
In Proc. of the 14th International Conference on Knowledge Engineering and Knowledge
Management EKAW 2004, to appear.

Ontology-based Functional-Knowledge Modeling
Methodology and its Deployment

Yoshinobu Kitamura and Riichiro Mizoguchi

The Institute of Scientific and Industrial Research, Osaka University
8-1, Mihogaka, Ibaraki, Osaka 567-0047, Japan
{kita, miz}@ei.sanken.osaka-u.ac.jp

Abstract. Functionality is one of the key concepts in understanding an artifact
and in engineering domain knowledge. Although the importance of sharing of
engineering knowledge in industry has been widely recognized, from our ex-
perience with collaborative research with a production company, industrial en-
gineers have had difficulty in sharing engineering knowledge including func-
tionality. To promote the sharing of the engineering knowledge from the
viewpoint of functionality, we have established an ontology-based knowledge
modeling methodology for functional knowledge, which has been successfully
deployed in a production company. It consists of two ontologies to capture
functionality and the specifications for modeling processes. This paper summa-
rizes these ontologies and its deployment, and discusses the modeling process
based on the ontologies, which includes detailed modeling steps, types of func-
tional knowledge, and ontological guidelines.

1. Introduction

Understanding an artifact is a major part of domain knowledge. Functionality is one
of the key concepts in understanding an artifact. While there is no common under-
standing of what a function is [1-4], people share the idea that functional knowledge
is tightly related to design intention. In contrast to objective data about an artifact
such as dimension, shape and structure, recognition of functionality is dependent on
systems, environments or situations in which they are embedded. A function of a de-
vice explains what users can get using it in an environment (effects or worth of the ar-
tifact). A function of a component embedded in a system explains why the component
exists in the system and how it contributes to achieving the system’s whole-function.
In the problem of design and manufacturing, such functional knowledge represents
designer’s intention (so-called design rationale (DR)). It plays a crucial role in engi-
neering tasks such as designing and trouble shooting by engineers [1-5] as well as un-
derstanding artifacts by users.

The importance of the knowledge management (KM) of engineering knowledge in
industry is widely recognized. The recent CAD systems and computer network tech-
nologies enable engineers to share the objective data of an artifact such as shape so-
called Product Data Management (PDM). The current KM technology relies mainly
on searching documents by keywords. From our experience with collaborative re-

2

search with a production company, however, industrial engineers have had difficulty
in sharing the engineering knowledge among them for long years. They have been
regularly writing various kinds of technical reports for each of the jobs such as design
review and maintenance. Such documents include real “know-how” in order to keep
qualities and avoid troubles. Nevertheless, few of them are retrieved (and reused) by
other engineers using the search technologies, because many of these documents are
specific to each product from own viewpoint of each engineer. One of its reasons is
the lack of semantic constraints (or guidelines) on document contents. We argue that
ontologies of functionality can provide semantic constraints/guidelines on knowledge-
contents as we will discuss its needs in the next section.

To promote the sharing of the engineering knowledge of artifacts from the view-
point of functionality, our goal here is to establish an ontology-based knowledge mod-
eling methodology for functional knowledge. We have developed two ontologies to
capture functionality, i.e., the extended device ontology [6] for capturing the target
world and the functional concept ontology [7] for rich generic functions of compo-
nents. In addition to these ontologies, specification on the knowledge-modeling proc-
ess plays a crucial role in the practice of knowledge management. It includes steps for
knowledge authoring, the types of functional knowledge to be modeled in each step,
and ontological guidelines. The modeling methodology has been successfully de-
ployed in a production company [8]. In the deployment, it has been understood that
such specification is one of its success factors.

This paper discusses the ontology-based modeling methodology for functional en-
gineering knowledge. We overview the ontologies and its deployment in industry as a
success story of Ontological Engineering. In Ontological Engineering research, how
to use ontologies in real situations in industry is an important issue as well as theory,
methodology and tools. The main topic of this paper is the specification on the model-
ing processes and guidelines based on the ontologies. The specification has been used
in the deployment but has not been reported yet. Although we have reported the con-
tents of ontologies in [6,7] and the deployment in [8], we summarize them from the
viewpoint of knowledge modeling.

This paper is organized as follows. The next section discusses the needs of ontolo-
gies for functionality. Section 3 provides an overview of the ontologies for capturing
functionalities. Section 4 discusses the modeling process based on these ontologies.
Section 5 presents its successful deployment with our analysis of the success factors.
Section 6 discusses related work, limitations, and application domains for our ontolo-
gies. Section 7 concludes the paper.

2. Needs of Ontologies for Functionality

A great deal of work on domain ontologies in the engineering domain has been done
[9-11]. These, however, have mainly been concerned not with teleological functional-
ity but objective structures and behaviors. On the other hand, although a great deal of
research on the functionality of engineering products has been conducted in engineer-
ing design research [3,5,12,13], functional representation research [1,2,4,15-21], and
value engineering [22], there have been few ontological considerations [4,23,24].

3

We think there is a considerable gap between such theoretical research and practice
in industry. Here, we present two examples that demonstrate the difficulty in func-
tional knowledge modeling and then the needs of ontologies. Firstly, functionality in
Value Engineering is represented in “verb+noun” style [22] and on the basis of this,
one might describe “to weld metals” is a function of a manufacturing machine as a
keyword for its document. However, “to weld metals” implies both the metals are
joined and their parts are fused. From the viewpoint of functionality in manufacturing,
joining is only the goal the designer intends to attain, while the fusion can be regarded
as a characteristic of “how to achieve that goal”. In fact, the same goal, “to join”, can
be achieved in different ways (e.g., using nuts & bolts) without the fusion. When a
designer looks for different ways to achieve a goal function by specifying the function
as a keyword, his/her capturing it as “to join” instead of “to weld” enables him/her to
find “nuts & bolts” as a possible alternative to “welding”. This example demonstrates
the importance of the concept of functionality in reusable functional knowledge.

The well-known systematic design methodology in [5], on the other hand, includes
hierarchical structures of functionality based on input-output relations (so-called func-
tional decomposition). However, this is not easy to describe such functional models.
For the same welding machine, one might describe “to put objects together”, “to make
an arc”, and “to leave them” as sub-functions (decomposed micro-functions) of the
goal function “to join”. These sub-functions certainly describe decomposition of the
input-output relation. However, there is an implicit intermediate function “to heat ob-
jects” between “to make an arc” and the goal function. In fact, “to heat objects” can
be achieved by “to make current flow” instead of “to make an arc”. This second ex-
ample demonstrates the importance of practical specifications for functional decom-
position, in addition to standard specifications as decomposition of input-output.

These suggest the necessity for practical specifications for the content of functional
knowledge and of how to describe it. The former can be specified as ontologies, i.e.,
“explicit specifications of conceptualization” [25]. Ontologies can provide fundamen-
tal concepts for capturing the target world in a consistent way and a vocabulary to de-
scribe the knowledge. The latter means specifications for modeling processes, which
include steps for knowledge authoring and ontological guidelines. Ontologies specify
the results of knowledge modeling and thus need detailed modeling steps, which are
theoretically justified by the ontologies. We developed the two ontologies to specify
knowledge content and the functional-knowledge modeling process.

3. Ontologies to Capture Functionality

Fig. 1 outlines our framework for functional modeling based on the ontologies. It has
two levels, i.e., the behavioral and the functional (‘a’ axis). The extended device on-
tology [6] provides fundamental concepts such as “device” mainly for the behavioral
level. (Terms in bold letters are defined in the ontology). The functional concept on-
tology [7] provides a vocabulary for describing the functional-level model and maps
between behaviors and functions.

At the behavioral level, the model is objective without the designers’ intentions. It
consists of devices, connections between devices (‘b’ axis), assembly (or aggrega-
tion) relations of devices (‘c’ axis), and behaviors of entities. The “behavior” of a de-

4

vice is defined as the objective interpretation of its input-output relation considering it
as a black box. Each device is connected to another through its input or output ports.
A device plays a role as an agent (or actor) that changes the states of what is input
(called operand, i.e., what is being processed by the device) such as fluid, energy,
motion, force, and information. The input-output relation of the behavior is, more
precisely, the difference between the states of the operand at the input port and that at
the output port (called IO-State). A device can be a mechanical element, a mechani-
cal pair, a component, an assembly, or a system.

Fig. 2 shows definitions of such concepts in the extended device ontology in an on-
tology editor of an environment for building/using ontology named Hozo [26]. The
ontology editor basically supports frame-based representation with slots. Concepts are
represented as frames (denoted by nodes in Fig. 2) with slots (right-angled link) and
the is-a relations among concepts (straight link with “is-a”). Concepts are categorized
into the wholeness concepts composed of part concepts (shown in the left pane in the
screen snapshot in Fig. 2) and the relation concepts between the concepts (the right
pane). A wholeness concept has slots of part concepts (part-of relation denoted by
right-angled link with “p/o”) and slots of attributes (“a/o”). A relation concept has
slots of participant concepts (participate-in relation. denoted by “p/i”) and the attrib-
ute-slots. One of the features of Hozo is theoretical treatment of role concepts with
slots. By role we mean here such a concept that an entity plays in a specific context
and cannot be defined without mentioning external concepts [26], which is similar to
the definitions in the literature [27,28]. For example, a man (class constraint for role)
can play “husband role” (role concept) in a “marriage” relation (role context), who is
called “husband” (role holder). It can be defined as that the “marriage” relation con-
cept has two participate-in slots; i.e., the “husband” slot (“man” as a class constraint,
“husband-role” as a role concept and “husband” as a role-holder) and the “wife” slot
(“woman”, “wife-role” and “wife”, respectively). These roles can be defined also with
part-of relation of the “married couple” which is a wholeness concept corresponding
to the “marriage relation”. For details of Hozo, see [26].

In the definition of the extended device ontology in Fig. 2, the device concept is
defined as a role-holder in behavioral-relation between two physical-entities (Note
that we assume this concept is a sub-class of more generic concept in an upper ontol-
ogy). One of them plays the “agent” role, which is called device. It operates the other
entity (operand which is another role-holder) and changes its physical attributes. The

Objective Teleological
Micro

Macro

Behavioral level Functional level

Subsystem

Whole
system

Meta-
functions

Base-
functions

is-achieved-by
relation (c)
(way of function
achievement
and method)

Whole
function

is-a

Functional concept
ontology

Function
decomposition
tree

(c)
(c)

(c)

(b) (b)

(a)

mapping

Instantiation

Ontologies

Components
Extended device ontology

Objective Teleological
Micro

Macro

Behavioral level Functional level

Subsystem

Whole
system

Meta-
functions

Base-
functions

is-achieved-by
relation (c)
(way of function
achievement
and method)

Whole
function

is-a

Functional concept
ontology

Function
decomposition
tree

(c)
(c)

(c)

(b) (b)

(a)

mapping

Instantiation

Ontologies

Components
Extended device ontology

Fig. 1. Structure of a Functional Model

5

physical-entity as an operand has IO-States, which represents values of physical-
attributes at a port of a device. The pairs of IO-States at input ports of a device and
those at output ports of the same device are defined as behavior. A physical-entity
has a set of kinds (denoted by #) of physical-attributes (i.e., not instances of physical-
attributes but pointers to the class) for description of qualitative relations between the
physical-attributes.

We extended the conventional device-centered ontologies (e.g., in [9,11,23]) origi-
nating from systems dynamics theory by redefining the concepts of behavior, con-
duit, and medium. We categorized the meanings of behavior into four types [6]. The
definition above (called B1 behaviour) is distinguished from the other three for cap-
turing functionality. A conduit (e.g., a pipe and a shaft) is defined as a special device
that transmits an operand without any change in an ideal situation. A medium (e.g.,
steam for heat energy) is something that holds an operand and enables it to flow be-
tween devices. In Fig. 2, medium is defined as a role-holder which carries another
physical-entity(operand) in carrying-relation. The refined definition enables us to
cope with mechanical domains that seemingly do not fit device ontology [29].

The functional level represents the “teleological” description of a system with the
designer’s intention. We define a “function” of a device as a conceptualization of the
teleological interpretation of its “behavior” with the intended goal [7]. We have de-
fined about 220 generic functions such as “to give energy” and “to split things”
(called functional concepts) in the functional concept ontology. The definition is in
terms of FTs (Functional Toppings), which represent information about the teleologi-
cal interpretation of (mapping to) a behavior according to the designers’ intentions.

The vertical axis denoted ‘c’ at the functional level in Fig. 1 represents aggregation
(or decomposition) of functions, that is, a sequence of micro(sub)-functions achieves
a macro(whole)-function, which we call the “is-achieved-by” (a kind of part-of) rela-
tion. It corresponds to function decomposition [5], whole-part relation [19] and “de-
gree of complexity” [3]. In addition to such a description of “how to achieve the func-

Wholeness concepts

Relation concepts

Concept
Role-holder Class-constraint

role

p/o (part-of), a/o (attribute-of), p/i (participate-in)

cardinality: 1 (n=1), + (n>1), * (n>0)Legend:

Wholeness concepts

Relation concepts

Concept
Role-holder Class-constraint

role

p/o (part-of), a/o (attribute-of), p/i (participate-in)

cardinality: 1 (n=1), + (n>1), * (n>0)Legend:

Wholeness concepts

Relation concepts

Concept
Role-holder Class-constraint

role

p/o (part-of), a/o (attribute-of), p/i (participate-in)

cardinality: 1 (n=1), + (n>1), * (n>0)Legend:

Fig. 2. Portion of the extended device ontology defined using Hozo

6

tion” (we call a method), the concept “way of function achievement” represents the
conceptualization of background knowledge for function decomposition such as
physical principles, which represents “why the sequence of micro-functions can
achieve the macro-function”. The conceptualization of the way concept helps us dis-
tinguish “how to achieve and why” (way) from “what is intended to be achieved”
(function). For example, the example of “to weld” in Section 2 can be described as fu-
sion way of the joining function. The fusion way has specific characteristics of the
output that the operands are fused and they are hard to be separated. Although a func-
tional concept “to join” loses some amount of information of “to weld”, what is loses
goes to the characteristics of the fusion way. As a total, functional concepts are suc-
cessfully made very generic without any loss of information. In the fusion way, the
joining function (a macro-function) can be achieved by three micro-functions; “make
distance between operands zero”, “melt parts of them” and “solidify them”. The heat-
ing function in Section 2 is the sub-function of the melting function and can be
achieved in the arc way. How to describe such function decomposition tree will be
discussed in the following section using another example.

In Hozo, a functional decomposition tree is described as a model composed of in-
stances of the functional classes defined in the ontologies. For example, functions in a
functional decomposition tree are instances of the generic functional-concept classes
and should satisfy necessary conditions of their definitions. The concept of “way of
function achievement” is defined as a relation concept between functions. It governs
the aggregation relations between functions.

4. Ontology-based Modeling Process

On the basis of these two ontologies as theoretical background, we have developed a
modeling methodology that consists of types of functional knowledge, specifications
for modeling processes (Fig. 3), and guidelines for descriptions (Table 1). Fig. 3 out-
lines a modeling process from a functional model of a concrete artifact to organized
generic knowledge. Each node represents an activity by the knowledge authors at
each step. An activity consists of some sub-activities in sub-steps (this task decompo-
sition is denoted by lines with diamonds from left to right). Table 1 lists some of the
guidelines for describing the function decomposition tree based on the ontologies.
Here, we use a production machine called a wire-saw as an example, which is shown
in Fig. 4. This is adapted from the deployment discussed in Section 5. It is designed to
slice semiconductor ingots with friction by moving wires. We extended the rough
steps reported in [30] and clarified the guidelines.

4.1 Clarifying System

The first step (#1 in Fig. 3) involves analyzing the system to be described and clarify-
ing it. The first sub-step (#1-1) involves determining the boundaries for the model,
i.e., criteria for judging whether a thing (a component etc.) will be modeled or not. If
not, it will be treated as an external factor to the modeled system. The boundaries are
spatial and temporal. The temporal boundary is important to distinguish the design

7

process, manufacturing process, and product functioning process as shown in the
guidelines F2 in Table 1.

The second sub-step (#1-2) is to identify physical things participating in the proc-
ess (called participants) in the boundaries and then assign a role to each of them ac-
cording to the extended device ontology discussed in Section 3 and guidelines F2, F3,
and S3. Because decomposition has not yet been done at this point, the major (larger
grain-sized) components (devices) are identified. In the wire-saw example in Fig. 4,
the major components include the motor and the roller. The ingot is obviously an op-
erand. However, the wire can be a problem in that it can be considered an agent (to
exert force on ingots), an operand (to be moved by roller), or a conduit (to transmit
tension). According to the semantic constraints in the extended device ontology, one
possible consistent role-assignment is to decompose the wire into two parts, a work-
ing wire as an agent and a transmitting wire as both a medium and a conduit. The ex-
tension of the device ontology accepts the last situation.

4.2. Describing Function Decomposition Tree

The second step (#2) is to describe the function decomposition tree of the target sys-
tem (denoted (a) in Fig. 3) at the functional level in Fig. 1. It consists of a macro-
function, sub(micro)-functions, relations between sub-functions, and ways of function
achievement. Figure 4 shows (a) the initial model and (b) the revised one for the func-
tion decomposition tree of the wire-saw.

(2) Describing function decomposition tree (a)

(2-1) Identifying whole function

(2-2) Decomposing function

(2-3) Identifying way of function achievement

(2-4) Describing supplementary functions

(3) Describing general function decomposition tree (b)

(3-1) Add other ways

(3-2) Revising original way in (a)

(4) Generalizing ways and organizing them in (c)

(4-1) Generalizing operands

(4-2) Generalizing ways

(4-3) Organizing ways

(a) Function
decomposition
tree

way
AND

(b) General function
decomposition tree

way
OR

OR

ANDAND

(c) Is-a hierarchies of
ways of function

achievement

Ways for Ways for

is-a

(1-1) Determining system boundaries

(1-2) Identifying major devices and operands
(2-2-1) Identifying sub-functions

(2-2-2) Checking sub-functions

(2-2-3) Checking “is-achieved-by”
relation

(2-3-1) Conceptualize way of
function achievement

(2-3-2) Describing its attributes

(2-3-3) Checking way

(2-3-4) Checking functions

(2-4-1) Describing undesirable
behaviors

(2-4-2) Describing supplementary
functions to avoiding them

(3-2-1) Revising conceptualization
of original way

(3-2-2) Describing attributes for
distinguishing them

(1) Clarifying system (2-1-1) Identifying intended changes
of operands as input-output

(2-1-2) Mapping them to
functional concepts

Add other
ways

function (2) Describing function decomposition tree (a)

(2-1) Identifying whole function

(2-2) Decomposing function

(2-3) Identifying way of function achievement

(2-4) Describing supplementary functions

(3) Describing general function decomposition tree (b)

(3-1) Add other ways

(3-2) Revising original way in (a)

(4) Generalizing ways and organizing them in (c)

(4-1) Generalizing operands

(4-2) Generalizing ways

(4-3) Organizing ways

(a) Function
decomposition
tree

way
AND

way
AND

(b) General function
decomposition tree

way
OR

OR

ANDAND

way
OR

OR

ANDAND

(c) Is-a hierarchies of
ways of function

achievement

Ways for Ways for

is-a

Ways for Ways for

is-a

(1-1) Determining system boundaries

(1-2) Identifying major devices and operands
(2-2-1) Identifying sub-functions

(2-2-2) Checking sub-functions

(2-2-3) Checking “is-achieved-by”
relation

(2-3-1) Conceptualize way of
function achievement

(2-3-2) Describing its attributes

(2-3-3) Checking way

(2-3-4) Checking functions

(2-4-1) Describing undesirable
behaviors

(2-4-2) Describing supplementary
functions to avoiding them

(3-2-1) Revising conceptualization
of original way

(3-2-2) Describing attributes for
distinguishing them

(1) Clarifying system (2-1-1) Identifying intended changes
of operands as input-output

(2-1-2) Mapping them to
functional concepts

Add other
ways

function

Fig. 3. Modeling Process of Functional-Design Knowledge

8

(1)Identifying Whole Function
The first sub-step (#2-1) is to “identify the whole function” of the system according to
F1-F4. Here, “the way of function achievement” discussed in the previous section
plays an important role. In the example, the whole function is not “to slice” but “to
split”, because “to slice” implies “how to split” and provides specific information
about the thinness of the split part. The former information is regarded as the way of
function achievement. The goal of slicing here can be considered to be “to split a part
from the target operand (i.e. ingot)”. It makes it possible to select other ways instead
of “slicing” in the design. In reality, slicing with wire is not single way of function
achievement but a composite as will be discussed later.

The latter information (i.e., thinness), on the other hand, is regarded as the quanti-
tative degree of a function. Each way of function achievement has specific value of at-
tributes like it. Then, such information can be used as conditions to select the way
from all available ways of function achievement.

Table 1. Guidelines for function decomposition tree

F. About functions and behaviors
F1. A function represents “what to achieve” only and does not imply “how to achieve”.
 F1-1. A device is a black-box. The inside is not shown at a level.
F2. A function represents (a teleological interpretation of) changes in physical things within

the system boundary.
 F2-1. Do not describe the designer’s activities.
 F2-2. Distinguish product’s functions, manufacturing processes, and recycling activities.
 F2-3. Determine a system boundary with a pre- and post-process.
F3. Agent of functions should be a “device” in the physical world.
 F3-1. A human operator can be regarded as a “device”.
 F3-2. Designers and manufacturer should be distinguished.
 F3-3. Sizes of devices decrease in function decomposition.
 F3-4. A device can be virtual and dynamic.
F4. Decompose functions which imply kinds of operands and/or degrees of results for functions.
 F4-1. Such implications are represented as attributes of ways of function achievement

S: About relations between sub-functions
S1. Identify states of operands that flow sub-functions.
S2. Time passes along this relation.
S3. Roles of things as operands should not be changed in a series of functions.

A: About “is-achieved-by” relation and way of function achievement
A1.The “is-achieve-by” relation represents aggregation
 A1-1. The total changes in sub-functions should correspond to changes in the whole function.
 A1-2. This relation does not imply a time interval.
 A1-3. This relation is not an “is-a” relation.
A2. A sub-function should explicitly contribute to a macro-function.
 A2-1. Explicate implicit sub-functions.
A3. The way of function achievement represents a single principle.
 A3-1. Decompose compound principles
 A3-2. Distinguish them from other ways at the principle level.
 A3-3. If possible, conceptualize neither tools nor operands but principles
 A3-4. A way should refer to a direct macro-function.
A4. Distinguish supplementary functions from essential functions.

9

(2) Decomposing Functions
The second sub-step (#2-2) involves decomposing the whole function (generally, a
macro-function) into sub (micro)-functions that can achieve the macro-function.
When one regards it as a design activity, it corresponds to function decomposition [5].
After the modeler has tried to identify the sub-functions (step #2-2-1), important steps
are to check the relations among sub-functions (as step #2-2-2) according to the S1-S3
guidelines and to check the relations between sub-functions and the whole-functions
(as step #2-2-3) according to the A1-A4 guidelines.

As we can see from Fig. 4(a), one might describe “to move table to wire” and “to
move wire” as sub-functions. However, against A2, why these two sub-functions can
perform the whole function is not clear. Moreover, against S2, it is unclear which op-
erands flow between the two sub-functions. One reason is that there is a missing sub-
function, “to exert vertical force to ingot and wire”. The original sub-function “to
move table to wire” contributes to the vertical-force sub-function. The other missing
sub-functions are found in the next sub-step.

(3) Describing Ways of Function Achievement
The third sub-step (#2-3) involves describing the ways of function achievement. The
modelers identify a physical principle that can achieve the whole(macro-) function
and conceptualize it (#2-3-1). Then, the attributes of the way are described (#2-3-2).
Next, such descriptions are checked according to A3 (#2-3-3). As a result of identify-
ing the way, the functions are sometimes changed (#2-3-4). To further decompose
sub-functions, steps #2-2 and #2-3 are done recursively.

In the wire-saw example, the wire-saw way does not involve a single way but a
composite of three ways, i.e., the removal way of splitting, the physical force way of
losing combinatorial force of a part (kerf loss, i.e., the part lost by cutting), and the
linear friction way of exerting force. Splitting is achieved in two sub-functions; losing
the combinatorial force of the kerf-loss and moving it away. This way to achieve the
function is conceptualized as the removal way based on separating the kerf loss part.

Give wire
tension

Cool
wire

Keep large
friction coff.

Remove
scrapings

Fix ingot

Set grinding
compoundAND

AND

Exert vertical force
to ingot and wire

Flow slurry

Coolant way
Principle:
Heat
conduction

Coolant way
Principle:
Heat
conduction

Get coolant
to touch

Flow way
Principle:Flow
Flow way
Principle:Flow

Give linear motion
in wire direction

Transform
rotation
to linear
Roller

Exert ingot
force in

wire direction
Provide shaft

rotation
motion

Motor

Split ingot

Fluid impact way
Principle: shock
Fluid impact way
Principle: shock

AND

Tension way
Principle:tension
Tension way
Principle:tension

Rotation
motion way
Rotation
motion way

Roller

Wire Motor

Ingot
Table

Shaft

wafer

Linear friction way
Principle: Friction
Linear friction way
Principle: Friction

Lose combination force
of kerf-loss part

Move
part away

Exert force
on part

Removal way
Principle: Separation
of kerf-loss part

Removal way
Principle: Separation
of kerf-loss part

Physical force way
Principle: Force
Physical force way
Principle: Force

Slice ingot

Move
wire

Move table
to wire

Wire-saw
way
Wire-saw
way

(a) Initial model

(b) Revised function decomposition tree

is-achieved-by

super-(macro)
function

sub-functions

Decrease combination
force by external force

supplementary functions
(step 2-4)

step 2-1

(step 2-1,2-2-1)

step 2-3-3

Make
friction

force

step 2-2-3

AND

AND

Give wire
tension

Cool
wire

Keep large
friction coff.

Remove
scrapings

Fix ingot

Set grinding
compoundAND

AND

Exert vertical force
to ingot and wire

Flow slurry

Coolant way
Principle:
Heat
conduction

Coolant way
Principle:
Heat
conduction

Get coolant
to touch

Flow way
Principle:Flow
Flow way
Principle:Flow

Give linear motion
in wire direction

Transform
rotation
to linear
Roller

Exert ingot
force in

wire direction
Provide shaft

rotation
motion

Motor

Split ingot

Fluid impact way
Principle: shock
Fluid impact way
Principle: shock

AND

Tension way
Principle:tension
Tension way
Principle:tension

Rotation
motion way
Rotation
motion way

Roller

Wire Motor

Ingot
Table

Shaft

wafer

Roller

Wire Motor

Ingot
Table

Shaft

wafer

Linear friction way
Principle: Friction
Linear friction way
Principle: Friction

Lose combination force
of kerf-loss part

Move
part away

Exert force
on part

Removal way
Principle: Separation
of kerf-loss part

Removal way
Principle: Separation
of kerf-loss part

Physical force way
Principle: Force
Physical force way
Principle: Force

Slice ingot

Move
wire

Move table
to wire

Wire-saw
way
Wire-saw
way

(a) Initial model

(b) Revised function decomposition tree

is-achieved-by

super-(macro)
function

sub-functions

Decrease combination
force by external force

supplementary functions
(step 2-4)

step 2-1

(step 2-1,2-2-1)

step 2-3-3

Make
friction

force

step 2-2-3

AND

AND

Fig. 4. A function decomposition tree of a wire-saw for slicing ingots (portion)

10

(4) Describing Supplementary Functions
The last sub-step (#2-4) involves adding supplementary functions that are not essen-
tial but provide additional effects to improve efficiency and/or to prevent faults. In
other words, we recommend describing essential sub-functions only until this step,
because this clarifies the principles for achievement. In this paper, we have omitted
this aspect but it is reported in another [31].

4.3. Describing General Function Decomposition tree

A general function decomposition tree (b) includes possible alternatives to achieving
functions in an OR relationship. In the first sub-step (#3-1), the function decomposi-
tion tree described in the previous step (#2) is expanded by adding other ways of func-
tion achievement for each function decomposition. Then, the way of function
achievement in the original function decomposition tree are revised by comparing
with principles for the other ways (#3-2). This step can be omitted.

4.4. Generalizing Ways of Function Achievement

A concrete way in a (general) function decomposition tree can be generalized into a
generic way in steps #4-1 and #4-2. Generic ways are called functional way knowl-
edge and they consist of a macro-function, a set of sub (micro)-functions, temporal
and causal constraints among sub-functions, principles of achievement, conditions for
use of the way (e.g., the specific class of operands (e.g., solid objects) which can be
changed in the way), and quantitative characteristics of the way (e.g., accuracy, cost,
time, amount of change (e.g., limitation of thinness for splitting)). Although this in-
cludes a description of the method to achieve functions, we called it the “way”, focus-
ing on the fact that it includes a description of the principles of achievement.

Then, ways to achieve the same function are organized in is-a relations according
to their principles (called an is-a hierarchy of ways of function achievement (c) in Fig.
3 and Fig. 5) in step #4-3. We distinguish the organization as an is-a hierarchy from
the other derivative organizations depending on the viewpoint. Such ad-hoc trees can
be reorganized by a functional-way server according to the given viewpoint [32].

Figure 5 details is-a hierarchies of ways to achieve split functions and others. They
have been generalized from the specific ways used in the wire-saw example in Fig. 4
and from other cutting machines such as water-jet cutting and electrolysis cutting.
Conventional organization of ways of cutting in a textbook of the field relies on “what
is used for” against guideline A3-3. Figure 5 shows explicit differences between the
wire-saw and other cutting devices. The wire-saw uses the three ways marked with as-
terisks. Moreover, ways of exerting force can also be used in other appliances, e.g.,
washing machines. In a screw-type washing machine, for example, dirt is separated
from cloth by random frictional force caused by the rotating screw. This kind of
knowledge is general and can be applied to different domains.

11

4.5. Types of Knowledge

Note that these types of trees concerning functions (Fig. 3) are different. Function de-
composition tree (a) represents is-achieved-by (a kind of part-of) relations among
functions. The is-a hierarchies of ways (c) represent an abstraction of the key infor-
mation about how to achieve the function, while the is-a hierarchies in the functional
concept ontology represent abstractions of functions themselves, i.e., the goals that
are achieved. Moreover, there are a huge numbers of ways for a function in nature,
while the numbers of functional concepts are small.

The modeling process discussed in this section is used to describe functional
knowledge from the bottom-up from scratch. When the general functional way
knowledge is available, the modeler can use this to describe the function decomposi-
tion tree and/or add a new way of function achievement to an existing general func-
tion decomposition tree or an existing is-a hierarchy. Moreover, the steps; #2-1 and
#2-2 can be done in reverse, i.e., from micro-functions to macro-functions from the
bottom up. The functions of components can be aggregated into macro-functions. In
reality, both directions are mixed in the modeling process.

5. Deployment

The ontology-based modeling methodology discussed thus far has been deployed
since May, 2001 at the plant and production systems engineering division of Sumi-
tomo Electric Industries, Ltd. (hereinafter referred to as SEI) [8]. A knowledge man-
agement software named SOFAST has been developed based on part of the method-
ology and then deployed since December, 2002. Currently about 50 people in three
factories use SOFAST in their daily tasks. The targets are manufacturing equipment
mainly used in semiconductor manufacturing processes including the wire-saw shown
in Figure 4, a wafer polisher, an optical fiber connector adjusting machine, and in-
spection machines. SOFAST has been used by 13 other companies since April, 2003
some of which use it in actual work. The followings summarize some of usages and

Impact
way

Impact
way

Friction
way

Friction
way

Ways of exerting forceWays of exerting force

Breaking wayBreaking way

Create stress

Ways of splittingWays of splitting

Electrolysis wayElectrolysis way

Removal wayRemoval way

Separation

Lose combination
force of kerf loss part

Ways of losing combination forceWays of losing combination force

Breaking by stress

Fluid collision
way

Fluid collision
way

Water-jet

Electrolysis cutting

Random
friction way
Random

friction wayMove part away

Melting
way

Melting
way

Changing wayChanging way Physical force wayPhysical force way

Chemical
way

Chemical
way

Exert force Force

is-a

Linear
friction way

Linear
friction way

Falling object
way

Falling object
way

Screw-type
washing
machine

is-a

Drum-type
washing machine

Wire-saw
Lateral pressure

cutting

is-a

Remote
way

Remote
way

Pressure
way

Pressure
way

Momentary
impact way

Momentary
impact way

Continuous
impact way
Continuous
impact way

Supersonic
waves way

Supersonic
waves way

*

*

*

Decrease combination
force by external force

A principle of
achievement

Name of wayName of way

Micro(sub)-function

Micro(sub)-function

temporal order

Legend

Example

Impact
way

Impact
way

Friction
way

Friction
way

Ways of exerting forceWays of exerting force

Breaking wayBreaking way

Create stress

Ways of splittingWays of splitting

Electrolysis wayElectrolysis way

Removal wayRemoval way

Separation

Lose combination
force of kerf loss part

Ways of losing combination forceWays of losing combination force

Breaking by stress

Fluid collision
way

Fluid collision
way

Water-jet

Electrolysis cutting

Random
friction way
Random

friction wayMove part away

Melting
way

Melting
way

Changing wayChanging way Physical force wayPhysical force way

Chemical
way

Chemical
way

Exert force Force

is-a

Linear
friction way

Linear
friction way

Falling object
way

Falling object
way

Screw-type
washing
machine

is-a

Drum-type
washing machine

Wire-saw
Lateral pressure

cutting

is-a

Remote
way

Remote
way

Pressure
way

Pressure
way

Momentary
impact way

Momentary
impact way

Continuous
impact way
Continuous
impact way

Supersonic
waves way

Supersonic
waves way

*

*

*

Decrease combination
force by external force

A principle of
achievement

Name of wayName of way

Micro(sub)-function

Micro(sub)-function

temporal order

Legend

A principle of
achievement

Name of wayName of way

Micro(sub)-function

Micro(sub)-function

temporal order

Legend

Example

Fig. 5. Example of organizing generic ways of function achievement in is-a hierarchies

12

effects in the deployment.
SOFAST is designed to support the description of functional knowledge and shar-

ing the knowledge in an intra-network. It consists of client software and knowledge
repositories. Using the client software, a user can describe function decomposition
trees through a graphical user-interface and store them in the repository. Then, all us-
ers can search ways of function achievement in the repository to achieve the function
of interest by specifying a goal function.

One of use of the function decomposition tree is to clarify functional knowledge,
which is implicitly possessed by each engineer, and share it with other engineers. The
experiential evaluation by Sumitomo’s engineers was unanimously positive. Writing a
function decomposition tree according to the methodology gives designers the chance
to reflect on good stimuli, which leads them to an in-depth understanding of the
equipment. This is because such a function decomposition tree shows the designer’s
intentions on how to achieve the goal function and justify design decisions, which are
not included in the structural or behavioral models.

Such a deep understanding contributes to redesigning and solving problems with
the equipment. For example, an engineer was not able to reduce the time a machine
requires to polish semiconductor wafers after four months of investigation by adjust-
ing the known working parameters. He consequently described its function decompo-
sition tree, by referring to that of the wire-saw in Fig. 4. Although these two devices
have the different main functions, he found the shared function “to maintain a large
friction coefficient” and its sub-function “to place diamond powder between wafers
and the table”. As a result, he became aware of an implicit function and its parameters
for placing more diamond powder to obtain a high friction coefficient. Eventually, he
reduced the necessary time to 76%, which was better than the initial goal. This im-
provement was achieved within three weeks.

The general function decomposition tree can be used to compare design candidates
by explicating different ways to achieve functions. It contributes to patent analysis
and patent applications. In communications between engineers and patent attorneys in
applying for a new patent, it is difficult to determine the product’s originality and to
make appropriate claims. When the general function decomposition tree has been
adopted as regular document format of documents for a patent application, the period
was reduced to just one week from three or four weeks. Moreover, the patent claims
were increased and doubled in some cases, since the attorneys found extra differences
with other patents by checking at each level of function decomposition. The same
benefit was found by another company in the users’ group.

Generic knowledge about ways of function achievement help designers search
ways to achieve a function and/or alternatives in an existing product. In deployment, a
novice engineer developed an inspection machine in three days by systematically con-
sulting generic ways of shedding light in the knowledge repository of SOFAST. Such
development usually requires experts two weeks.

The success factors for deployment can be summarized as (1) clear discrimination
between function (goal) and way (how to achieve the goal) and (2) clear discrimina-
tion among the is-a relation of functions, that of ways, and the is-achieved-by (a kind
of part-of) relations of functions. The modeling steps and guidelines based on these
discriminations provide hints to users to interpret how a device works consistently.

13

6. Related Work and Discussion

The target knowledge of this research is functionality of physical artifacts. It is “do-
main” knowledge of design problem-solving or diagnosis. It is different from “task”
knowledge of designing or diagnosing, which is activity of human or automated prob-
lem-solvers. In the task ontology research, generic tasks and generic problem-solving
methods (PSMs) are proposed (e.g., [33]). If one ignores the difference between do-
main and task, the generic tasks and the generic methods are similar to our generic
functions and generic ways of function achievement, respectively. We focus on struc-
turing knowledge about how to achieve functions (activities in domain world). We
conceptualize the principle behind the sequence of activities (called method in both
researches) as the way of function achievement. It helps us organize them in is-a hier-
archies, though PSMs for a specific task are usually not organized well. Moreover, we
distinguish function at the teleological level from behaviors at the objective level.

Behavior of artifacts in our work is a kind of “process” by which we intuitively
mean a sequence of state changes over time. We concentrate on physical process
which represents temporal changes of physical quantities as we discuss in the follow-
ing paragraphs. On generic “process”, extensive research has been done. The process
specification language (PSL) [34] defines “activity” as a basic concept and temporal
relationships between them. Although it has the theory on sub-activities, it includes
neither the concept of way nor generic activities. Formal ontologies for processes
have been investigated (e.g., [35]). The MIT process handbook treats business activi-
ties [36]. It includes taxonomy of basic business activities. Some activities such as
“buy in a store” in specialization of activities, however, imply “how to achieve” like
“welding” in Section 2. It obstructs organizing “how to achieve” (the way of function
achievement in our methodology) separately from specialization of activity itself.

The is-achieved-by relation in our work is a kind of the parthood relation between
functions. Parthood has been extensively investigated in the formal ontology research.
For example, DOLCE ontology includes formal specifications of parthood (and other
fundamental concepts) [37].

A great deal of work on domain ontologies in the engineering domain has been
done [4,10,11,23,24]. We concentrated on “ontology as meta-knowledge”, which pro-
vides knowledge authors with constraints and guidelines on capturing the target
world, though pioneering work [10] in ontological research and extensive work in
semantic web research aimed at “ontology for agent communication” that contributes
interpretabilities among agents. Borst et al. proposed PhysSys ontology as a sophisti-
cated lattice for ontologies for the engineering domain [11]. Although their’s did not
include ontology for functionality, we focus on this. Ontological consideration on
functionality can be found in the literature [4,23,24]. Chandrasekaran and Josephson
identified a device-centric function and an environment-centric function [4]. Our defi-
nition of function is device-centric.

Our main point was to clarify several relationships related to functionality, i.e.,
(A) The teleological interpretation of behavior as a function (axis (a) in Fig. 1),
(B) The is-a hierarchy of functions,
(C) The is-achieved-by (part-of) relations among functions (axis (c) in Fig. 1,

Fig. 3(a), Fig. 3(b), and Fig. 4),
(D) The is-a hierarchy of ways of function achievement (Fig. 3(c) and Fig 5)

14

The relationship between function and behavior in (A) is similar to “means and
ends” [19] , the F-B relationship [20], and “aims-means” (including design require-
ments as well) [3]. On the other hand, papers such as [21] define that “behavior” is
how to achieve a function (C) where distinction between behavior and function is
relative. De Kleer defines function as a causal pattern between variables [15]. We
identified operational primitives as FTs to represent intentions and then gave them
operational definitions. Many “verb+noun”-style functional representations (as in
Value Engineering [22]) lack such operationality. The recent efforts toward a standard
taxonomy for engineering functions by the NIST Design Repository Project [14] are
well established; however, they lack an operational relationship with behaviors and
ontological specifications.

Concerning the is-a hierarchy of functions (B), the few (4-16) generally-valid func-
tions [5] are too abstract to describe details of designer’s intentions. The hierarchy of
“degree of abstraction” [3] for functions represents the specialization of functions
with additional conditions. These conditions, however, sometimes include a specific
way of function achievement such as “transportation by sea” [3] in the same manner
as “welding” discussed in Section 2. We separated their conditions for specialization
into specific attributes for the way of function achievement. Our functional concept
ontology includes the functions proposed by Keuneke [17] and similar functions in
flow-based functional modeling [18,19] .

The ways of function achievement in (C) and (D) is similar to the “means” [12,13].
However, they treated a product-specific model [12] or generic knowledge without
explicit organization [13]. We investigated how to organize conceptualized generic
ways of achieving functions in (D). Similar ideas on generic patterns to achieve func-
tions are discussed in the literature [16,20,21]. As well as functional decomposition,
the design prototypes [16] include structural decomposition and the function proto-
type [20] has physical feathers. Our description of ways tries to maximize generality
by pointing out partial (and abstract) information on structure and behavior. Generic
patterns or so-called design catalogs (e.g., in [5]) mainly concentrate on mechanical
pairs. Generic teleological mechanisms (GTM) are modified in design based on anal-
ogy [21]. In our approach based on a limited set of functional concepts, the ways of
function achievement are organized in is-a hierarchies (D). Designers can explore
them on several abstract levels explicitly.

The TRIZ (TIPS) theory provides some patterns (or strategies) for inventions based
on contradiction between two physical quantities [38]. We did not concentrate on de-
sign strategies but on the modeling schema. The TRIZ theory also pays attention to
physical principles (effects), although we established a clear relationship between
physical principles and functional structures.

Limitations with Ontologies and Application Domain
We cannot claim the completeness of concepts in our functional concept ontology.
We applied the ontologies to modeling power plants, chemical plants and appliances
as well as manufacturing machines. The models include changes in thermal energy,
flow rate, ingredients of fluids, and force and motion of objects [7]. The current func-
tional concept ontology can describe simple mechanical products, although it does not
cover static force balancing and complex mechanical phenomena based on the shapes
of objects.

15

7. Summary

An ontology-based knowledge modeling methodology was reported. It is domain-
specific but is basically applicable to a great deal of knowledge about artifacts from
the important viewpoint of functionality. It has been deployed successfully in indus-
try. This paper discussed the detailed modeling process from specific models to ge-
neric knowledge in is-a hierarchies. The modeling steps and the guidelines based on
ontologies help knowledge authors describe sharable knowledge clearly.

Our ontologies are operationally defined in an ontology editor as shown in Section
3. Using the editor, when a knowledge author describes a model or generic knowl-
edge, the editor can check models against constraints defined in the ontologies (see
[32] for detail). However, the current SOFAST software does not support such onto-
logical constraints. Such functionality is being planned.

Acknowledgements: The authors would like to thank Tomonobu Takahashi, Kouji
Kozaki, Yusuke Koji and Mariko Yoshikawa for their contributions. Special thanks
go to Dr. Masayoshi Fuse, Mr. Masakazu Kashiwase and Mr. Shuji Shinoki of Sumi-
tomo Electric Industries Ltd., for their cooperation in deploying our methodology in
production systems.

References

1. Umeda, Y., Tomiyama, T.: Functional Reasoning in Design. IEEE Expert (1997) 42-48
2. Chittaro, L., Kumar, A.N.: Reasoning about Function and its Applications to Engineering.

Artificial Intelligence in Engineering, 12 (1998) 331-336
3. Hubka, V., Eder, W.E.: Theory of Technical Systems. Springer-Verlag; Berlin (1998)
4. Chandrasekaran, B., Josephson, J.R.: Function in Device Representation, Engineering with

Computers 16(3/4) (2000) 162-177
5. Pahl, G., Beitz, W.: Engineering design - a systematic approach. The Design Council (1988)
6. Kitamura, Y., Mizoguchi, R.: Ontology-based systematization of functional knowledge.

Journal of Engineering Design, to appear (2004)
7. Kitamura, Y., Sano, T., Namba, K., Mizoguchi, R.: A Functional Concept Ontology and its

Application to Automatic Identification of Functional Structures. Advanced Engineering In-
formatics, 16(2) (2002) 145-163

8. Kitamura, Y., Kashiwase, M., Fuse, M., Mizoguchi R.: Deployment of an Ontological
Framework of Functional Design Knowledge. Advanced Engineering Informatics, to appear
(2004)

9. De Kleer, J., Brown, J.S.: A Qualitative Physics based on Confluences. Artificial Intelli-
gence, 24 (1984) 7-283

10. Cutkosky, M.R., et al.: PACT: An Experiment in Integrating Concurrent Engineering Sys-
tems. Computer (1993) 28-37

11. Borst, P., Akkermans, H., Top, J.: Engineering Ontologies. Int’l Journal of Human-
Computer Studies, 46 (2/3) (1997) 365-406

12. Malmqvist, J.: Improved Function-Means Trees by Inclusion of Design History Information.
Journal of Engineering Design, 8 (2) (1997) 107-117

13. Bracewell, R.H., Wallace, K.M.: Designing a Representation to Support Function-Means
based Synthesis of Mechanical Design Solutions. In Proc. of the International Conference on
Engineering Design (ICED) 01 (2001)

16

14. Hirtz, J., Stone, R.B., McAdams, D.A., Szykman, S., Wood, K.L.: A Functional Basis for
Engineering Design: Reconciling and Evolving Previous Efforts. Research in Engineering
Design, 13 (2002) 65-82

15. De Kleer, J.: How Circuits Work. Artificial Intelligence, 24 (1984) 205-280
16. Gero, J.S.: Design Prototypes: A Knowledge Representation Schema for Design. AI Maga-

zine, 11(4) (1990) 26-36
17. Keuneke, A.M.: A Device Representation: the Significance of Functional Knowledge. IEEE

Expert, 24 (1991) 22-25
18. Chittaro, L., Guida, G., Tasso, C., Toppano, E.: Functional and Teleological Knowledge in

the Multi-Modeling Approach for Reasoning about Physical Systems: A Case Study in Di-
agnosis. IEEE Transactions on Systems, Man, and Cybernetics, 23(6) (1993) 1718-1751

19. Lind, M.: Modeling Goals and Functions of Complex Industrial Plants. Applied artificial in-
telligence, 8 (1994) 259-283

20. Umeda, Y, Ishii, M., Yoshioka, M., Shimomura, Y., Tomiyama, T.: Supporting conceptual
design based on the function-behavior-state modeler. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 10 (1996) 275-288

21. Bhatta, S.R., Goel, A.K.: A Functional Theory of Design Patterns. In Proc. of IJCAI-97
(1997) 294-300

22. Miles, L.D.: Techniques of value analysis and engineering. McGraw-Hill (1961)
23. Kumar, A.N., Upadhyaya, S.J.: Component-Ontological Representation of Function for

Reasoning about Devices. Artificial Intelligence in Engineering 12 (1998) 399-415
24. Salustri, F.A.: Ontological Commitments in Knowledge-based Design Software: A Progress

Report. In Proc. of the 3rd IFIP WG 5.2 Workshop on Knowledge Intensive CAD (1998)
31-51.

25. Gruber, T.: A Translation approach to portable ontologies. Knowledge Acquisition, 5(2)
(1993) 199-220

26. Kozaki, K., Kitamura, Y., Ikeda, M., and Mizoguchi R.: Hozo: An Environment for Build-
ing/Using Ontologies based on a Fundamental Consideration of “Role” and “Relationship”,
Proc. of EKAW2002 (2002) 213-218

27. Sowa, J. F.: Knowledge Representation: Logical, Philosophical, and Computational Founda-
tions. Brooks Cole (2000)

28. Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., Guarino, N.:
Social Roles and their Descriptions, In Proc. of KR 2004 (2004)

29. Mortensen, N. H.: Function Concepts for Machine Parts - Contribution to a Part Design
Theory, Proc. of ICED 99, 2 (1999) 841-846

30. Kitamura, Y., Mizoguchi, R.: Organizing Knowledge about Functional Decomposition. In
Proc. of ICED 03, 2003

31. Koji, Y., Kitamura, Y., Mizoguchi, R.: Towards Modeling Design Rationale of Supplemen-
tary Functions in Conceptual Design. In Proc. of TMCE 2004 (2004) 117-130

32. Kitamura, Y., Mizoguchi, R.: Ontology-based description of functional design knowledge
and its use in a functional way server. Expert Systems with Application 24 (2003)153-166.

33. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., Van de Velde,
W. and Wielinga, B.: Knowledge Engineering and Management - The Common-KADS
Methodology, The MIT Press, Cambridge, MA (2000)

34. ISO TC184/SC4/JWG8, Process Specification Language, Part 1, 11 and 12, http://www.
tc184-sc4.org/SC4_Open/SC4_Work_Products_Documents/PSL_(18629)/ (2003)

35. Menzel, C., Gruninger, M., A Formal Foundation for Process Modeling, Formal Ontology in
Information Systems; Collected Papers from the Second Int’l Conf. (2001) 256-269

36. Herman, G. A., Malone, T. W.: What is in the process handbook?, Organizing Business
Knowledge: The MIT Process Handbook, MIT Press (2003) 221-258

37. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Schneider, L.: The Won-
derWeb Library of Foundational Ontologies, WonderWeb Deliverable D17 (2002)

38. Sushkov, V.V., Mars, N.J.I., Wognum, P.M.: Introduction to TIPS: a Theory for Creative
Design. Artificial Intelligence in Engineering 9 (1995) 177-189

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200034002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

