Glass composition dependence of Eu³⁺ polarization in oxide glasses

Noriyuki Wada¹, Kazuo Kojima², Kazuhiko Ozutsumi²

Abstract

 Eu^{3+} -doped borate, silicate, and phosphate glasses were prepared by the melt-quenching method. Eu L_{III}-edge X-ray absorption spectra were measured to study the polarization of the Eu³⁺ ions in the glasses. The EXAFS analysis reveals that the nearest oxygen coordination number of the Eu³⁺ ions is 6, but the actual coordination number of Eu³⁺ ions is more than 6 with the additional next nearest Eu-O bonds. In the borate and silicate glasses, the nearest Eu-O distance decreased with increasing both the network modifier content and its ability. On the other hand, in the phosphate glasses, the distance tended to be constant. The electric dipole moment on an Eu³⁺ ion can be evaluated from the nearest Eu-O distance and the Debye-Waller factor. It is found out that the Eu³⁺ ions are more polarized with a decrease in the basicity of host glasses in which Eu³⁺ ions can be dissolved homogenously.

¹ Department of Materials Science and Engineering, Suzuka National College of Technology, Shiroko, Suzuka, Mie 510-0294, Japan

² Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan

1. Introduction

Eu³⁺ ion fluoresces a red color due to the ${}^{5}D_{0}\rightarrow{}^{7}F_{2}$ transition which is one of the 4f-4f transitions of the Eu³⁺ ion. Therefore, the Eu³⁺-doped Y₂O₃, ScBO₃, YBO₃, and (Gd, Y)BO₃ are used for red phosphors of plasma and liquid crystal displays (PD and LCD) [1-9].

Eu³⁺ ions are polarized in the Y₂O₃ crystal since its crystal structure has no inversion center; hence, a strong red fluorescence band due to the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ electric dipole transition of the Eu³⁺ ion appears at 610 - 620 nm. On the other hand, the Eu³⁺ ions have the higher probability of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ magnetic dipole transition than the probability of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ electric dipole transition in ScBO₃, YBO₃, and (Gd, Y)BO₃ crystals which have inversion centers. Hence, strong orange fluorescence bands due to the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition appear at 580 - 600 nm.

It has been well-known that the intensities of the fluorescence band due to the electric and magnetic dipole transitions of Eu^{3+} ions are changed depending on the crystal symmetry of host materials. The distortion of the local structure around Eu^{3+} ions has been estimated by using the intensity ratio of the electric dipole transition to the magnetic dipole transition [10, 11]. However, there has been no report that the local structure around the Eu^{3+} ion is studied by means of some direct measurements.

In this study, Eu^{3+} -doped oxide glasses of various types were prepared by the melt-quenching method and investigated by an X-ray absorption spectrometry to study the Eu^{3+} polarization and the local structure.

2. Experimental Procedure

Eu³⁺-doped borate, silicate, and phosphate glasses prepared in the present study are shown in Table 1. Raw materials used were B₂O₃ (Soekawa, 99.99 %), SiO₂ (Wako, 99.9 %), NH₄H₂PO₄ (Wako, 99.0 %), Li₂CO₃ (Wako, 99.0 %), Na₂CO₃ (Wako, 99.5 %), K₂CO₃ (Wako, 99.5 %), CaCO₃ (Wako, 99.5 %), SrCO₃ (Wako, 99.9 %), BaCO₃ (Wako, 99.9 %), Al₂O₃ (Wako, 99 %), and Eu₂O₃ (Kojundo, 99.9 %). These raw materials were weighed and mixed to obtain glasses of the compositions shown in Table 1. The powder mixture was melted using a Pt crucible for borate and silicate glasses and an alumina crucible for phosphate glass. The melting conditions for borate, silicate, and phosphate glasses were in air at 1200 °C for 60 min, at 1400 °C for 60 min, and at 1200 °C for 60 min, respectively. To obtain the glass, the melt was quenched by casting it on a carbon plate. This glass was crushed up using an alumina mortar and a pestle. The Eu₂O₃-added glass powder was melted by the same condition as the host glass. The glass was annealed for 60 min in the furnace kept at a temperature which was 20 °C higher than the glass

Glass composition	В	<i>r /</i> pm	σ / pm	<i>R</i> / %
Borate glasses				
60B ₂ O ₃ -40Li ₂ O-3.5Eu ₂ O ₃ (B40Li)	0.59	238	10	8.0
$65B_2O_3$ - $35Li_2O$ - $3.5Eu_2O_3$ (B35Li)	0.52	237	10	9.3
70B ₂ O ₃ -30Li ₂ O-3.5Eu ₂ O ₃ (B30Li)	0.44	239	11	10.2
$75B_2O_3$ - $25Li_2O$ - $3.5Eu_2O_3$ (B25Li)	0.37	241	12	10.8
$80B_2O_3$ -20Li ₂ O-3.5Eu ₂ O ₃ (B20Li)	0.29	242	12	11.2
$85B_2O_3$ -15Li ₂ O-3.5Eu ₂ O ₃ (B15Li)	0.22	243	12	12.1
90B2O3-10Li2O-3.5Eu2O3 (B10Li)	0.14	245	11	9.8
70B ₂ O ₃ -30Na ₂ O-3.5Eu ₂ O ₃ (BNa)	0.69	235	10	9.9
70B ₂ O ₃ -30K ₂ O-3.5Eu ₂ O ₃ (BK)	0.96	230	9	8.2
70B ₂ O ₃ -30CaO-3.5Eu ₂ O ₃ (BCa)	0.18	236	10	9.2
70B ₂ O ₃ -30SrO-3.5Eu ₂ O ₃ (BSr)	0.22	234	12	12.5
70B ₂ O ₃ -30BaO-3.5Eu ₂ O ₃ (BBa)	0.26	235	9	7.3
Silicate glasses				
60SiO ₂ -40Li ₂ O-3.5Eu ₂ O ₃ (SiLi)	0.84	235	9	9.2
60SiO ₂ -40Na ₂ O-3.5Eu ₂ O ₃ (SiNa)	1.30	233	8	5.9
60SiO ₂ -20CaO-20Na ₂ O-3.5Eu ₂ O ₃ (SiCaNa)	0.93	236	9	7.1
60SiO ₂ -20SrO-20Na ₂ O-3.5Eu ₂ O ₃ (SiSrNa)	0.96	236	10	5.3
60SiO ₂ -20BaO-20Na ₂ O-3.5Eu ₂ O ₃ (SiBaNa)	1.00	233	7	7.2
Phosphate glasses				
$60P_2O_5$ - $30Li_2O$ - $10Al_2O_3$ - $3.5Eu_2O_3$ (PLiAl)	0.41	233	10	11.2
$60P_2O_5$ -30Na ₂ O-10Al ₂ O ₃ -3.5Eu ₂ O ₃ (PNaAl)	0.66	235	9	7.0
60P ₂ O ₅ -30K ₂ O-10Al ₂ O ₃ -3.5Eu ₂ O ₃ (PKAl)	0.93	236	9	9.4
60P ₂ O ₅ -30CaO-10Al ₂ O ₃ -3.5Eu ₂ O ₃ (PCaAl)	0.14	233	9	8.3
60P ₂ O ₅ -30SrO-10Al ₂ O ₃ -3.5Eu ₂ O ₃ (PSrAl)	0.18	234	10	7.3
60P2O5-30BaO-10Al2O3-3.5Eu2O3 (PBaAl)	0.22	234	11	14.3

Table 1. Glass composition, *B* value, nearest Eu-O distance (*r*), Debye-Waller factor (σ), and residual and estimated standard deviation (*R*).

transition temperature, and then was cooled to the room temperature at the rate of 1 $^{\circ}$ C /min. The disk (ϕ 20 mm) was formed from the powder mixture of the glass and BN (Aldrich, 99%) to measure EXAFS spectra.

EXAFS spectra for the Eu L_{III} -edge were taken in the transmission mode using a beam line BL-4 at the SR Center of Ritsumeikan University.

3. Results

The analysis of Eu L_{III}-edge EXAFS spectra for a reference sample Eu_2O_3 and (100-x) B_2O_3 -xLi₂O-3.5Eu₂O₃ glasses has been performed as follows. The EXAFS oscillation curve, $\chi(k)$, was obtained after normalization by the sixth-order least square method and subtraction of the smooth background, where k is the magnitude of the wave vector of the photoelectron. The k^3 weighted $\chi(k)$, $k^{3}\chi(k)$, was Fourier transformed over the range from 38.0 to 90.0 nm^{-1} in k. The radial structure functions, for |F(r)|s, the $(100-x)B_2O_3-xLi_2O-3.5Eu_2O_3$

glasses are shown in Fig. 1, where r is the distance from the Eu³⁺ ion. In the Eu₂O₃, the peaks corresponding to the nearest Eu-O and Eu-Eu interactions appeared at 120 - 290

Fig. 1. Radial structure functions, |F(r)|s, for Eu L_{III}-edge of (100-x)B₂O₃-xLi₂O-3.5Eu₂O₃ glasses.

and 300 - 450 pm in *r*, respectively. In the $(100-x)B_2O_3-xLi_2O-3.5Eu_2O_3$ glasses, the peak of the nearest Eu-O interaction appeared at 120-290 pm like Eu₂O₃. In addition, the peak corresponding to the next nearest Eu-O interaction (290-335 pm) appeared as a shoulder of the nearest Eu-O peak. The nearest and next nearest Eu-O peaks shifted to the long distance with decreasing *x*. The area of the next nearest Eu-O peak decreased with decreasing *x*. In addition, the peaks due to the Eu-M (M: Li, B, and Eu) interactions appeared at 335-460 pm in *r*.

The analysis of Eu L_{III}-edge EXAFS spectra for the Eu³⁺-doped borate, silicate, and phosphate glasses as well as the reference sample Eu₂O₃ has been performed in the same way as mentioned above. |F(r)|s for the Eu³⁺-doped borate, silicate, and phosphate glasses are shown in Fig. 2 (a), (b), and (c), respectively. In all the glasses, the peak corresponding to the nearest Eu-O interaction appeared at 120 - 290 pm. In addition, the peak due to the next nearest Eu-O interaction appeared at 290 - 335 pm. In the 70B₂O₃-30M₂O-3.5Eu₂O₃,

Fig. 2. Radial structure functions, |F(r)|s, for Eu L_{III}-edge of (a) borate, (b) silicate, and (c) phosphate glasses.

 $70B_2O_3-30M'O-3.5Eu_2O_3, \qquad 60SiO_2-40M_2O-3.5Eu_2O_3, \qquad \text{and} \\ 60SiO_2-20Na_2O-20M'O-3.5Eu_2O_3 \text{ glasses (M: alkali metal, M' alkaline earth metal), when}$

the mass of M and M' increased, both Eu-O peaks shifted to the shorter distance and their area increased. In the $60P_2O_5-30M_2O-10Al_2O_3-3.5Eu_2O_3$ and $60P_2O_5-30M'O-10Al_2O_3-3.5Eu_2O_3$ glasses, when the mass of M and M' increased, the nearest Eu-O peak did not change, but the next nearest Eu-O peak shifted to the shorter distance and its area increased.

IV. Discussion

4.1 Analysis of radial structure function

It can be assumed that the coordination number of Eu^{3+} ions is 6 because the peak corresponding to the nearest Eu-O interaction in the 60B₂O₃-40Li₂O-3.5Eu₂O₃ is similar to that in Eu_2O_3 . In addition, the next nearest Eu-O peak changes by the fluctuation of x, and consequently, it is thought that O^{2-} ions, which are away from the Eu³⁺ ion, bond to the Eu^{3+} ion and the coordination number of Eu^{3+} ion becomes more than 6 [12-15]. Among the borate, silicate, and phosphate glasses, the number of the nearest Eu-O bond is 6, therefore, the coordination number becomes more than 6 by changing the next nearest Eu-O distance depending on the kind of M and M'. The coordination number can be actually decided by both the nearest and next nearest Eu-O peaks. However, here we have analyzed the nearest Eu-O peak in the radial structure function |F(r)| using the curve-fitting method by assuming that the coordination number is 6. The results of the nearest Eu-O distances (r_{Eu-O}), Debye-Waller factors (σ) and residual and estimated standard deviations (R) are shown in Table 1. In the $(100-x)B_2O_3-xLi_2O-3.5Eu_2O_3$ glasses, the r_{Eu-O} decreases with increasing x. The σ has a maximum at x of about 20. In the borate and silicate glasses except for the BBa glass, when the mass of M and M' increases, the r_{Eu-O} decreases. On the other hand, in the phosphate glasses, the r_{Eu-O} tends to be constant with increasing the mass of M and M'. In addition, in the alkali borate, silicate, and phosphate glasses, when the mass of M increases, the σ decreases. On the other hand, in alkaline earth borate, silicate, and phosphate glasses, when the mass of M' increases, the σ increases.

4.2 Glass composition dependence of Eu³⁺ polarization

The Eu³⁺ polarization mainly depends on the local structure around Eu³⁺ ions, that is, on the distance of the nearest Eu-O bonds and coordination number of the Eu³⁺ ion. In this study, the Eu³⁺ polarization depends on the disorder of the nearest Eu-O distance, namely r_{Eu-O} and σ , because the fitting was performed by assuming that the number of the nearest Eu-O bonds is 6. The nearest Eu-O distance is changed by the Coulomb attractive force between the O²⁻ ion and the cation of the host glass, namely by the basicity of the host glass. The basicity of the host glass (pO = -log $a(O^{2-})$, where $a(O^{2-})$ is the activity of the O²⁻ ion in the host glass), can not be directly measured because the activity of the O^{2-} ion bonded to some cations can not be decided. Hence, Morinaga *et al.* proposed a composition parameter *B*, which was the average basicity calculated from a glass composition [16, 17]. In the composition parameter *B*, the interaction between the cation and oxide ion, A_i , is given by Coulomb force as follows:

$$A_{\rm i} = \frac{Z_{\rm i} \times Z_{\rm O^{2-}}}{\left(r_{\rm i} + r_{\rm O^{2-}}\right)^2} \,. \tag{1}$$

Where Z_i is the valence of the cation, $Z_{O^{2-}}$ is the valence of the O²⁻ ion (= 2), r_i is the radius of the cation, and $r_{O^{2-}}$ is the radius of O²⁻ ion. The repulsive force B_i^* is the reciprocal of A_i (eq. (2)),

$$B_{i}^{*} = \frac{1}{A_{i}}$$
 (2)

A cation with higher B_i^* value easily pushes the O²⁻ ion away toward other cations and its oxide has higher basicity. In this study, the ionic radius reported by Shanonn [18] is used by taking into account the coordination

by taking into account the coordination number of the cation in a glass. The B_i value is defined by eq. (3) in order to normalize the $B_{Si^{4+}}$ value of the Si⁴⁺ ion coordinated by four O²⁻ ions to be zero, and the $B_{Ca^{2+}}$ value of the Ca²⁺ ion coordinated by six O²⁻ ions to be 1, where the values of $B_{Si^{4+}}^* = 0.32$ and $B_{Ca^{2+}}^* = 1.38$ are calculated from eqs. (1) and (2).

$$B_{\rm i} = \frac{B_{\rm i}^* - 0.32}{1.38} \,. \tag{3}$$

The *B* value of multi-component oxides was derived from B_i and the cation content ratio, n_i .

$$B = \sum n_{i} \cdot B_{i}$$

Fig. 3. Model of electric dipole moment for an octahedron around an ${\rm Eu}^{3+}$ ion.

(4)

The *B* values of the host glasses are shown in Table 1. The *B* values of the borate glasses were calculated considering the fraction of three- and four-coordinated boron atoms [19-22].

Fig. 4. Relationship between the electric dipole moment of the Eu^{3+} ion and the *B* value.

In addition, considering the locations of the Eu³⁺ ion and two O²⁻ ions along the z-axis of an octahedron around the Eu³⁺ ion, the electric dipole moment of the octahedron is greatest when the octahedron around the Eu³⁺ ion is in such a state as shown in Fig. 3. The dipole moment can be calculated from eq. (5) using the effective charge q, distance vector $\mathbf{r}_{\text{Eu-O}}$, and Debye-Waller factor vector $\boldsymbol{\sigma}$ of the nearest Eu-O bonds.

$$\boldsymbol{\mu} = q\boldsymbol{r}_{\text{Eu-O}} + q(\boldsymbol{r}_{\text{Eu-O}} + \boldsymbol{\sigma}) \tag{5}$$

The *B* value dependence of the calculated dipole moment, m, is shown in Fig. 4. The Eu^{3+} polarization is proportional to the electric dipole moment, and hence the Eu^{3+} ions are the most polarized at about 0.3 of the *B* value. The glass composition dependence of the Eu^{3+} polarization is considered as follows. Generally speaking, rare earth ions cannot dissolve into the glass consisting of a glass former. Therefore, Eu^{3+} ions inhomogenously dissolve into the glass having lower basicity. On the other hand, Eu^{3+} ions homogenously dissolve into the glass having higher basicity. The possible local structural models of the Eu^{3+} ion in a glass are suggested in Fig. 5. Below 0.3 of the *B* value, the cohered Eu^{3+} ions as shown in Fig. 5 (a) are dispersing with increasing the *B* value. In addition, the Eu^{3+} -coordinated O²⁻ ions are attracted toward the network former (NWF) and modifier (NWM) cations by the basicity of host glass, and consequently the octahedron formed by the oxygen atoms is distorted. Above 0.3 of the *B* value, the distortion of the octahedron is removing as shown from Fig. 5 (b) to (c) because the host glass is easily supplying O²⁻ ions

to the Eu^{3+} ion with increasing the *B* value. Therefore, it is shown that the Eu^{3+} polarization can be evaluated by the analysis of the EXAFS spectrum.

Fig. 5. Possible local structural models around Eu³⁺ ions in the oxide glasses.

V. Conclusion

Eu³⁺-doped borate, silicate, and phosphate glasses were prepared by the melt-quenching method. The Eu³⁺ fluorescence and Eu L_{III}-edge X-ray absorption spectra were measured to investigate the local structure around Eu³⁺ ions and the Eu³⁺ polarization. The EXAFS analysis reveals that the nearest oxygen coordination number of the Eu³⁺ ion is 6, and the real coordination number of the Eu³⁺ ion is more than 6 with the additional next nearest Eu-O bonds. In addition, in the $(100-x)B_2O_3-xLi_2O-3.5Eu_2O_3$ glasses, the nearest Eu-O distance decreased with increasing *x*. In the borate and silicate glasses except for the 70B₂O₃-30BaO-3.5Eu₂O₃ glass, when the mass of M and M' increases, the nearest Eu-O distance decreased. On the other hand, in the phosphate glasses, the nearest Eu-O distance

tended to be constant with increasing the mass of alkali and alkaline earth metals. Furthermore, the Eu^{3+} electric dipole moment can be evaluated from the distance of the nearest Eu-O bond and the Debye-Waller factor. It was found out that the Eu^{3+} ions are more polarized with a decrease in the basicity of host glasses in which Eu^{3+} ions can be dissolved homogenously.

Acknowledgements

This work was supported by the Grants-in Aid for Scientific Research (14750160) and Nanotechnology Support Project of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. Thanks are due to Prof. Tokuhiko Okamoto and Dr. Katsumi Handa at the SR Center of Ritsumeikan University for valuable comments concerning the EXAFS measurement of Eu³⁺ ions in oxide glasses.

References

- [1] K.Yokota, Shu-Xiu Zhang, K.Kimura, and A.Sakamoto, "Eu²⁺-Activated Barium Magnesium Aluminate Phosphor for Plasma Displays – Phase Relation and Mechanism of Thermal Degradation," J. Lumin., 92, 223-227 (2000).
- [2] I. W. Lenggoro, B. Xia, H. Mizushima, K. Okuyama, and N. Kijima, "Synthesis of LaPO₄:Ce,Tb Phosphor Particles by Spray Pyrolysis," Mater. Lett., 50, 92-96 (2001).
- [3] M. Zachau, "Photocalorimetric Measurement of the Quantum Efficiencies of Phosphors," J. Lumin., 72-74, 792-793 (1997).
- [4] R. Morimo and K. Matae, "Preparation of Zn₂SiO₄:Mn Phosphors by Alkoxide Method," Mater. Res. Bull., 24, 175-179 (1989).
- [5] G. Blasse, B. C. Grabmaier, "Luminescent Materials," p.10. Springer-Verlag, Berlin, Germany, (1994).
- [6] R. P. Rao, "Growth and Charactrization of Y₂O₃:Eu³⁺ Phosphor Films by Sol-Gel Process," Solid State Commun., 99, 439-443 (1996).
- [7] E. P. Riedel, "Effect of Temperature on the Quantum Efficiency of Eu³⁺ Flourescence in Y₂O₃, ScBO₃ and LaBO₃, J. Lumin., **1-2**, 176-190 (1970).
- [8] J. Hao, S. A. Studenikin, and M. Cocivera, "Blue, Green and Red Cathodoluminescence of Y₂O₃ Phosphor Films Prepared by Spray Pyrolysis," J. Lumin., 93, 313-319 (2001).
- [9] Y. Wang, X. Guo, T. Endo, Y. Murakami, and M. Ushirozawa, "Identification of charge transfer (CT) transition in (Gd, Y)BO₃:Eu phosphor under 100-300 nm," J. Solid State Chem., **177**, 2242-2248 (2004).
- [10] E. W. J. L. Oomen and A. M. A. van Dongen, "Europium (III) in Oxide Glasses: Dependence of the Emission Spectrum upon Glass Composition," J. Non-Cryst. Solids,

111, 205-213 (1989).

- [11]L. D. Carlos, R. A. Sa Ferreira, V. De Zea Bermudez, C. Molina, L. A. Bueno, and S. J. L. Ribeiro, "White Light Emission of Eu³⁺-Based Hybrid Xerogels," Phys. Rev., B60, 10042-10053 (1999).
- [12] R. Anderson, T. Brennan, G. Mountjoy, R. J. Newport, and G. A. Saunders, "An EXAFS Study of Rare-Earth Phosphate Glasses in The Vicinity of The Metaphosphate Composition," J. Non-Cryst. Solids, 232-234, 286-292 (1998).
- [13] Z.-G. Wei, L.-D. Sun, X.-C. Jiang, C.-S. Liao, C.-H. Yan, Y. Tao, J. Zhang, T.-D. Hu, and Y.-N. Xie, "Correlation between Size-Dependent Luminescent Properties and Local Structure around Eu3+ Ions in YBO3:Eu Nanocrystals: An XAFS Study," Chem. Mater., 15, 3011-3017 (2003).
- [14] G. Mountjoy, J. M. Cole, T. Brennan, R. J. Newport, G. A. Saunders, and G. W. Wallidge, "A rare Earth L₃-Edge EXAFS and L₁-Edge XANES Study of Ce, Nd and Eu Phosphate Glasses and Crystals in the Composition Range from Metaphsphate to Ultraphosphate," J. Non-Cryst. Solids, 279, 20-27 (2001).
- [15] Y. Shimizugawa, J. R. Qiu, and K. Hirao, "Local Structure around Reduced Rare Earth Ions Doped in Borate Glass by XAFS," J. Non-Cryst. Solids, 222, 310-315 (1997).
- [15] H. -B. Liang, Q. Su, Y. Tao, T. -D. Hu, T. Liu, and S. L. E. Shulin, "XAFS at Eu-L₃ Edge and UV-VUV Excited Luminescence of Europium Doped Strontium Borophosphate Prepared in Air," J. Phys. Chem. Solids, 63, 719-724 (2002).
- [16] K. Morinaga, H. Yoshida, and H. Takebe, "Compositional Dependence of Absorption Spectra of Ti³⁺ in Silicate, Borate, and Phosphate Glasses," J. Am. Ceram. Soc., 77, 3113-3118 (1994).
- [17] K. Morinaga, T. Murata, and N. Wada, "What is the Basicity of Molten Oxide?," MOLTEN SALTS, 42, 145-156 (1999).
- [18] R. D. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Cryst. A 32, 751-767 (1976).
- [19] J. Zhong and P. J. Bray, "Change in Boron Coordination in Alkali Borate Glasses, and Mixed Alkali Effects, as Elucidated by NMR," J. Non-Cryst. Solids, 111, 67-76 (1989).
- [20] S. G. Bishop and P. J. Bray, "Nuclear Magnetic Resonance Studies of Calcium Boroaluminate Glasses," Phys. Chem. Glasses, 7, 73-81 (1966).
- [21] M. J. Park and P. J. Bray, "B¹¹ NMR Studies of Strontium Borate Glasses and Compounds," Phys. Chem. Glasses, **13**, 50-62 (1972).
- [22] S. Greenblatt and P. J. Bray, "Nuclear Magnetic Resonance Investigations of the

System BaO-B₂O₃," Phys. Chem. Glasses, **8**, 190-193 (1967).