Structural Analysis of SrTiO₃ (001) Surfaces by Medium Energy Ion Scattering and Ultraviolet Photoelectron Spectroscopy

Yoshiaki Kido, Tomoaki Nishimura, Atsushi Ikeda*and Hidetoshi. Namba

Abstract

The structure change of TiO₂-terminated SrTiO₃(STO)(001) surfaces after annealing in an O2 atmosphere (1-5×10⁻⁶ Torr) and ultrahigh vacuum (UHV) was studied by ultraviolet photoelectron spectroscopy (UPS), reflection high energy electron diffraction (RHEED) and medium energy ion scattering (MEIS). The TiO2-terminated SrTiO3 (001) surfaces were prepared by chemical treatment with an HF-NH₄F buffer solution The fraction of the TiO₂ face was estimated to be 88±2 % from the (pH: 3.5 - 3.8). MEIS analysis. For the STO surface annealed in UHV at temperatures higher than 650°C, the surface state induced by O vacancies in the top TiO2 plane was observed by UPS and the RHEED pattern shows a 2×2 structure. On the other hand, the STO surface annealed in the O_2 atmosphere (5×10⁻⁶ Torr) has a 1×1 structure without O The MEIS analysis revealed that annealing at 650°C in UHV decreased the vacancies. fraction of the TiO₂ face by about 5 % and the O-vacancy fraction in the TiO₂ face was about 7 %. The present results indicate that O vacancies are initiated in the random sites of the top TiO₂ plane by UHV annealing and rearrangement of the atomic configuration occurs simultaneously to reduce the surface energy and thus the newly ordered 2 × 2 structure appears.

Department of Physics, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga-ken 525-8577, Japan

^{*} Present Address: