Local Structure around Mn²⁺ in Phosphate Glasses

Noriyuki Wada¹, Misaki Katayama², Tomoe Sanada², Kazuhiko Ozutsumi², Kazuo Kojima²

- 1) Department of Materials Science and Engineering, Suzuka National College of Technology, Shiroko, Suzuka, Mie, 510-0294, Japan
- 2) Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan

Abstract

Mn K-edge X-ray absorption fine structure (XAFS) spectra of Mn²⁺-doped phosphate glasses were measured. Assuming that Mn^{2+} ions were octahedrally coordinated with 6 oxide ions, the length was obtained by analyzing Mn-O bond the XAFS spectra. In 60P₂O₅-35M₂O-5Al₂O₃-10MnO glasses (M: Li, Na, and K), the Mn-O bond length was almost constant, irrespective of M⁺. In 60P₂O₅-35M'O-5Al₂O₃-10MnO glasses (M': Ca, Zn, Sr, and Ba), the Mn-O bond length increased with increasing the M²⁺ ionic radius in the order Zn^{2+} , Ca^{2+} , Sr^{2+} , and Ba^{2+} . In (65-*x*)P₂O₅-35ZnO-*x*Al₂O₃-10MnO glasses (*x* = 0-10), the Mn-O bond length for x = 0 (2.13 Å) was much longer than that for x = 1-10 (about 2.07 Å), because Al₂O₃ effects the formation of 3-dimensional phosphate network structure. In $(100-y)P_2O_5-yZnO-10MnO$ (y = 20-60) and $65P_2O_5-35Zn-zMnO$ (z = 0.5-20) glasses, the Mn-O bond length changed depending on y and z, because the numbers of bridging oxygen (BO) and non-bridging oxygen (NBO) in the PO₄ groups were changed by y and z. The Mn-O bond length was the maximum of 2.13 Å in a $65P_2O_5$ -35ZnO-10MnO glass (y = 35 and z = 10), which consists of only PO₄ groups with two BOs and two NBOs.

1. Introduction

Recently, high-brightness light-emitting diodes (LEDs) with various colors have been developed and applied in various equipments and fields. However, there has been the problem that persons with red-region color blindness could not see a red-traffic-signal even if the luminescence intensity of a red LED is strong because the red LED with monochromatic output properties was used. In addition, most of the rare earth ions used for phosphors have been imported from China; therefore their long-term stable supply and cost jump are concerned.

Noticing that octahedrally coordinated Mn^{2+} ions show a red and broad fluorescence band due to the 3d-3d (${}^{4}T_{1g} \rightarrow {}^{6}A_{1g}$) transitions, and that the fluorescence band is broadened by using glass host materials, we have investigated the red fluorescence properties of Mn^{2+} ions in various oxide glasses. As a result, we found that the Mn^{2+} ions only in the phosphate glasses showed the strong; red fluorescence, as has been reported in the metaphosphate glasses [1]. Among $60P_2O_5$ - $35M_2O-5Al_2O_3$ -10MnO and $60P_2O_5$ - $35M'O-5Al_2O_3$ -10MnOglasses (M: Li, Na, and K; M': Ca, Zn, Sr, and Ba), it was found that the Mn^{2+} red fluorescence intensity in the $60P_2O_5$ - $35ZnO-5Al_2O_3$ -10MnO glass was strongest. In (65-x)P₂O₅- $35ZnO-xAl_2O_3$ -10MnO glasses (x = 0-10), it was found that the Mn^{2+} red fluorescence intensity of the glasses without Al_2O_3 was strong. In (100-y)P₂O₅-yZnO-10MnOand $60P_2O_5-35Zn-zMnO$ glasses (y = 20-60, and z = 0.5-20), the Mn^{2+} red fluorescence intensity of $65P_2O_5-35ZnO-10MnO$ glass was strongest.

It is considered that Mn^{2+} red fluorescence properties are directly influenced by the local structure of the Mn^{2+} ions, because the red fluorescence are caused by the transitions of 3d electrons in the outermost shell of Mn^{2+} ions. In addition, it has already been reported that the local structure around Mn^{2+} ions in the borate glasses was investigated by analyzing the XAFS spectra [2]. However, in studying the glass composition dependence of the Mn^{2+} local structure, phosphate glasses have not been investigated.

In this study, to reveal the glass composition dependence of the local structure around Mn^{2+} ions in phosphate glasses, the Mn K-edge X-ray absorption fine structure (XAFS) spectra of various phosphate glasses were measured and the Mn-O bond length was analyzed.

2. Experimental

For measuring the XAFS spectra, $60P_2O_5-35M_2O-5Al_2O_3-10MnO$ (35M5Al10Mn), $60P_2O_5-35M'O-5Al_2O_3-10MnO$ (35M'5Al10Mn), (65-*x*)P_2O_5-35ZnO-*x*Al_2O_3-10MnO (35Zn*x*Al10Mn), (100-*y*)P_2O_5-*y*ZnO-10MnO (*y*Zn10Mn), and 65P_2O_5-35Zn-*z*MnO (35Zn*z*Mn) glasses (M: Li, Na, and K; M': Ca, Zn, Sr, and Ba, x = 0-10; y = 20-60; z = 0.5-20) were prepared by a melt-quenching method and polished. The Mn K-edge XAFS spectra of 6.0-7.5 keV were measured by the fluorescence mode using a XAFS spectrometer of a beam line BL-3 at the SR center of Ritsumeikan University. In addition, the XAFS spectra of reference samples, MnO, MnAl₂O₄, and MnFe₂O₄, which were put on an adhesive tape, were measured by the same method. The analysis of Mn K-edge XAFS spectra for the phosphate glasses and the reference samples has been performed by using the software packages, Athena and Artemis of Ifeffit, as follows: The XAFS oscillation curve, $\chi(k)$, was obtained after normalization and subtraction of the smooth background, where *k* is the magnitude of the wave vector of the photoelectron. To obtain the radial structure functions, $|F(R)|_{s}$, the k^{3} weighted $\chi(k)$, $k^{3}\chi(k)$, was Fourier transformed over the range from 2 to 9 Å⁻¹ in *k*, where *R* is the distance from the Mn²⁺ ion. To obtain the Mn-O bond length, R_{Mn-O} , the Mn-O interaction in the radial structure functions, $|F(R)|_{s}$ for the phosphate glasses in the *R*-range of 1-2 Å (in the first shell) was curve-fitted by the nonlinear least square curve-fitting method using the first scattering path of MnO FEFF.

3. Results and discussion

3.1 Analysis of MnO, MnAl₂O₄, and MnF₂O₄

Radial structure functions, |F(R)|s, of reference samples, MnO, MnAl₂O₄, and MnFe₂O₄, are shown in Fig. 1. In the MnO (NaCl structure), which consists of octahedrally coordinated Mn²⁺ ions, the Mn-O interaction appeared in the region 1.29-2.15 Å, Mn-Mn interaction appeared in the region 2.15-3.20 Å, Mn--O interaction appeared in the region 3.20-3.62 Å, Mn--Mn Mn----O interactions and appeared overlappingly in the legion 3.62-4.40 Å, Mn---Mn interaction appeared in the region 4.40-5.46 Å. In the MnF₂O₄ (inverse-spinel structure), which consists of octahedrally coordinated Mn²⁺ ions, the Mn-O interaction appeared in the region 0.98-1.96 Å, Mn-Mn (or Fe(2)), Mn-Fe(1), Mn--O and Mn---O interactions appeared overlappingly in the region 2.15-3.70 Å, Mn----O and Mn-----O interactions appeared overlappingly in the region 3.70-4.55 Å, and Mn-Mn

Fig. 1. Radial structure functions, |F(R)|s, for the reference samples, MnO, MnAl₂O₄, and MnFe₂O₄.

(or Fe(2)) interactions appeared overlappingly in the region 4.55-5.50 Å, where Fe(1) and Fe(2) are tetrahedrally and tetrahedrally coordinated Fe³⁺ ions, respectively. In MnAl₂O₄ (normal spinel structure), which consists of tetrahedrally coordinated Mn²⁺ ions, the Mn-O interaction appeared in the region 1.07-2.02 Å, Mn-Al, Mn--O, and Mn-Mn interactions appeared overlappingly in the region 2.30-3.68 Å, Mn--O interaction appeared in the region 3.95-4.66 Å, and Mn---O, Mn--Al, Mn---O and Mn---Al interactions appeared overlappingly in the region 4.66-5.73 Å. In these reference samples, although the coordination

number of Mn^{2+} ions in MnO and MnFe₂O₄ differs from that in MnAl₂O₄, the Mn-O interactions nevertheless appeared at the same distance from the Mn²⁺ ion. Therefore, it is difficult to decide the coordination number of Mn²⁺ by using the Mn-O bond length.

3.2 Mn-O bond length in 35M5Al10Mn and 35M'5Al10Mn glasses

Radial structure functions, |F(R)|s, of 35M5Al10Mn and 35M'5Al10Mn glasses are shown in Fig. 2. In these samples, only the Mn-O interaction appeared in the region 1.07-2.15 Å. Fluorescence spectra of 35M5Al10Mn and 35M'5Al10Mn glasses are shown in Fig. 3. In

these samples, the only red fluorescence band due to the 3d-3d $({}^{4}T_{1g} \rightarrow {}^{6}A_{1g})$ transition of Mn²⁺ ions appeared at about 600 nm, and therefore it is certain that the Mn^{2+} ions are octahedrally coordinated with 6 oxide ions. Accordingly,

assuming that the Mn^{2+} ions are

Fig. 2. Radial structure functions, |F(R)|s, of 35M5Al10Mn and 35M'5Al10Mn glasses.

octahedrally coordinated with 6 oxide ions in a phosphate glass, the Mn-O bond length, R_{Mn-O} is obtained by analyzing the radial structure function using the FEFF of MnO. The values of R_{Mn-O} for the 35M5Al10Mn and 35M'5Al10Mn glasses are shown in Table 1. The R_{Mn-O} of MnO is 2.18 Å, which agrees with that of a previous report [3]. In the 35M5Al10Mn glasses, the R_{Mn-O} is constant to be about 2.12 Å. In the 35M'5Al10Mn glasses, the R_{Mn-O} increased from 2.06 to

Table 1. Mn-O bond length, R_{Mn-O} of 35M10A110Mn and 35M'10A110Mn glasses.

Sample	$R_{ m Mn-O}$ / Å
35Li5Al10Mn	2.12
35Na5Al10Mn	2.13
35K5Al10Mn	2.11
35Zn5Al10Mn	2.06
35Ca5Al10Mn	2.08
35Sr5Al10Mn	2.10
35Ba5Al10Mn	2.11

2.11 in the M'^{2+} order Zn^{2+} , Ca^{2+} , Sr^{2+} , and Ba^{2+} . Therefore, in the 35M5Al10Mn glasses, it is thought that the Mn^{2+} ions are easily dissolved into these host glasses by themselves, because the size of MnO_6^{10-} is not changed. On the other hand, in the 35M'5Al10Mn glasses, the Mn^{2+} ions, of which the valence is equal to that of M'^{2+} ions, are dissolved in the M'^{2+} sites, and therefore the size of MnO_6^{10-} increases with increasing the ionic radius of M'^{2+} in the order

Zn^{2+} , Ca^{2+} , Sr^{2+} , and Ba^{2+} [4].

3.3 Mn-O bond length of 35ZnxAl10Mn glasses

Radial structure functions, |F(R)|s, of 35ZnxAl10Mn glasses are shown in Fig. 4. For x = 0, the Mn-O interaction appeared in the region 1.22-2.12 Å, while for x = 1-8, the Mn-O interaction appeared in the region 1.07-2.05 Å. As mentioned above, the values of $R_{\rm Mn-O}$, which were obtained by curve-fitting the Mn-O interactions, are shown in Table 2. The $R_{\text{Mn-O}}$ was 2.13 Å for x = 0, whereas the R_{Mn-O} was about 2.07 Å for x =1-8. In aluminophosphate glasses, the amount of the Q^n units of PO_4 groups with lower *n*, where *n* denotes the number of bridging oxygen, that is, 0, 1, 2, or 3, increases with an increase in Al_2O_3 content [5, 6]. Therefore, the amount of non-bridging oxygen increases with an increase in Al₂O₃ content. As mentioned above, the Mn^{2+} ions dissolve in the Zn^{2+} site, and hence the effect of MnO on glass structure is similar to that of ZnO as an intermediate oxide. Therefore, on the basis of the report that the change of Q^n units in (100-y')P₂O₅-y'ZnO glasses [7], 35Zn10Mn glass consists of only Q^2 units. In the ZnxAl10Mn glasses, with increasing x, the amount of Q^2 units decreased and the amount of Q^1 units increased. However, it is difficult that the significant change of $R_{\text{Mn-O}}$ due to the small addition of Al₂O₃ is explained by the gradual changes in the amount of Q^2 and Q^1 units. It

Fig. 4. Radial structure functions, |F(R)|s, of 35ZnxAl10Mn glasses.

Table 2. Mn-O bond length, $R_{\text{Mn-O}}$ of 35ZnxAl10Mn glasses.

Sample	$R_{ m Mn-O}$ / Å
35Zn10Mn	2.13
35Zn1Al10Mn	2.08
35Zn2Al10Mn	2.07
35Zn4Al10Mn	2.08
35Zn5Al10Mn	2.08
35Zn6Al10Mn	2.05
35Zn8Al10Mn	2.08
35Zn10Al10Mn	2.06

has been reported that PO₄ groups form into the 2-dimensional network structure in a phosphate glass and into the 3-dimensional network structure in an aluminophosphate glass [8]. This is because that Al₂O₃ effects the formation of 3-dimensional phosphate network structure because of incorporating an AlO₄, AlO₅, or AlO₆ group into a space among the PO₄ groups. Consequently, in the 35ZnxAl10Mn glasses, it is thought that the R_{Mn-O} of 35Zn10Mn glass (x = 0) was much longer than that of 35ZnxAl10Mn glasses (x = 1-10) because of the difference in the phosphate network structure.

3.4 Mn-O bond length of yZn10Mn glasses

Radial structure functions, |F(R)|s, of yZn10Mn glasses are shown in Fig. 5. The Mn-O interaction appeared in the region 1.07-2.18 Å. The glass composition dependence on R_{Mn-O} , which was obtained by curve-fitting as mentioned above, is shown in Fig. 6. The R_{Mn-O} values

follows [7]: For 35 $\leq y' < 40$, the PO₄ groups are composed of Q² and Q³ units. In addition, with increasing of y', the amount of Q² units increases and that of Q³ units decreases. For y' = 40, all the PO₄ groups have Q² units. For 40 < y' < 65, the PO₄ groups consist of both Q¹ and Q² units, and the amount of Q¹ units nearly equals to that of Q² units at y' of 60. All the PO₄ groups have Q¹ units for y' = 65. For 65 < y' \leq 70, the PO₄ groups form Q¹ and Q⁰ units. With increasing y', the amount of Q⁰ units increases and that of Q¹ units decreases. As mentioned above, the effect of MnO on glass structure is similar to that of ZnO, because the Mn²⁺ ions dissolve in the Zn²⁺ site in the yZn10Mn glasses. Therefore, it is supposed that the structures of the yZn10Mn glasses for y = 35, 55, and 60 are similar to those of the (100-y')P₂O₅-y'ZnO glasses for y' = 41, 59, and 64, respectively. Consequently, it is found that the R_{Mn-O} is the maximum in the phosphate glass consisting of either Q¹ or Q² units, and that the R_{Mn-O} is the minimum in the phosphate glass consisting of the same amount of Q¹ and Q² units.

3.5 Mn-O bond length of 35ZnzMn glasses

Radial structure functions, |F(R)|s, of 35ZnzMn glasses are shown in Fig. 7. The Mn-O interaction appeared in the region 0.98-2.18 Å. The MnO addition dependence on $R_{\text{Mn-O}}$, which was obtained by curve-fitting as mentioned above, is shown in Fig. 8. The $R_{\text{Mn-O}}$ increases with increasing z from 0.1 to 10, and has the maximum at z = 10, and the decreases with the increasing z from 10 to 20. As mentioned above, the effect of MnO on glass structure is similar to that of ZnO, and therefore the structures of the 35ZnzMn glasses ($0.1 \leq z < 10$) are corresponding to those of the (100-y')P₂O₅-y'ZnO glasses ($35 \leq y' < 41$) [7]. The PO₄

groups form Q^2 and O^3 units, and with increasing z. the amount of Q^2 units increases and that of Q^3 decreases. units The structure of 35Zn10Mn glass is similar to that of 59P2O5-41ZnO glass, and hence the PO₄ groups consist of O^2 units. The

structures of the

Fig. 7. Radial structure functions, |F(R)|s, of 35Zn*z*Mn glasses.

Fig. 8. MnO addition dependence on R_{Mn-O} in 35ZnzMn glasses.

35ZnzMn glasses (10 < $z \leq 20$) are corresponding to those of the (100-y')P₂O₅-y'ZnO glasses (35 $\leq y' < 41$), and the PO₄ groups consist of Q¹ and Q² units, and with increasing *z*, the amount of Q¹ units increases and that of Q² units decreases. Consequently, the *R*_{Mn-O} has the maximum in 35Zn10Mn, where the PO₄ groups form only Q² units.

4. Conclusion

In the $60P_2O_5$ -35M₂O-5Al₂O₃ glasses, where the Mn²⁺ ions are easily dissolved by themselves, and therefore, the Mn-O bond length of the MnO_6^{10-} groups was constant to be about 2.12 Å. On the other hand, in the 60P₂O₅-35M'O-5Al₂O₃-10MnO glasses, the Mn-O bond length of MnO_6^{10-} increased with increasing the ionic radius of M^{2+} in the order Zn^{2+} , Ca^{2+} , Sr^{2+} , and Ba^{2+} , since the Mn^{2+} ions, of which the valence was equal to that of M^{2+} ions, were dissolved in the M'²⁺ sites. In the 60P₂O₅-35ZnO-xAl₂O₃-10MnO glasses, Al₂O₃ effects the formation of 3-dimensional phosphate network structure; the Mn-O bond lengths of MnO_6^{10-} groups were 2.13 and 2.07 Å without and with addition of Al₂O₃. respectively. In the (100-y)P2O5-yZnO-10MnO and 65P2O5-35ZnO-zMnO glasses, the effect of MnO on glass structure is similar to that of ZnO, because the Mn^{2+} ions dissolve in the Zn^{2+} site in the yZn10Mn glasses as mentioned above, and therefore it was found that the Mn-O bond length was changed, because the Q^n unit ratio of the PO₄ groups was changed by mole fractions of y and z. That is to say, for y = 35 and z = 10, the Qⁿ units of the PO₄ groups were only Q² units, and the Mn-O bond length of the MnO₆¹⁰⁻ groups was the maximum of 2.13 Å. For y = 60, the PO_4 groups consisted of only Q^1 units, and the Mn-O bond length was the maximum of 2.12 Å. For y = 55, the amount of Q¹ units was nearly equal to that of Q², and the Mn-O bond

length was the minimum of 2.06 Å.

References

- M. Kawano, H. Takebe, M. Kuwabara, "Compositional Dependence of the Luminescence Properties of Mn²⁺-Doped Metaphosphate glasses," Optical Materials, **32** (2009) 277-280.
- [2] A. Kajinami, T. Kotake, S. Deki, S. Kohara, "The Structural Analysis of Manganese Borate Glass by High-Energy X-Ray Diffraction Measurement," Nuclear Instruments and Methods in Physics Research B 199 (2003) 34-37.
- [3] A. V. Soldatov, A. P. Kovtun, A. Bianconi, "Spin-Dependent Mn XANES of MnO: Theoretical Analysis," Physica B 208&209 (1995) 771-772.
- [4] R. D. Shanon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Crystallographica A **32** (1976) 751-767.
- [5] A. Belkebir, J. Rocha, A. P. Esculcas, P. Berthet, B. Gilbert, Z. Gabelica, G. Llabres, F. Wijzen, A. Rulmont, "Structural Characterisation of Glassy Phases in The System Na₂O-Al₂O₃-P₂O₅ by MAS and Solution NMR, EXAFS and Vibrational Spectroscopy," Spectrochimica Acta Part A 55 (1999) 1323-1336.
- [6] L. Zhang, H. Eckert, "Multinuclear NMR Studies on the Sol-Gel Preparation of Sodium Aluminophosphate Glasses," Solid State Nuclear Magnetic Resonance 26 (2004) 132-146.
- [7] J. W. Winch, B. Tischendorf, J. U. Otaigbe, M. Pruski, "Structure of Zinc Polyphosphate Glasses Studied by Two-Dimensional Solid and Liquid State NMR," Journal of Molecular Structure, 602&603 (2002) 145-157.
- [8] M. W. G. Lockyer, D. Holland, A. P. Howes, R. Dupree, "Magic-Angle Spinning Nuclear Magnetic Resonance Study of the Structure of Some PbO-Al₂O₃-P₂O₅ Glasses," Solid State Nuclear Magnetic Resonance, 5 (1995) 23-34.