Li K-Edge XANES Spectra of Lithium-Doped Fullerenes and Lithium Borate Glasses

Kazuo Kojima¹⁾, Shin-ichi Nakahigashi¹⁾, Kazuhiro Yamamoto¹⁾, Shigero Ikeda²⁾, and Mototada Kobayashi³⁾

Li *K*-edge XANES spectra for lithium doped fullerenes, $\text{Li}_x \text{C}_{60}$ and $\text{Li}_x \text{C}_{70}$ (x = 14 ± 2), and for lithium borate glasses, xLi₂O-(100-x)B₂O₃, were measured using a beamline BL-2 of the SR Center at Ritsumeikan University [1]. All samples were powdered to collect their XANES spectra in the total electron yield mode. The vacuum level in the sample chamber was higher than 1.0 x 10⁻⁵ Pa during measurements. The lithium-doped fullerenes were synthesized at the laboratory of one of the authors (M. K.).For preparing lithium borate glasses, chemicals were melted at 1100-1200 and then quenched.

Figure 1 shows Li *K*-edge XANES spectra of $\text{Li}_x \text{C}_{60}$ and $\text{Li}_x \text{C}_{70}$ (x = 14 ± 2) and reference samples. Spectra of $\text{Li}_x \text{C}_{60} \text{ C}$ 1 and $\text{Li}_x \text{C}_{60} \text{ C}$ 2 show the first and second runs of the measurements of a sample $\text{Li}_x \text{C}_{60} \text{ C}$ under Ar atmosphere, respectively. Similar measurement was done for a different sample, $\text{Li}_x \text{C}_{60} \text{ U}$ 1. A spectrum of $\text{Li}_x \text{C}_{60} \text{ U}$ 2 is for the sample partially exposed to the air. A spectrum of $\text{Li}_x \text{C}_{70} \text{ E}$ 1 is for a sample of $\text{Li}_x \text{C}_{70}$ measured under Ar atmosphere, and that of $\text{Li}_x \text{C}_{70} \text{ E}$ air is for the sample exposed to the air.

Broad and somewhat split absorptions appear around 57-69 eV in the spectra of $\text{Li}_x C_{60} C$ 1, $\text{Li}_x C_{60} C$ 2, and $\text{Li}_x C_{60} U$ 1, the whole features of which are similar to those of the reference samples such as $\text{Li}_3 N$, but quite different from those of lithium halides like LiF, where the lithium atoms are in the isolated ionic states and show sharp absorption peaks due to the core exciton [2,3]. This indicates that lithium atoms in lithium-doped fullerenes do interact with C_{60} , like interacting Li and N atoms in $\text{Li}_3 N$.

Compared to these absorptions, the corresponding broad absorption in $\text{Li}_x \text{C}_{70} \to 1$ is somewhat shifted to higher energies, meaning that the Li-C₇₀ interaction is different from the Li-C₆₀ one.

¹⁾ Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

²⁾ SR Center, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

³⁾ Faculty of Science, University of Hyogo, Ako, Hyogo 678-1297, Japan

When exposed to the air, the spectral features ($\text{Li}_x C_{60} \text{ U } 2$ and $\text{Li}_x C_{70} \text{ E } \text{air}$) become similar, though the positions are a little in low energy, to those of the reference samples of Li_2CO_3 and Li_2O .

Figure 2 shows Li *K*-edge XANES spectra of lithium borate glasses $xLi_2O-(100-x)B_2O_3$ together with the reference samples. The whole spectral features of $xLi_2O-(100-x)B_2O_3$ (x = 20-45) resemble those of Li_2CO_3 and Li_2O . However, the spectra are rather broad with a relatively strong rising up at the low-energy side of the absorption. This may be indeed characteristic of the lithium atoms in amorphous glassy materials unlike crystalline ones.

Figure 1. Li *K*-edge XANES spectra of $\text{Li}_x \text{C}_{60}$ and $\text{Li}_x \text{C}_{70}$ ($x = 14 \pm 2$) and reference samples.

Figure 2. Li *K*-edge XANES spectra of lithium borate glasses *x*Li₂O-(100-*x*)B₂O₃ and reference samples.

References

- [1] K. Handa, K. Ozutsumi and K. Kojima, Physica Scripta, T115, 992 (2005).
- [2] J. Tsuji, K. Kojima, S. Ikeda, H. Nakamatsu, T. Mukoyama and K. Taniguchi, J. *Synchrotron Rad.*, **8**,554 (2001).
- [3] K. Handa, K. Kojima, K. Taniguchi, K. Ozutsumi and S. Ikeda, MEMOIRS OF THE SR CENTER RITSUMEIKAN UNIV., No.7 (2005) 3.