XANESと理論計算による二次電池, 振動, エキシトンおよびvan der Waalsカの解析

東京大学 生産技術研究所 **溝口照康**

謝辞

東大:宮田智衆,富田浩太,勝倉裕貴 日産アーク(久保渕さん,茂木さん,今井さん) 大府立大 池野豪一 XANESの第一原理計算の分類

XANES理論計算の分類

Review: T. Mizoguchi et al., Micron (2010)

 DFT-LDA/GGA計算 =一粒子計算 <u>WIEN2k, CASTEP 等多数</u>

↓以外 (e.g.C,N,O,F 等のK 端, 金属のK 端)

BSE (Bethe-Salpeter Equation)計算 =二粒子計算
<u>Exciting, Elk 等</u>

軽元素(Li等)のK端 d0,f0金属のL_{2,3}, M_{2,3}端 軽金属元素(Na~Alの100eV以下)のL_{2,3}端

CI計算 =多粒子計算 → 池野先生
Ikeno code, CTM4XAS(parameterized)

3d*遷移金属の*L_{2,3}, M_{2,3}端 *ランタノイドの*M_{4,5}端等通称ホワイトライン

日産アークとの共同研究 Li₂MnO₄: Kubobuchi et al. APL 2015 Li(NiCoMn)O₂: Kubobuchi et al. JAP 2016

XANESにおけるエキシトン効果

低エネルギーXANES(Li-K端及びNa-L_{2,3}端) 高エネルギーXANES(O-K端)

Liイオン電池正極材料におけるエキシトン計算

■ XANESに現れる分子・格子振動の効果 ➡ 電池解析 に利用できる?

に近い

■ XANESに現れるvan der Waalsカの影響 → 電池解析 に利用できる?

XANES理論計算の基礎

XANESが反映する 内殻空孔状態の電子構造

エキシトン効果

Electron-hole pair $(Exciton) \rightarrow BSE$ Energy Е エキシトン効果が顕著な場合は二体間相 互作用を正確に計算する必要がある. **Bethe-Salpeter Equation (BSE)** [GGA/LDA→一粒子近似]

Intensity (a.u.)

Li-K, Be-K, B-K, Na-L_{2,3}, Mg-L_{2,3}, Al-L_{2,3}など<u>約100eV以下</u>のXANES

高エネルギー吸収端におけるエキシトン効果

高エネルギー吸収端ではエキシトン効果は現れないか?

強いエキシトン効果? WHY

エキシトン→ バンドの分散→ 次元↓ エキシトン効果↑

K. Tomita et al., Ultramicroscopy in press

Liイオン電池におけるBSE計算の注意点

Liイオン電池材料のLi-K端の計算はBSE<u>だけ</u>でOK? → スペクトル形状に加えてエネルギーの計算も重要

Liイオン電池

T. Mizoguchi et al., submitted

XANESにおけるエキシトン効果

高エネルギーXANES (Li-K端及びNa-L_{2,3}端) 高エネルギーXANES (O-K端)

Liイオン電池正極材料におけるエキシトン計算

● XANESに現れるvan der Waals力の影響 ➡ <mark>電池解析</mark> に利用できる

に近い

● XANESに現れる分子・格子振動の効果 → <mark>電池解析</mark> に利用できる

XANESでvan der Waalsカの検出

van der Waals 力 の重要性

- ☑ グラフェン等二次元化合物
- ☑ van der Waals 結晶

☑ 熱電材料

☑ 炭化ケイ素(SiC)多形の安定性

S. Kawanishi and T. Mizoguchi, JAP (2016)

✓ Liイオン電池正極材料
→ 層状化合物

<u>van der Waals力の(近似的)計算の発展</u>

Grimme (2006)

元素ごとのパラメーター $(H \sim Xe)$

Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction

STEFAN GRIMME Theoretische Organische Chemie, Organisch-Chemisches Institut der Universität Münster, Corrensstraβe 40, D-48149 Münster, Germany Tkatchenko & Scheffler (2009)

電荷密度により変化

PRL 102, 073005 (2009) PHYSICAL REVIEW LETTERS

week ending 20 FEBRUARY 2009

Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data

> Alexandre Tkatchenko and Matthias Scheffler Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany (Received 3 November 2008; published 20 February 2009)

XANESでvan der Waalsカの検出

vdWを考慮することで0.1eV弱の 低エネルギー側へのシフト

基底状態(core holeなし)と 励起状態(core holeあり)で 相殺されない

基底状態(core holeなし)と 励起状態(core holeあり)で vdWの大きさが異なることに起因

H. Katsukura et al., Ultramicroscopy (2016)

基底状態と励起状態におけるvdWの違い

ELNESでvan der Waals力の検出

H. Katsukura et al., Ultramicroscopy (2016)

XANESにおけるエキシトン効果

高エネルギーXANES (Li-K端及びNa-L_{2,3}端) 高エネルギーXANES (O-K端)

Liイオン電池正極材料におけるエキシトン計算

● XANESに現れるvan der Waals力の影響 ➡ <mark>電池解析</mark> に利用できる

に近い

● XANESに現れる分子・格子振動の効果 → <mark>電池解析</mark> に利用できる

Due to large difference in the time scales of each phenomenon, the spectral features reflect the **average** spectra of multiple-structures.

→ XANES <u>should</u> have information on the dynamic behaviors of atoms.

XANESに存在する分子・原子の振動情報の取得

O-K edge of **Solid** Alumina C-K edge of Liquid Methanol AI-K edge Al₂O₃ 300K C-K edge 298K Exp. Intensity (arb. units) 930K Exp. 287 C-K edge 313K 1565 Calc. Perfect 293 C-K edge 253K Calc. 930 Calc. 293 1605 1610 1615 Transition energy (eV) C-K edge 193K 高温下における格子振動により, Symmetry Calc. breakingが生じスペクトル形状が変化 296 300 304 92 Energy (eV)

Y. Matsui et al., Sci. Rep. (2013), Chem. Phys. Lett. (2016), T. Mizoguchi et al., submitted

XANES理論計算

XANESにおけるエキシトン効果 高エネルギーXANES(Li-K端及びNa-L_{2,3}端) 高エネルギーXANES(O-K端)

Liイオン電池正極材料におけるエキシトン計算

まとめ

XANESに現れるvan der Waalsカの影響

XANESに現れる分子・格子振動の効果

