Charge-Discharge Mechanism of Niobium Pentoxide in Ionic Liquid Electrolyte

Jinkwang Hwang¹, Shaoning Zhang¹, Keisuke Murakami¹, Chengchao Zhong², Yuki Orikasa², and Kazuhiko Matsumoto¹

- 1) Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- 2) Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan

Lithium-ion batteries have gained widespread use in electronic devices such as smartphones, laptops, and electric vehicles owing to their impressive performance of high energy density. However, they often face challenges related to insufficient power density. The demand for next-generation secondary batteries is driven by the necessity for higher energy density as well as high power density, and safety standards.

Niobium pentoxide (Nb₂O₅) has emerged as an interesting candidate for negative electrode material, known for its redox reaction-based pseudocapacitive behavior, providing rapid lithium-ion storage facilitated by its unique structure.² Utilizing Nb₂O₅ as a negative electrode material in lithium-ion batteries holds the potential for enhancing fast charge technology. While previous research has delved into the influence of particle size on pseudocapacitive behavior, the impact of temperature this characteristic on remains unexplored.

In this study, we investigated the charge-discharge performance of a Nb₂O₅ electrode using Li[FSA]-[C₂C₁im][FSA] and Li[FSA]-[C₃C₁pyrr][FSA] ([C₂C₁im] = 1-ethyl-3-methylimidazolium, [C₃C₁pyrr] = *N*-methyl-*N*-propylpyrrolidinium, and [FSA] = bis(fluorosulfonyl)amide) ionic liquid electrolytes operating at 90°C. The galvanostatic charge-discharge test reveals a high discharge capacity of ~430 mAh g⁻¹ at 90°C (Figure 1).

Changes in oxidation states during chargedischarge processes at 90°C were monitored by Nb L-edge XANES analysis. During the chargedischarge process within the voltage range of 1.0-2.3V, it is revealed that the storage of lithium ions in Nb₂O₅ drives through reversible oxidation-reduction reactions involving Nb^V/Nb^{IV}. However, extending the charging process to 0.01 V resulted in further lithium insertion into Nb₂O₅, despite no discernible alteration in oxidation state being observed.

References

[1] Amine, K.; Belharouak, I.; Chen, Z.; Tran, T.; Yumoto, H.; Ota, N.; Myung, S.-T.; Sun, Y.-K. *Adv. Mater.* **2010**, 22, 3052-3057.2.

[2] Sathasivam, S.; Williamson, B. A. D.; Althabaiti,

S. A.; Obaid, A. Y.; Basahel, S. N.; Mokhtar, M.; Scanlon, D. O.; Carmalt, C. J.; Parkin, I. P. *ACS Appl. Mater. Interfaces* **2017**, 9, 18031-18038.

Table 1. List of samples for ex-situ Nb L-edge XAFSmeasurement.

Samples	Electrode states
1	Pristine
2	charge to 1V (vs Li ⁺ /Li)
3	charge to 0.3V (vs Li ⁺ /Li)
4	charge to 0.01V (vs Li ⁺ /Li)
5	discharge to 2.3V (vs Li ⁺ /Li)

Fig. 1 The first cycle of Nb₂O₅ electrode 90 °C (see Table 1 for the sample list for Nb L-edge XANES spectra).