

Section 4.2. In general, the micro-macro hierarchy of
the function decomposition tree enables the designer
to systematically explore possible alternatives (for
conceptual design) and/or causes of the problem (for
problem solving) for each function. For example, fault
tree analysis (FTA) for problem solving tends to make
it difficult to enumerate all possible causes without a
clear understanding of the function structure of the
target device.

6.2 Limitations

The main point of our framework is that it adopts an
ontological approach to controlling the content of
functional models. However, it has some
disadvantages. The first one is less freedom of
functional representation than ad hoc functional
modeling. It became a problem especially in selecting
a functional concept for a component. There could be
a domain-specific vocabulary and different terms for
the same concept. We cannot claim completeness of
concepts in our functional concept ontology due to its
nature and understand the necessity of extending it. In
order to make the use of SOFAST easier, the latest
version supports multi-level terms which consist of the
functional concepts (defined in the ontology), usual
function words and domain-specific vocabulary. The
usual function words are verbs for representing
functions appearing in daily work, and have been
prepared beforehand by collaboration with companies
in the users’ group. Such words are associated with
each functional concept. SOFAST of the latest version
thus allows knowledge authors to use terms rather
freely.

The second disadvantage of our ontological approach
is that it needs training for writing functional models
that are compliant with functional ontologies. In other
words, it is not very easy to impose ontological
commitments on knowledge authors. The authors are
currently establishing stepwise guidelines for
describing functional knowledge to enable easier
commitment to the ontologies [23]. Moreover,
automatic checking of violations in the functional
models against ontologies is being investigated.
Neither of our ontologies is just a taxonomy. Their
definitions are structured with slots and constraints
and include axioms as a result of deep insights into the
behaviors and functions in physical systems [22]. Such
formal definitions can be used to automatically check
the models.

As a result of these limitations, some of the functional
models described thus far do not follow the functional
ontologies completely in deployment. The current
vocabulary used in SOFAST is not fully based on the
functional concept ontology. The main use of
SOFAST, currently, is to describe the function
decomposition trees of each production facility and a
general function decomposition tree for similar
facilities. Sharing ways of function achievement in

- 11 -

SOFAST does not rely on the is-a hierarchy of generic
ways but on searching for specific ways of function
achievement by specifying the goal function.
Nevertheless, discrimination of is-a relations from
ways of function achievement has helped engineers
avoid a great deal of confusion. Such advanced
features of our framework are to be deployed by
implementing new functionalities to support them in
SOFAST together with advanced training.

Apart from the production systems and facilities
discussed in this paper, ontologies have been applied
to modelling a power plant [21], an oil refinery plant,
a chemical plant, a washing machine, a printing device,
and manufacturing processes. The models have taken
into account changes in thermal energy, flow rate, and
ingredients of fluids, including force and motion of
operands. The current functional concept ontology can
describe simple mechanical products, although it does
not cover static force balancing and complex
mechanical phenomena based on the shape of
operands. The modelling framework currently cannot
cope with the human philological process, body
movements (so-called therblig in Industrial
Engineering), business processes, or software
processes.

7. Related work

7.1 Engineering Ontologies

Of the types of ontologies, we did not concentrate on
the task ontology of design activities (such as
Chandrasekaran [38]) but the domain ontology of
artifacts to be designed. Much work on ontologies in
the engineering domain [3], [26]- [33], [39]- [41] has
been done. One remarkable example is by Borst, et
al. [32], in which the PhysSys ontology was proposed
as a sophisticated lattice of ontologies for the
engineering domain. However, the device ontology in
PhysSys is weak in the same way as conventional ones
in that it does not have sufficient concepts to enable
the ontological roles all participants play to be
understood. We extended such conventional one by
redefining “conduit” and “medium” as an extended
device ontology. Our refinement to the device
ontology provides the modeller with more detailed
guidelines to capture target devices.

Moreover, the PhysSys ontology has no ontology for
functions from the teleological viewpoint.
Chandrasekaran and Josephson clarified meanings of
the concept “function” based on ontological
considerations and proposed two types of functions,
i.e., device-centric and environment-centric [3].
Although we share this distinction and their attitude
towards ontological analysis, we only concentrated on
a device-centric viewpoint in this paper. Other
classifications of functions can be found in [2], [4], [20].

Other ontological considerations on functionality can
be found in [33], [40].

Recently, ontologies have played a crucial role on the
emerging Semantic Web in giving interoperability to
web resources (e.g., [42]). Knowledge on unintended
behaviors discussed in this paper can be regarded as
different knowledge resources based on ontologies
that are different from the functional ontology. The
authors are currently investigating design knowledge
transformation based on such multiple ontologies on
the Semantic Web.

7.2 Functional representation

There has been a great deal of research on functional
representation [3], [8], [11]- [20], [43]. We did not focus
on the purpose function but on the technical functions
in the terminology in [4], [10].

The main point of our research is to clarify several
relationships related to functionality, i.e., the is-a
hierarchy of functions, the is-achieved-by (part-of)
relations among functions, and the is-a hierarchy of
ways of function achievement. We detach a part of the
conditions for specialization in [4], [10] (see discussion
in Section 2) and thus described them as specific
attributes of the way of function achievement in an is-a
hierarchy [22], [23].

Similarly to the way of function achievement, a feature
of function decomposition can also be found as a
“means” in [18], [19], [44]. In [18], it is not generic
knowledge but a model specific to a product. In [19],
although generic knowledge of single functional
decomposition is discussed as “means”, organization
between them is not discussed. We defined is-a
relations between conceptualized generic ways of
function achievement, and investigated how to
organize them.

The design prototypes [8] include structural
decomposition as well as function decomposition. In
the FBS modeling framework [16], the function
prototype includes physical features of behavior to
achieve the function as well as generic function
decomposition. Our description of ways tried to
maximize its generality by pointing out partial (and
abstract) information on structure and behavior.

Patterns of function achievement or so-called design
catalogs can be found in the design literature [5].
However, they mainly concentrate on concrete
mechanical pairs.

We defined functional concepts using operational
information called functional toppings (FTs) such as
those that focus on operands and the necessity for
operands, which then enable us to define intention-rich
functional concepts [21]. Many “verb+noun”-style
functional representations lack such operationality.
For example, standard sets of verbs (i.e., functional

- 12 -

concepts) proposed for value analysis [45] have no
machine understandable definition of concepts.
Although the recent efforts for a standard taxonomy
for engineering functions by the NIST Design
Repository Project [46] are well established, they lack
operational relationship with behaviors.

De Kleer defines function as a causal pattern between
variables [11]. In the FBS model [16], the functional
symbol in natural language in the verb+noun style
represents the intention of designers. We tried to
identify operational primitives as FTs to represent
intentions. Keuneke defines types of functions such as
ToMake [13]. Our FTs include these. Although we did
not adopt either the process ontology [39] or bond
graph theory [47], our functional concept ontology
includes similar functions in flow-based functional
modeling approaches [14], [15].

The teleological interpretation specified by FTs in our
approach is similar to the “means and ends” [15], F-B
relationship [16], and “aims-means” [10]. The last axis
includes design requirements as well [10]. Gero [48]
coped with dynamic changes in the design context
such as requirements.

Andreasen et al. identified several structures not only
including the “functional oriented structure” but also
the “product life oriented structure” for so-called
DFX: Design for “something” [9].

In IDEAL [17], generic teleological mechanisms
(GTM) are used (modified) to design different
contexts based on analogies. In our approach, based on
a limited set of functional concepts, designers can
explore explicit is-a hierarchies of ways of function
achievement.

TRIZ (TIPS) theory provides some patterns (or
strategies) for inventions based on the contradiction
between two physical quantities [49]. We did not
concentrate on design strategies but on modelling
schema. TRIZ theory also concentrates on physical
principles (effects), although we established a clear
relationship between physical principles and
functional structures.

7.3 Unintended behaviors

Information on unintended behaviors in our models
can be found in other formalisms such as FMEA
sheets and fault trees in FTA. One of the benefits of
our framework is the tight integration of such
information with functional structures. This
integration helps designers to systematically explore
possible causes for each function at each grain-size.

To capture a larger set of failure modes systematically,
research has been done on advanced FMEA (e.g.
 [50], [51]) using behavioral models to simulate device
behaviors. The model-based diagnosis community
uses sophisticated qualitative reasoning to identify

faulty components (e.g. [52]). Diagnosis using
hierarchical functional models instead of behavior
models have been proposed [14], [53]. These
approaches based on deviations from “intended”
behavioral models, however, cannot deal with parts of
causative chains of faults as was pointed out in
[54-56].

8. Concluding remarks

The successful deployment of an ontological modeling
schema for functional knowledge has been reported.
After we discussed the current problems in industry
and expected roles of ontologies, six types of real
usages in deployment, effects of ontologies, and their
success factors were discussed. One of the main
success factors was clarifying three types of
relationships related to functionality (i.e., the is-a
relation of functions, is-achieved-by (part-of) relations
between functions, and the is-a relation of ways of
function achievement) and to provide four types of
schemata for functional knowledge. Although
engineers mainly use (general) function
decomposition trees in deployment, such
discrimination helps engineers reflect on their own
knowledge.

As discussed in Section 6.2, support for deeper
commitment on functional ontologies is being
investigated. The authors are planning to develop
support functionality in SOFAST and to deploy it in
daily work. The other 13 companies in the SOFAST
users’ group will help us to improve the software.

The modeling schema in this article for unintended
behaviors was a simplified version. We are currently
investigating more detailed ontological schema aiming
at explicit representations of design rationales for
supplementary functions [35]. In our collaborative
work with the Delft University of Technology, we are
extending the framework to include user actions as
well [34]. Interoperability between different tasks is
limited in the sense that the same representation is
used for all tasks. Dynamic transformation of the
representation of such models is being investigated.

The authors believe that Ontology Engineering has
contributed to the systematization of domain
knowledge by providing a “theory of content” for
knowledge, i.e., how to capture knowledge and to
organize it so that it can be applied to other contexts
 [37]. Ontology provides fundamental guidelines for
capturing the target world and for describing it in
computer systems. This research can be regarded as a
successful example of this research direction.

Acknowledgements

The authors would like to thank Yusuke Koji, Mariko
Yoshikawa, Tomonobu Takahashi, Masaru Takahashi,
and Kouji Kozaki for their contributions to this work.

- 13 -

Special thanks go to Mr. Shuji Shinoki and the
engineers in the Plant and Production Systems
Engineering Division of Sumitomo Electric Industries,
Ltd. for their cooperation with the deployment.

Reference
[1] Umeda Y, Tomiyama T. Functional Reasoning in Design,

IEEE Exert 1997:March/April:42-8.
[2] Chittaro L, Kumar AN. Reasoning about Function and its

Applications to Engineering, Artificial Intelligence in
Engineering 1998;12:331-6.

[3] Chandrasekaran B, Josephson JR. Function in Device
Representation, Engineering with Computers
2000;16(3/4):162-77.

[4] Hubka V, Eder WE. Functions Revisited. In Proc. of
ICED 01 2001.

[5] Pahl G, Beitz W. Engineering design - a systematic
approach. The Design Council; 1988.

[6] Chandrasekaran B, Goel AK, and Iwasaki Y. Functional
representation as design rationale. Computer 1993:48-56.

[7] Miles LD. Techniques of value analysis and engineering.
McGraw-hill; 1961.

[8] Gero JS. Design Prototypes: A Knowledge
Representation Schema for Design. AI Magazine.
1990;11(4):26-36.

[9] Andreasen MM, Hansen CT, Mortensen NH. The
Structuring of Products and Product Programmes. In Proc.
of the 2nd WDK Workshop on Product Structuring
1996;15-43.

[10] Hubka V, Eder WE. Theory of Technical Systems.
Berlin: Springer-Verlag; 1998.

[11] De Kleer J. How Circuits Work. Artificial Intelligence
1984:24;205-80.

[12] Sembugamoorthy V, Chandrasekaran B. Functional
representation of devices and compilation of diagnostic
problem-solving systems. In Experience, memory and
Reasoning 1986:47-73.

[13] Keuneke AM. A. Device Representation: the Significance
of Functional Knowledge. IEEE Expert 1991;24:22-5.

[14] Chittaro L, Guida G, Tasso C, Toppano E. Functional and
Teleological Knowledge in the Multi-Modeling Approach
for Reasoning about Physical Systems: A Case Study in
Diagnosis. IEEE Transactions on Systems, Man, and
Cybernetics 1993;23(6):1718-51.

[15] Lind M. Modeling Goals and Functions of Complex
Industrial Plants. Applied artificial intelligence
1994;8:259-83.

[16] Umeda Y, Ishii M, Yoshioka M, Shimomura Y,
Tomiyama T. Supporting conceptual design based on the
function-behavior-state modeler. Artificial Intelligence
for Engineering Design, Analysis and Manufacturing
1996;10:275-88.

[17] Bhatta SR, Goel AK. A Functional Theory of Design
Patterns. In Proc. of IJCAI-97 1997:294-300.

[18] Malmqvist J. Improved function-means trees by inclusion
of design history information. Journal of Engineering
Design 1997;8(2):107-17.

[19] Bracewell RH, Wallace KM. Designing a Representation
to Support Function-Means based Synthesis of
Mechanical Design Solutions. In Proc of ICED 01. 2001.

[20] Deng YM. Function and Behavior representation in
conceptual mechanical design. Artificial Intelligence for

Engineering Design, Analysis and Manufacturing
2002;16:343-62.

[21] Kitamura Y, Sano T, Namba K, Mizoguchi R. A
Functional Concept Ontology and Its Application to
Automatic Identification of Functional Structures.
Advanced Engineering Informatics 2002;16(2):145-63.

[22] Kitamura Y, Mizoguchi R. Ontology-based description of
functional design knowledge and its use in a functional
way server. Expert Systems with Application
2003;24(2);153-66.

[23] Kitamura Y, Mizoguchi R. Organizing Knowledge about
Functional Decomposition. In Proc. of the 14th
International Conference on Engineering Design (ICED
03) 2003.

[24] Kitamura Y, Mizoguchi R. Ontology-based
systematization of functional knowledge. Journal of
Engineering Design 2004:15(4): 327-51.

[25] Gruber TR. A translation approach to portable ontologies.
Knowledge Acquisition 1993;5(2):199-220.

[26] Liu Z. Integrating Two Ontology for Electronics. In
Recent Advances in Qualitative Physics, MIT Press; 1992,
p. 153-68.

[27] Gruber TR, Tenenbaum JM, Weber JC. Toward a
Knowledge Medium for Collaborative Product
Development. In Proc. of Artificial Intelligence in
Design ’92 1992;413-32.

[28] Cutkosky MR, et al. PACT: An Experiment in Integrating
Concurrent Engineering Systems. Computer
1993;January:28-37.

[29] Sekiya T, Tsumaya A, Tomiyama T. Classification of
Knowledge for Generating Engineering Models - A case
study of model generation in finite element analysis -. In;
Finger S, Tomiyama T, Mäntylä, editors. Knowledge
Intensive Computer Aided Design, Boston: Kluwer
Academic Publishers; 1999, p. 73-90.

[30] De Kleer J, Brown JS. A Qualitative Physics based on
Confluences. Artificial Intelligence 1984;24:7-83.

[31] Gruber T, Olsen G. Theory Component-Assemblies,
Ontology Server. http://www-ksl.standford.edu. 1994.

[32] Borst P, Akkermans H, Top J. Engineering Ontologies.
Int’l Journal of Human-Computer Studies
1997;46(2/3):365-406.

[33] Kumar AN, Upadhyaya SJ. Component-Ontological
Representation of Function for Reasoning about Devices.
Artificial Intelligence in Engineering 1998;12:399-415.

[34] Koji Y, Kitamura Y, Mizoguchi R. Towards modeling
design rationale of supplementary functions in conceptual
design. In Proc. of Fifth International Symposium on
Tools and Methods of Competitive Engineering 2003;
117-30.

[35] van der Vegte WF, Kitamura Y, Koji, Y., Mizoguchi R,
Coping with Unintended Behavior of Users and Products:
Ontological Modeling of Product Functionality and Use,
In Proc. of CIE 2004: ASME 2004 Design Engineering
Technical Conferences and Computers in Engineering
Conference 2004. DETC2004-57720. To appear.

[36] Sasajima M, Kitamura Y, Ikeda M, Mizoguchi R. FBRL:
A Function and Behavior Representation Language. Proc.
of IJCAI-95 1995;1830–6.

[37] Mizoguchi R, Kitamura Y. Foundation of Knowledge
Systematization: Role of Ontological Engineering. In;
Rajkumar Roy, editors. Industrial Knowledge
Management - A Micro Level Approach, Springer-Verlag,
2000; 17-36.

[38] Chandrasekaran B. Design Problem Solving: A Task
Analysis. AI Magazine 1990;11(4):59-71.

- 14 -

[39] Forbus KD. Qualitative Process Theory. Artificial
Intelligence 1984;24:85-168.

[40] Salustri FA. Ontological Commitments in
Knowledge-based Design Software: A Progress Report.
In Proc. of the Third IFIP Working Group 5.2 Workshop
on Knowledge Intensive CAD 1998;31-51.

[41] Horváth I, Vergeest JSM, Kuczogi G. Development and
Application of Design Concept Ontologies for Contextual
Conceptualization. In Proc. of 1998 ASME Design
Engineering Technical Conferences DETC, CD-ROM:
DETC98/CIE-5701, ASME, New York. 1998.

[42] Davies J, Fensel D, van Harmelen F, editors. Towards the
Semantic Web - Ontology-driven Knowledge
Management. John Wiley & Sons; 2003.

[43] Rajan JR, Stone RB, Wood KL. Functional Modeling of
Control Systems. In Proc. of ICED 03 2003.

[44] Wilhelms S. A Conceptual Design Support System using
Principle Solution Elements. Proc. of ICED 03 2003.

[45] Tejima N. et al., editors. Selection of functional terms and
categorization, Report 49, Soc. of Japanese Value
Engineering (In Japanese), 1981.

[46] Hirtz J, Stone RB, McAdams DA, Szykman S, Wood KL.
A Functional Basis for Engineering Design: Reconciling
and Evolving Previous Efforts. Research in Engineering
Design 2002;13:65-82.

[47] Rosenberg RC, Karnopp DC. Introduction to Physical
System Dynamics. McGraw-Hill; 1983.

[48] Gero JS, Kannengiesser U. The Situated
Function-Behaviour-Structure Framework. In Proc. of
Artificial Intelligence in Design ’02 2002;89-104.

[49] Sushkov VV, Mars NJI, Wognum PM. Introduction to
TIPS: a Theory for Creative Design. Artificial
Intelligence in Engineering 1995;9.

[50] Steven K, Peder F, Ishii K. Advanced Failure Modes and
Effects Analysis of Complex Processes. Proceedings of
the ASME Design for Manufacturing Conference 1999.

[51] Hata T, Kobayashi N, Kimura F, Suzuki H.
Representation of Functional Relations among Parts and
Its Application to Product Failure Reasoning. Proceedings
of CIRP International Seminar on Design 2000.

[52] De Kleer J, Williams BC. Diagnosing Multiple Faults.
Artificial Intelligence 1987;32:97-130.

[53] Larsson JE. Diagnosis based on Explicit Means-ends
Models. Artificial intelligence 1996;80:29-93.

[54] Davis R. Diagnostic reasoning based on structure and
behavior. Artificial Intelligence 1984;24:347-410.

[55] Böttcher C. No fault in sructure? - how to diagnose
hidden interactions. In Proceedings of IJCAI-95 1995;
1728-33.

[56] Kitamura Y, Mizoguchi R. An Ontological Analysis of
Fault Process and Category of Faults. In Proceedings of
Tenth International Workshop on Principles of Diagnosis
(DX-99) 1999;118-128.

	1. Introduction
	2. Ontological approach to sharing functional knowledge
	3. Ontological Modeling Framework
	4. Deployment
	4.1 Understanding and Sharing DRs
	4.2 Equipment Improvement
	4.3 Design Review
	4.4 Patent Map and Patent Applications
	4.5 Sharing with Different Types of Engineers and Sharing i
	4.6 Expanding Alternative Ways of Function Achievement usin

	5. SOFAST® software
	6. Discussion
	6.1 Success Factors for Deployment
	6.2 Limitations

	7. Related work
	7.1 Engineering Ontologies
	7.2 Functional representation
	7.3 Unintended behaviors

	8. Concluding remarks
	Acknowledgements

	Reference

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200034002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

