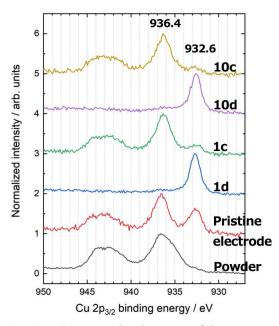
Redox Characterization of an All-Solid-State Fluoride-Ion Battery using Hard X-Ray Photoelectron Spectroscopy


Keiji Shimoda¹, Kousuke Noi², Shin Imada³, Akinori Irizawa³, Kazuo Kojima³, and Takeshi Abe⁴

- 1) Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu 525-8577, Japan
- 2) Office of Society-Academia Collaboration for Innovation, Kyoto University, Uji 611-0011, Japan
- 3) SR Center, Ritsumeikan University, Kusatsu 525-8577, Japan
- 4) Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

Fluoride-ion batteries (FIBs) have been attracting academic attention in recent years as next-generation rechargeable batteries. Among transition metal fluorides, CuF₂ is a promising positive electrode material for FIBs because of its high theoretical capacity and moderately high redox potential [1,2]. In this study, a dual cation fluoride, AgCuF₃, is proposed as a novel positive electrode material for FIBs, which shows high redox potential and moderately high theoretical capacity. The electrochemical performances of AgCuF₃ in a bulktype all-solid-state FIB were evaluated at 200 °C, and its reaction mechanism was investigated using hard X-ray photoemission spectroscopy (HAXPES).

AgCuF₃ was synthesized by ball-milling AgF and CuF_2 [3]. The composite cathode was prepared by ball-milling AgCuF₃, Ca_{0.5}Ba_{0.5}F₂ (solid electrolyte), and acetylene black (AB, conductive agent). $La_{0.95}Sr_{0.05}F_{2.95}$ (LSF) was used as a separator for the positive and negative electrodes. Pb foil was used for the negative electrode. The composite cells of Pb|LSF|AgCuF₃ were fabricated by uniaxially pressing. Discharge-charge tests were performed at 200 °C with a current density of 0.05 mA cm⁻². After the tests, the cells were disassembled in a glove box and used for HAXPES measurements. The HAXPES measurements were performed using a PHI Quantes (ULVAC-PHI) with monochromatic Cr K_{α} radiation (5414.9 keV). The pass energy was set to 69 eV. Dual-beam charge neutralization was applied to suppress sample charging. Binding energies were calibrated for the C 1s signal from AB at 284.6 eV.

The AgCuF₃ electrode showed good reversible capacities up to 10 cycles at 200 °C. The Cu $2p_{3/2}$ core-level spectra of the AgCuF₃ electrode are shown in Fig. 1. The as-synthesized AgCuF₃ powder and the pristine electrode shows a peak at 936.4 eV and a satellite band at ~943 eV, characteristic of Cu²⁺. The pristine electrode included an additional peak at 932.6 eV from Cu⁰ because of the partial reduction during electrode preparation. It is shown that AgCuF₃ was transformed to Cu⁰ by discharging (1d, 10d in Fig. 1) and then back to Cu²⁺ by the subsequent charging (1c, 10c). The chemical shifts

Fig. 1 Cu $2p_{3/2}$ core-level spectra of the AgCuF₃ electrode during discharge-charge cycle.

were negligible in the Ag $3d_{5/2}$ spectra, but the Auger LMM2 spectra showed some changes with the discharge-charge cycle (not shown). These results suggest that AgCuF₃ changes metallic Cu and Ag by discharging (defluorination) and returns to AgCuF₃ (and partly CuF₂ + AgF) by charging (fluorination).

This study is based on results obtained from the project, "Research and Development Initiative for Scientific Innovation of New Generation Batteries 3 (RISING3)", commissioned by the New Energy and Industrial Technology Development Organization (NEDO), Japan (JPNP21006).

References

[1] D.T. Thieu et al., Adv. Funct. Mater., 2017, 27, 1701051.

[2] K. Shimoda et al., ACS Energy Lett., 2023, 8, 2570.

[3] W. Tong and G.G. Amatucci, *J. Power Sources*, **2017**, *362*, 86.