共同研究 R 0 9 0 1

チタン酸リチウムの水素還元雰囲気熱処理に伴う Ti 価数変化に関する研究 The XANES Study of the Ti Valence Change of Li_{2+x}TiO_{3+y} (x, y>0) by Heat Treatments under Hydrogen Atmosphere.

向井啓祐^a, 佐々木一哉^a, <u>蔭山博之^b</u>,竹内友成^b, 稲田康宏^c, 片山真祥^d, 太田俊明^d Keisuke Mukai^a, Kazuya Sasaki^a, <u>Hiroyuki Kageyama^b</u>, Tomonari Takeuchi^b, Yasuhiro Inada^c, Misaki Katayama^d, and Toshiaki Ohta^d ^a東京大学大学院工学系研究科原子力国際専攻,^b独立行政法人産業技術総合研究所, ^c立命館大学,^d立命館大学 SR センター

^aSchool of Engineering, The University of Tokyo, ^bNational Institute of Advanced Industrial Science and Technology (AIST), ^cRitsumeikan University, ^dRitsumeikan University SR Center

Li/Ti 比が異なるチタン酸リチウム Li_{2+x}TiO_{3+y}(x, y>0)を水素、アルゴンなどの雰囲気下で熱処理した 場合の Ti 価数の変化を放射光を用いた Ti K-XANES 測定によって検討した。

Ti K-edge XAFS measurements were carried out for $Li_{2+x}TiO_{3+y}$ (x, y>0) with x=0.0, 0.2, 0.3 which were prepared by heat treatments under H₂, Ar, and so on in order to study the variation of Ti valence by the various heat treatments.

背景と研究目的: チタン酸リチウム (Li₂TiO₃)は、Li₂SnO₃型の構造を持ち^{1,2)}、国 際熱核融合実験炉(International Thermonuclear Experimental Reactor, ITER) 計画でトリチウム増 殖材料として装荷が予定されている。核融合使 用条件下では揮発や核的燃焼によりチタン酸リ チウム中の Li 存在比が減少する。共同実験者の 佐々木らは、高温・長時間使用の観点から、Li 過 剰添加した Li_{2+x}TiO_{3+v} (x、y>0)の研究を行っ ている。増殖材料においてトリチウムを生成す る場合、トリチウムを回収するためにチタン酸 リチウムは 900 、水素添加スウィープガス中に 保たれる。この間、Li₂TiO₃では質量減少が生じ る。しかし、Li を過剰に添加した Li_{2+x}TiO_{3+v}で は、この質量変化が顕著ではない。この質量変 化は、Ti⁴⁺がTi³⁺に還元され電荷補償により酸素 欠損が生ずることに起因し、また、その程度は Li 過剰添加量により異なる可能性がある。

本課題では、Li/Ti 比が異なるチタン酸リチウ ム中の、水素及びアルゴンそれぞれの雰囲気下 の熱処理による Ti 価数の変化を、放射光を用い た Ti K-edge の XANES によって検討した。

<u>実験</u>: 測定に用いた試料組成は、Li₂TiO₃と Li 過剰チタン酸リチウム(Li_{2+x}TiO_{3+y}(Li/Ti=2.2/1、 2.3/1))の3種類である。それぞれの組成につい て、Ar中の熱処理で作製、H₂中の熱処理(2温 度)で作製、O₂中の熱処理で作製、及びAr中の 熱処理で作製してH₂中熱処理で還元の5つの異 なる条件で熱処理試料を作製した(表1)。なお、 試料は、長時間大気に触れると徐々に CO2 と反応して変質するため、Ar グローブボックス中で アルミラミネート中に封入して使用した。

X 線吸収スペクトルの測定は、BL-3 において 透過法により行い、Ti K 吸収端(4966 eV)の XANES スペクトルを測定した。分光結晶には Si(220) (2*d* = 3.840 Å)を用いた。また、Ti K 吸収 端の参照試料(Ti 箔、Ti₂O₃、及び Li₄Ti₅O₁₂)も 併せて測定した。

Composition	X=0.0	X=0.2	X=0.3
Heat treated in Ar at 1473 K	Sample	Sample	Sample
	No. 1	No. 2	No. 3
Heat treated in Ar at 1473 K and annealed in H_2 at 1173 K	Sample	Sample	Sample
	No. 4	No. 5	No. 6
Heat treated in H ₂	Sample	-	Sample
at 1473 K	No. 7		No. 8
Heat treated in H ₂	Sample	-	Sample
at 1173 K	No. 9		No. 10
Heat treated in O ₂ at 1173 K	Sample No. 11	-	-

Table 1. Preparation condition of $Li_{2+x}TiO_{3+y}$ samples.

<u>結果および考察</u>: 図2、及び図3に、それ ぞれ、各チタン酸リチウム試料と参照試料のTi K-XANESスペクトル、及びその一次微分スペク トルを示す(ここでは、表1に示した試料のう ち、No.1~No.8の試料のXANESを示す)。 図 2 から分かるようにチタン酸リチウム試料 の吸収エッジは、全て参照試料の Ti₂O₃ (Ti³⁺) と Li₄Ti₅O₁₂(Ti⁴⁺)の間に位置しており、Ti³⁺+Ti⁴⁺ の混合電荷の状態にある。また、チタン酸リチ ウム試料の場合は、Ti₂O₃ と Li₄Ti₅O₁₂の両者には 見られない 4976eV のショルダーが出現する。こ のショルダーは、チタン酸リチウムの構造(あ るいは、電子構造)に起因するものと推定され る。このショルダーピークの高さは、Ti³⁺/Ti⁴⁺の 比率と相関があると推定されるが、試料 No.4 No.2、No.6 No.8、No.5 No.3、No.1 No.7 の 順にピークの高さが低くなっている。このこと は、特に X=0.0 の組成では、単独の Ar 中、及び H₂中の熱処理では、Ti³⁺の存在比が低くなること を示唆していると考えられる。

今後の課題:当初目的としていた材料中の Ti 価数の調製条件による変化が、ほぼ明らかになった。今後は、本成果をより特性の向上したトリチウム増殖材料の探索・開発に役立てて行く。

参考文献

- 1) K. Kataoka et al., *Mater. Res. Bull.*, **44**, 168 (2009).
- 2) A. Riou et al., Mater. Res. Bull., 27, 269 (1992).

<u>キーワード</u>

Fig. 2. Ti K-XANES spectra of various $Li_{2+x}TiO_{3+y}$ together with those of Ti foil, Ti_2O_3 , and $Li_4Ti_5O_{12}$.

・ 国際熱核融合実験炉(ITER)計画

ITER は、日本、欧州連合、ロシア、米国、中国、 韓国、インドの国際協力によって次世代のエネル ギー源として有望視されている核融合炉の実現性 を研究するための実験施設である。この核融合実 験炉は核融合炉を構成する機器を統合した装置で あり、ブランケットやダイバータなどのプラズマ 対向機器にとって総合試験装置でもある。

トリチウム増殖材料 (ブランケット材料) ブランケットとは核融合炉の内壁を構成する装 置のひとつで、冷却、燃料生産、遮蔽の3つの機能 を担う。プラズマ内で生じたエネルギーの80%は高 速中性子の形で炉壁に衝突してくる。ブランケッ トは、この高エネルギー粒子である高速中性子を 受け止めて背後への漏れを防ぐとともに、そのエ ネルギーを熱に変えて発電のエネルギーとするた めの、主な炉壁を構成する重要な装置である。ITER の目指す核融合炉では核融合反応による中性子を ブランケットに照射し、リチウムと中性子の反応 により核融合燃料であるトリチウムを増殖する。 ブランケット材料(トリチウム増殖材料)として有 望視されているのは、チタン酸リチウムなどの固 体増殖材料である。増殖されたトリチウムは水素 を含むヘリウムガスと増殖材料を接触させて回収 される。

Fig. 3. The first derivative of Ti K-XANES spectra of various $Li_{2+x}TiO_{3+y}$ together with those of Ti foil, Ti_2O_3 , and $Li_4Ti_5O_{12}$.