XANES studies of boron doped in Li₂MnSiO₄ cathode materials for lithium-ion batteries

Kosuke Tsuji¹, Yuji Kamishima¹, Chihiro Yogi², Kazuo Kojima¹, Toshiaki Ohta², Misaki Katayama¹, Yasuhiro Inada¹

 Graduate School of life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
SR Center, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

Rechargeable Li-ion batteries with a high energy density and more environmental benignity are in great demand, especially in the electric vehicles. Thus, novel electrode materials with high capacity have been widely investigated. Li₂MnSiO₄ has been expected as a promising cathode material with a high theoretical capacity of 333 mAh/g. However, Li₂MnSiO₄ exhibits a lower rate performance because of its low electric conductivity (5×10^{-16} S/cm) and low diffusivity of lithium [1]. Boron doping is reported to be useful to improve the electric conductivity of oxide materials [2]. In the present study, boron-doped Li₂MnSiO₄ (Li₂MnSi_{1-x}B_xO₄, B_x-Li₂MnSiO₄) was prepared by a sol-gel method and characterized by the crystal structure and coordination state of boron in the Li₂MnSiO₄ using XRD and B-K edge XANES.

Powders of Li₂MnSi_{1-x}B_xO₄ and B_x-Li₂MnSiO₄ (x = 0, 0.03, 0.05, 0.10, 0.30, 0.50) were prepared by a sol-gel method. First, Si(OC₂H₅)₄, C₆H₁₀O₄, Mn(NO₃)₂ • 6H₂O, CH₃COOLi, and B(OH)₃ were dissolved in an aqueous ethanol solution with a stirring. After further stirring for 24 h, the obtained suspension was kept at 80 °C to remove an excess solvent. The resulting wet gel was dried in vacuum at 50 °C overnight, followed by being ground. Finally, the dried gel powder was heated at 700 °C for 12 h under an Ar gas flow. The crystal structure for the sample powders was characterized using an XRD instrument (RIGAKU, RINT2200). B-K edge XANES spectra for Li₂MnSi_{1-x}B_xO₄ and B_x-Li₂MnSiO₄ were measured at BL-2 of SR Center of Ritsumeikan University. The spectra were recorded in the total electron yield (TEY) mode.

Results from XRD show that all synthesized materials are orthorhombic Li_2MnSiO_4 . The orthorhombic structure consists of hexagonal close-packed array of oxide ions with all cations in corner-sharing tetrahedra of O₄ [3]. Figure 1 shows the

B-K edge XANES spectra of $Li_2MnSi_{1-x}B_xO_4$. A peak at 194 eV is attributed to four-fold boron. It shows that boron had the fourfold coordinated state in $Li_2MnSi_{1-x}B_xO_4$. Figure 2 shows the B K-edge XANES spectra of B_x - Li_2MnSiO_4 . A peak at 192 eV is attributed to the threefold boron. A peak at 194 eV was observed in all samples ($x = 0.03 \sim 0.5$). It shows that boron had a fourfold coordinated state in B_x - Li_2MnSiO_4 . However, for high boron concentration of x = 0.5, some threefold boron related impurities were formed.

- [1] R. Dominko et al., J. Power Sources, 184 (2008), 462-468.
- [2] H. Kitagawa et al., J. Alloys Compd., 508 (2010), 582–586.
- [3] N. Kuganathan et al., Chem. Mater., 21 (2009), 5196-5202.