## Construction of Soft X-ray XAFS Database at SR center of Ritsumeikan University

## Toyonari Yaji<sup>1</sup>, Daisuke Shibata<sup>1</sup>, Hirona Yamagishi<sup>1</sup>, Kei Mitsuhara<sup>2</sup>, Misaki Katayama<sup>3</sup>, Yasuhiro Inada<sup>1</sup>, Kazuo Kojima<sup>1</sup>, and Toshiaki Ohta<sup>1</sup>

- 1) Research Organization of Science & Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
- 2) Kobelco research institute, Inc., 1-5-5, Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan
- 3) Japan Synchrotron Radiation Research Institute, Sayo-cho, Hyogo, 679-5198, Japan

X-ray absorption fine structure (XAFS) is a very useful tool for study of chemical state of materials. However, reference spectra of standard samples are necessary to analyze XAFS spectra of unknown materials. The researcher has measured some suitable standard samples and cited the reference spectra reported in journals. It is more desirable for them to be able to utilize databases of XAFS spectra which are open access on internet in order quantitatively to compare unknown spectra with standards. Several XAFS spectra databases have been developed on internet [1, 2] and their energy is mainly in hard X-ray region. XAFS databases in soft X-ray region are fewer than those in hard X-ray region, especially in Japan, not present. We then tried to construct a database of soft X-ray XAFS spectra in the SR center.

We referred to the hard X-ray XAFS database "BENTEN" at SPring-8 [3] to decide files included in a dataset. The dataset is composed of raw data (not normalized), normalized data, figures and metadata files, these files are text based, except figures, so as to be easily able to read with data processing soft. The raw data file is written in comma separated values (csv) format and includes all the data collected in used measurement modes. Soft X-ray XAFS beamlines in the SR center have plural measurement modes: total electron yield (TEY), partial electron yield (PEY), partial fluorescence yield (PFY), inverse partial fluorescence yield (IPFY), and total fluorescence yield (TFY). The normalized data files, which are simple column data composed of energy and normalized intensity, are prepared for each measurement mode in order for anyone to use without data processing. The figure file shows the spectrum of the normalized data and the energy region is XANES part of the normalized data. The metadata is composed of key-value pairs and the file is written in yaml format in order for anyone to be able to understand.

We referred the dataset of SPring-8 in NIMS MDR XAFS database [4] for structure of metadata. Large categories of metadata of the SR center are as follows: data info, sample,

measurement, instrument, file, similar to those of SPring-8 in MDR. Two categories of facility and local of them are not present in the metadata of the SR center. The category of facility is related to information of the ring, and several keys are included in the measurement category of our metadata. The local category corresponds to the file category of our metadata. The values in metadata were extracted from a header of the raw data file and measurement conditions input in an Excel file.

The terms in each category were also changed and some examples are shown below. The terms of energy calibration were added to the measurement category (Table 1) to define the relationship between the energy of incident X-ray and the spectrum. In the databases of

**Table 1.** Measurement category of metadata.

| ategory      | key                           | description                       |
|--------------|-------------------------------|-----------------------------------|
| measurement: |                               | measurement conditions            |
|              | absorption_edge:              | absorption edge                   |
|              | energy_calibration:           | energy calibration (array)        |
|              | - standard sample:            | standard sample                   |
|              | calibration_position:         | calibration position              |
|              | energy:                       | calibration energy                |
|              | energy_unit:                  | calibration energy unit           |
|              | incident_angle:               | incident angle                    |
|              | incident_angle_unit:          | incident angle unit               |
|              | tune_angle:                   | angle of monochromater tuning     |
|              | tune_angle_unit:              | angle unit                        |
|              | tune_energy:                  | energy of monochromater tuning    |
|              | tune_energy_unit:             | energy unit                       |
|              | data_points:                  | data points                       |
|              | section:                      | section (array)                   |
|              | section_number:               | section block number              |
|              | section_blocks:               | section blocks (array)            |
|              | - start_energy:               | start energy                      |
|              | start_energy_unit:            | start energy unit                 |
|              | end_energy:                   | end energy                        |
|              | <pre>end_energy_unit:</pre>   | end energy unit                   |
|              | sampling_number:              | sampling number                   |
|              | delta_energy:                 | delta energy                      |
|              | delta_energy_unit:            | delta energy unit                 |
|              | waiting_time:                 | waiting time                      |
|              | <pre>waiting_time_unit:</pre> | waiting time unit                 |
|              | dwelling_time:                | dwelling time                     |
|              | dwelling_time_unit:           | dwelling time unit                |
|              | start_ring_current:           | start ring current of measurement |
|              | end_ring_current:             | end ring current of measurement   |
|              | ring_current_unit:            | ring current unit                 |
|              | start_time:                   | start datetime of measurement     |
|              | end_time:                     | end datetime of measurement       |

hard X-ray XAFS, the measurement category is based on transmission mode using ion chambers, and terms of I0 (incident X-ray) and I1 (transmitted X-ray) are described in the instrument category. In case of soft X-ray XAFS, however, plural measurement modes are used as mentioned above. We, therefore, changed from I1 to the used modes such as TEY and PFY, and added to several terms related to current detection for electron yield and detector for fluorescence yield (Table 2).

Table 2. Instrument category of metadata.

| category    | key                                      | description                             |
|-------------|------------------------------------------|-----------------------------------------|
| instrument: | -                                        | instrument information                  |
|             | IO:                                      | 10                                      |
|             | detector:                                | detector (array)                        |
|             | - type:                                  | type                                    |
|             | manufacturer:                            | manufacturer                            |
|             | model number:                            | model number                            |
|             | coating_element:                         | coating element                         |
|             | aperture ratio:                          | aperture ratio                          |
|             | aperture ratio unit:                     | aperture ratio unit                     |
|             | applied voltage:                         | applied voltage                         |
|             | applied voltage unit:                    | applied voltage<br>applied voltage unit |
|             | Ammeter:                                 | Ammeter (array)                         |
|             | - range:                                 |                                         |
|             | range_unit:                              | range<br>range unit                     |
|             | manufacturer:                            | manufacturer                            |
|             | model number:                            | model number                            |
|             | <del>-</del>                             |                                         |
|             | additional_data:<br>TEY:                 | additional data<br>TEY                  |
|             | Ammeter:                                 |                                         |
|             |                                          | Ammeter (array)                         |
|             | - range:                                 | range                                   |
|             | range_unit:                              | range unit                              |
|             | manufacturer:                            | manufacturer                            |
|             | model_number:                            | model number                            |
|             | additional_data:                         | additional data                         |
|             | PFY:                                     | PFY                                     |
|             | detector:                                | detector (array)                        |
|             | - type:                                  | type                                    |
|             | manufacturer:                            | manufacturer                            |
|             | model_number:                            | model number                            |
|             | amp_gain:                                | amp gain                                |
|             | amp_gain_unit:                           | amp gain unit                           |
|             | peaking_time:                            | peaking time                            |
|             | <pre>peaking_time_unit:</pre>            | peaking time unit                       |
|             | deadtime:                                | deadtime                                |
|             | deadtime_unit:                           | deadtime unit                           |
|             | <pre>deadtime_setting_energy:</pre>      | deadtime setting energy                 |
|             | <pre>deadtime_setting_energy_unit:</pre> | deadtime setting energy unit            |
|             | element_number:                          | element number                          |
|             | ROI:                                     | ROI (array)                             |
|             | - ROI_energy_lower:                      | ROI energy lower                        |
|             | ROI_energy_upper:                        | ROI energy upper                        |
|             | ROI_energy_unit:                         | ROI energy unit                         |
|             | additional_data:                         | additional data                         |
|             | PEY:                                     | PEY                                     |
|             | detector:                                | detector (array)                        |
|             | - type:                                  | type                                    |
|             | manufacturer:                            | manufacturer                            |
|             | :                                        | :                                       |
|             | •                                        | •                                       |

In the present state, the database is developed at the web site of the SR center (Fig. 1) [5]. 98 datasets are registered. In addition, 75 datasets of them are registered on NIMS MDR XAFS Database [4]. We are planning to add datasets.



Fig. 1. Database site of the SR center.

## References

- [1] https://www.jxafs.org/xafs-database/
- [2] Kiyotaka Asakura, Hitoshi Abe, Masao Kimura, J. Synchrotron Rad., 2018, 25, 967.
- [3] https://support.spring8.or.jp/xafs/standardDB 02/standardDB.html
- [4] https://doi.org/10.48505/nims.1447
- [5] http://www.ritsumei.ac.jp/acd/re/src/sx\_xafs\_db/