L Edge Absorption Measurements of ZrO₂ and Y₂O₃ at BL13

Tetsuya Miyazaki¹, Yuchen Chen¹, Yuina Kanai-Nakata¹, Kei Mitsuhara¹, and Shin Imada¹

1) Department of Physical Sciences, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

 $L_{2,3}$ edges of Y and Zr are known to have sharp structures depending on chemical composition [1, 2]. We have performed measurements of not only the $L_{2,3}$ edges but also the L_1 edge of Y₂O₃ and ZrO₂ in which Y and Zr are formally in Y³⁺ and Zr⁴⁺ states, both having the same electronic configuration as Kr.

Measurements have been carried out at BL-13 of the SR Center of Ritsumeikan University in the total electron yield method. Powdered samples of Y_2O_3 (Kojundo Chemical Lab., 99.9 %) and ZrO₂ (NewMet, 99.8 %) were attached on the carbon tape.

In Fig. 1, $L_{2,3}$ spectra of Y_2O_3 and ZrO_2 are shown. The I_3 lineshape of Y_2O_3 is similar with the reported one [1]. The L _{2,3} lineshape of ZrO_2 is similar with the reported spectrum of monoclinic ZrO_2 (m- ZrO_2), which is the room-temperature phase [2]. In each of the L ₃ and L_2 edges, two structures roughly 2 eV apart, are seen. The intensity of the higher energy structure is relatively stronger at the L_3 edge than at the L_2 edge. Furthermore, the intensity of the higher energy structure is relatively stronger for ZrO_2 than for Y_2O_3 .

According to Ikeno et al.[2], the above mentioned structures in the $L_{2,3}$ edges mainly reflect the ligand-field splitting of the unoccupied 4d state of Y and Zr, whereas multiplet effects play secondary roles. The 2-eV split lineshape of Y-L_{2,3} edges in Y₂O₃, which resembles the lineshape of the reported Zr-L_{2,3} edges in SrZrO₃[2], reflects the t_{2g}-e_g splitting because of the octahedral (six-fold) coordination [3]. On the other hand, the lineshape of m-ZrO₂ was explained by splitting into five levels due to seven-fold coordination with lower symmetry [2].

Y and Zr L_1 spectra of Y_2O_3 and ZrO_2 are shown in Fig. 2. In the Y L_1 spectrum, a structure is found at about 10 eV above the main peak. In the Zr L_1 spectrum a broader and weaker hump seems to exist around 10 eV above the main peak. These lineshapes probably reflect the unoccupied Y and Zr 5p states.

References

[1]S. Nakai, Y. Megawa, F. Terasaki, Chen Gang, T.Ohuchi, K. Obara, T. Kojima, H. Arai, T. Kashiwakura, and Y. Kitajima, *Phys. Rev. B*, **2000**, *61*, 7433. [2] H. Ikeno, M. Krause, T. Höche, C. Patzig,Y. Hu, A. Gawronski, I. Tanaka and C. Rüssel, J. *Phys.: Condens. Matter*, **2013**, *25*, 165505.
[3] F. Hanic, M. Hartmanová, G. G. Knab, A. A.

Urusovskaya and K. S. Bagdasarov, *Acta Crystallogr.*, **1984**, *40*, 76.

Fig. 1. Total electron yield spectra at Y and Zr $L_{2,3}$ edges of Y_2O_3 and ZrO_2 .

Fig. 2. Total electron yield spectra at Y and Zr L_1 edge of Y_2O_3 and ZrO_2 .

-54-