Recent Progress in Transmission Soft X-Ray Microscope

K. Takemoto, T. Ohigashi', M. Kimura, H. Fujii’, H. Aratame’, Y. Ohashi’,
K. Nakanishi’, H. Namba® and H. Kihara

Abstract

An X-ray microscope beamline (BL-12) was installed in the SR center in 1996 and has been
operated for 12 years. Using this system, unique biological samples were observed. Until now,
several significant improvements were executed. A cryogenic object sample stage was
developed and installed at BL-12. The set-up enables low-temperature imaging and applied in
NIH 3T3 cell imaging. An auto-focusing imaging system was developed and installed at
BL-12. The system can be controlled by a single finger and makes possible to perform the
multi-wavelength imaging in a wide wavelength region from 1.73 to 4.73 nm. With the
system, an edge absorption imaging can be easily applied to many elements.
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1. Introduction

An X-ray microscope beamline (BL-12) was installed in 1996 and has been operated for
12 years. The present optical configuration of the X-ray microscope is the same with the
previous one [1-2]. The optical system consists of two zone plates. In conjunction with a
pinhole a condenser zone plate (CZP) acts as a dispersive and focusing element [3]. The CZP
is a Gottingen KZP 7 type (diameter: 9 mm, outermost zone width: 53.7 nm, number of the
zones: 41,890) [4]. The pinhole diameter is 15 um. The objective zone plates (OZP) was
fabricated at ZonePlates Ltd (diameter: 56 um, outermost zone width: 45 nm, number of the
zones: 311) [5]. The images are detected by a back-illuminated CCD (C4880-21-24WD,
Hamamatsu K.K.). In ray tracing calculation, the wavelength resolution was estimated to be
300 at full-width at half maximum when a beam size was 0.28 x 2.6 um2 (20) and distance
between the source and the CZP of 7.1 m. Its resolution was estimated to be about 70 nm
(20-80%) from the intensity gradient of the knife edge of the mesh [I, 2]. A computer
controlled wavelength scanning system has been installed. The system covers 1.6 - 3.3 nm
wavelength range [6, 7]. Energy calibration is performed by using nitrogen and oxygen
absorption edges [8]. Multi-wavelength observation is currently highly demanded and is used
for various experiments.

Until now, several significant improvements were executed. In 2004, development of a
cryogenic sample observation project has started [9]. In BL-12, many of samples are
biological and polymer specimens. Since there is serious radiation damage during observation
of such biological and polymer specimens at room temperature, high resolution and high
quality imaging is difficult. Basic considerations of image contrast indicate that doses of 10°
Gy are involved in 50 nm resolution imaging with soft X-rays [10]. These doses are sufficient
to cause immediate changes in living cells. As a result, it produces noticeable mass loss and
shrinkage in some specimens. It is well known that cooling biological specimens till
cryogenic area can greatly reduce radiation damage. Cryo-X-ray microscopy experiment at
113 K have shown essentially no observable mass loss at the 50 nm spatial resolution level
with radiation doses up to 10" Gy [11]. Therefore cryo-X-ray microscopy experiments
system is necessary to observe living cells. After cooling power test of the cooling equipment,
the cryogenic sample chamber was introduced into the beamline and sample-cooling tests
were executed.

In 2007, we started a new project to develop a full auto-focusing imaging system in BL-12.
The full auto-focusing imaging system was designed. This system can be controlled by a
single finger. It makes possible to perform the multi-wavelength imaging in a wide
wavelength region from 1.73 to 4.73 nm (0.72 to 0.26 keV) which includes water windows
region completely. The wavelength region also includes many X-ray absorption edges (Table.
1). With this system, an edge absorption imaging is more easily applied to many elements.
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In this article, the results of cooling tests of the cryogenic sample chamber and the
detailed description of the new projects are presented. Some recent imaging results are also
presented.

Table 1 Enable observation elements and their X-ray absorption edges.

K-edge | L-edge | M-edge K-edge | L-edge | M-edge
No Element (er)% (eV% (eV;OJ No Element (eVl()g (eV% (eV;g
6 C 284.2 44 Ru 280
7 N 409.9 45 Rh 307.2
8 (0] 543.1 46 Pd 335.2
9 F 696.7 47 Ag 368
18 Ar 248.4 48 Cd 405.2
19 K 294.6 49 In 4439
20 Ca 346.2 50 Sn 484.9
21 Sc 398.7 51 Sb 528.2
22 Ti 453.8 52 Te 573
23 \Y 512.1 53 I 620
24 Cr 574.1
25 Mn 638.7

2. Cryogenic System and cooling power test

The microscope is separated to two vacuum parts, the CZP chamber and the OZP chamber.
The sample stage is placed between the CZP chamber and the OZP chamber under
atmospheric pressure [1, 2]. A cryogenic sample chamber also has to work under atmospheric
pressure.

Design concept of the cryogenic sample chamber is described as followings:

(1) The equipment is designed to maintain the cryo-condition for 100 minutes without frost
forming.

(2) The equipment is able to adapt to X-ray microscope at BL-12.

(3) The equipment contains the sample holder which can be easily mounted.

In order to achieve these, a new cryogenic sample chamber was designed and produced [9,
12]. The cryo-system is based on the X-ray microscopy beamline at BESSY [4]. The
cryogenic system consists of a liquid nitrogen (LN2) dewar and a sample stage. A metal tray
is put at the bottom of the sample stage. The metal tray and the dewar are connected by a
silicone tube with thermal insulation directly, and LN2 flows from the dewar to the metal tray.
The flow rate is controlled by a temperature sensor plugged into the sample position. In order
to avoid frost forming, the sample stage is enclosed with a cryo-house which consists of a
thermal insulation block and stainless steel metal cover box. The cryo-house obtains two gates
with airlock flanges for inserting two vacuum lines from the CZP chamber and the OZP
chamber. Because inside of the cryo-house is filled with dried nitrogen gas produced by liquid
nitrogen evaporation, it is expected that formation of frost can be prevented.
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Cryogenic tests of the system were performed [13]. Under several preset temperatures
between 100 K and 200 K, the cryogenic stabilities were sufficient. In order to examine
frost-forming, the gate was opened and the sample stage was observed. Frost free was
achieved for about 5 minutes.

In practical cryo-observation, a frozen specimen has to be mounted on the cooled sample
stage rapidly because ice melts at room temperature. A new sample holder unit which
consists of a sample holder and a handy bracket was designed and produced [13].

The Cryogenic chamber was installed at BL-12 beamline and cooling test was performed.
Figure 1 shows the cryogenic system and result of cooling test in BL-12. LN2 dewar vessel
is located about 20 cm higher than cryogenic sample chamber position. Preset temperature is
173 K. The system shows good low-temperature stability.

Figure 2 shows a comparison of the room- and low-temperature X-ray irradiation results
as obtained for collodion films by optical microscopy in reflection. Their irradiated
morphologies show distinct differences: in the case of the room-temperature (Fig. 2 (a)), a
60 wm broad annular feature can be observed within the damaged region. In contrast, the 273
K micrograph (Fig. 2 (b)) shows only a dark annular like feature bordering the damaged
region. The damaged region is smaller than that of room-temperature micrograph (Fig. 2 (a)).
In the case of the 233 K (Fig. 2 (¢)), a small damaged region with a 30 um dark annular
feature can only be observed. It is evident that the cryogenic system provides a superior
reduction of radiation damage.

Figure 3 shows a first image using the cryogenic system. In Fig. 3 a NIH3T3 cell is
depicted which was fixed with 2.5 % glutaraldehyde in buffer and washed in distilled water.
After air-dried, the cell was cooled on the cryogenic sample stage at 233 K. We can’t observe
new knowledge here as a result of cooling to low temperatures. In order to obtain a better
image, a vibration instability problem that occurred on a LN2 flowing instrument is due to be
improved.
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Figure 2 Demonstrate the damage caused by X-ray irradiation at various temperature in the
collodion films (thickness 30 nm) with evaporated carbon films (thickness: 10 nm). Each
preset temperature is (a) room temperature, (b) 273K, and (¢) 233K. Wavelength was 2.3 nm
and exposure time was 20 min. Scale bar: 20 um.

(a)

Figure 3 Light and X-ray microscopic images of a NIH3T3 cell. (a) Light microscopic image,
(b) X-ray microscopic image at 233 K. Wavelength was 1.9 nm. Exposure time was 1 min.

3. Improvement towards full auto-focusing imaging system

The previous system was a half-automatic observation system [6, 7]. Because the CZP
moves together with the CZP chamber by a stepping motor, usable wavelength range is
restricted by a working stroke of a vacuum bellows which connected to the CZP chamber [1,
2].

In the new system, a CZP chamber was newly manufactured. A particular wavelength is
selected by moving the CZP with a new stepping motor (ORIENTAL MOTOR Co., Ltd, Japan)
along the optical axis of the synchrotron beam in it (see Figure 4). Figure 5 shows schematics
and photographs of the mounting assembly for the CZP. The CZP is mounted on piezo
positioner stages PP-30 for vacuum (MICOS, Germany). A central stop to prevent the first
zero-order flux 1s also mounted on a 2-axis positioning stage with a tiny SQL Series
SQUIGGLE motor SQ-100V for vacuum (New Scale Technologies, Inc, USA). The central
stop stage is attached to a CZP holder plate and dependent moving to the CZP is possible. The
new CZP chamber covers 1.73 - 4.73 nm wavelength range. Linear actuators are newly
attached to the OZP and sample stages (Sigma, Japan). Technical data of the moving system
have been collected in Table 2. As the results, every stage moving is computer-controlled by
using a LabVIEW (National Instruments (NI)) system. With this system, user can control the
system by a single finger and perform the multi-wavelength imaging in a wide wavelength
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region from 1.73 to 4.73 nm. During the 2009 fiscal year, we look forward to observing

bio-specimens with this new user-friendly X-ray microscope.

Central stop
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Figure 4 Schematic of new CZP chamber with Figure 5 Schematic and photograph of
mounting assembly for the CZP.

the CZP stage.

Table 2 Technical data of moving system of the new system.

CZP stage Central stage OZP stage
. . X (Optical axis)
ia(Oeptlcal axis) Y, Z stage Y, Z stage stage
& Y, Z stage
Stepping motor Piezoelectric
© II?);)E]\;O)T AL SQUIGGLE motor: Piezo positioner 2-phase stepping
SQ-100V (New Scale | stages: PP-30 motors:25ACTR-B0
MOTOR Co., o ) .
Technologies, Inc, (MICOS, Germany) | (Sigma, Japan)
Ltd, Japan) UsA)
Travel +80 mm +5 mm +5 mm +12.5 mm
Resolution 0.1 mm
(full step) 5 um 100 nm 1 um (full step)
Atmosphere Atmospheric Vacuum Vacuum Atmospheric
pressure ~107 Torr 104 ~109Torr pressure

4. Microscopic studies of biospecimens

4.1 Picophytoplankton
Lake Biwa is the largest lake in Japan. Recently, the chemical oxygen demand (COD)
index of it is increasing in spite of a decrease in the values of biochemical oxygen demand
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(BOD) index. This result suggests that an organic matter which is hard to decompose
underwater has been increasing. Photosynthetic picoplankton which is the fraction of the
plankton performing photosynthesis composed by cells between 0.2 and 2 pm is considered
as an important source of the organic matter. Therefore, X-ray imaging of a microstructure of
the picoplankton inhabiting Lake Biwa was performed. Figure 6 shows air-dried
Synechococcus cells. Each cell has a dark sub-micron core. Because a Synechococcus cell is
covered with agar layer, the low contrast region around the core can be interpreted as agar
layer. Based on this interpretation, we aim at the identification of the amount in the existing

layer of agar around Synechococcus cells.

Figure 6 X-ray microscopic images of a Synechococcus cells taken at 2

nm. Exposure time was 5 min.

L Py

4.2 Chromosome

In order to clarify the process of condensation and distribution of a chromosome with
nanometer-resolution, the process of cell division is observed by soft X-ray microscopy. We
have previously reported that in prometaphase each chromosome was clearly visualized [14].
The thickness of a chromosome has not been uniform but varied from 150 nm to 750 nm.

In order to enhance electron density contrast for soft X-ray microscopy study, the staining
of nuclei and chromosomes with the ammoniacal silver reaction was applied. Figure 7 (b)
shows an X-ray microscopic photomontage image of mouse fibroblast cell line NIH3T3.
About 6 photomicrographs are taken to form a photomontage with an area large enough for
the study of chromosome.

Each chromosome is clearly visualized at high contrast. Thickness of a chromosome is
uniform and the size is about 700 nm. However, fiber structure with a size of a few hundred
nanometers is not observed. It is necessary to devise the dyeing of the chromosome.

Figure 7 Light and X-ray microscopic
(b) images of a NIH3T3 cell at prometaphase in
mitosis. (a) Light microscopic image. (b)

X-ray microscopic photomontage image

corresponding to the black square of (a)

iﬂpm

taken at 2 nm. This area corresponds with a

5pm .
Hm photomontage of 6 micrographs Exposure

time was about 30 min, 5 min/ micrograph x 6 micrographs.
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4.3 Deinococcus Radiodurans

Soft X-ray microscope is expected to be one of the promising tools for observing living
cells and tissues with nm order resolution. The most serious problem during the observation
of living cells using soft X-ray microscopy is radiation damage of cellular components
including DNA, protein and membrane lipid. In this study, Deinococcus radiodurans that
possesses highly efficient mechanisms to protect oxidative damage was selected as the sample
of X-ray microscopy observation.

Figure 8 shows an X-ray microscopic image of D. radiodurans cells. Observation
wavelength was 2.3 nm and exposure time was 2 min. In Fig. 8, each cell with
spherical-shaped structure had a dense body. Using a special cryogenic technique, we aim to
produce the living cell observation with X-ray microscope.

Figure 8 X-ray microscopic images of Deinococcus radiodurans
cells. Observation wavelength was 2.3 nm and exposure time

was 2 min.

oum

5. Summary

An X-ray microscope beamline was installed in the SR center in 1996 and has been operated
for 12 years. Using this system, many biological samples were observed and quite unique
images were obtained. Until now, several significant improvements were executed. First
cryo-X-ray microscopy experiment has been executed. An auto-focusing imaging system was
designed and manufactured. The system can be controlled by a single finger and makes
possible to perform the multi-wavelength imaging in a wide wavelength region from 1.73 to
4.73 nm. During the 2009 fiscal year, we look forward to observing bio-specimens with this

new user-friendly X-ray microscope.
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