立 S22-18

溶融法およびゾル-ゲル法で作製したガラス、および ガラスセラミックス中に おける Mn と Eu のXANES状態分析

XANES studies of Mn in alkali borate glasses and Eu in Mn²⁺ and Eu³⁺ co-doped ZnO-GeO₂ glasses

<u>真田 智衛</u>^a, 秋田 大地^b, 和田 憲幸^c, 小島 一男^d, 片山 真祥^a, 稲田 康宏^d, 小堤 和彦^d Tomoe Sanada^a, Daichi Akita^b, Noriyuki Wada^c, Kazuo Kojima^b, Misaki Katayama^a, Yasuhiro Inada^b, Kazuhiko Ozutsumi^b

^a立命館大学総合理工学研究機構, ^b立命館大学大学院理工学研究科, ^c鈴鹿高専材料工学科, ^d立命館大学生命科学部

^aResearch Organization of Science and Engineering, Ritsumeikan University

^bGraduate School of Science and Engineering, Ritsumeikan University

^cDepartment of Materials Science and Engineering, Suzuka National College of Technology

^dCollege of life Sciences, Ritsumeikan University

ゾルーゲル法により作製した Mn^{2+} および Eu^{3+} 含有ZnO- GeO_2 ガラス・ガラスセラミックスは、紫外光照射下で強い発光を示し、また照射遮断後も長残光を示した。この残光メカニズムを明らかにするためには、試料に含まれているEuの価数 (Eu^{3+}, Eu^{2+}) を調べることが重要である。今回、EuのL端のXANES測定をおこない、この試料中におけるEuの価数について調べた。また、 Mn^{4+} による赤色発光を得ることを目的として、アルカリホウ酸塩ガラスを溶融法で作製し、XANES測定によりMnの価数を調べた。

Glasses and glass ceramics of ZnO-GeO₂:Mn²⁺,Eu³⁺ prepared by sol-gel method showed strong green luminescence under UV irradiation and long-lasting green afterglow after UV irradiation. Investigation of real Eu valence is important for considering the afterglow mechanism in the samples. Therefore, Eu L-edge XANES measurement was carried out. Mn K-edge XNASE measurement was also done to know valences of Mn in alkali borate glasses prepared by melting method to obtain red luminescence of Mn⁴⁺.

Keywords: glass, glass ceramics, luminescence, Eu L-XANES, Mn K-XANES

背景と研究目的:

 Mn^{2+} は、上記の系では緑色の、また MgO- GeO_2 中では赤色の発光を示すが、 Mn^{4+} も赤色の発光を示すことが知られている。 Mn^{4+} の赤色発光は Mn^{2+} のそれよりも長波長側に生じるため、

より色純度の高い赤色発光体を得ることができる。 そこで、溶融法によりアルカリホウ酸塩ガラスを作製し、Mn による発光と価数について検討することを目的として、Mn の K 端の XANES 測定をおこなった。

実験:

MnおよびEu含有ZnO-GeO $_2$ 長残光体をゾルーゲル法により作製し、得られた試料を粉末にして、還元雰囲気下 (Ar: H_2 = 95:5) で熱処理をおこなった。その後、0.04 mm厚ポリエチレンバッグに密閉し、立命館大学SRセンターBL-3で蛍光法によるEu L-edge XANESスペクトルの測定をおこなった。

 Li_2MnO_3 をMn源として、Mn含有アルカリホウ酸塩ガラス ($K_2O-B_2O_3$ 、 $Li_2O-B_2O_3$)を溶融法により作製した。得られたガラスを同様に密閉し、このBL-3で蛍光法によるMn K-edge XANESスペクトルの測定をおこなった。

結果と考察:

Fig. 1 に Mn および Eu 含有 ZnO-GeO₂ 長残 光体の Eu L-edge XANES スペクトルを示す。 Eu³⁺および Eu²⁺の標準試料として、化成オプトニクス社の蛍光体の LP-RE1 および LP-B4 を用いた。スペクトル A がその両者の混合試料のスペクトルである。6972 および 6996 eV に Eu²⁺由来の、また 6979 および 7016 eV に Eu³⁺由来のピークが観測された。今回作製した試料中 (B ~ G) において、Eu は Mn の添加濃度に関わらずほぼ全て3 価の状態で存在していることがわかった。この結果から、本系 (ZnO-GeO₂: Mn²⁺,Eu³⁺) の試料においては、Eu³⁺を含む化合物が残光機構に関与していると考えられる。

Fig. 1. Eu L-edge XANES spectra of $yMnO-1.5Eu_2O_3-25ZnO-75GeO_2$ samples heat treated at 900 °C in a mixed gas of 95 % Ar and 5 % H_2 .

Fig. 2 にアルカリホウ酸塩ガラスの Mn K-edge XANES スペクトルを示す。 Mn^{2+} の参照試料として $MnCO_3$ (①) を、 Mn^{4+} の参照試料として Li_2MnO_3 (②) をそれぞれ用いた。作製した試料の XANES スペクトル測定の結果、試料中の Li_2MnO_3 の添加濃度および母体中の K_2O もしくは Li_2O 量の割合が増加するにつれて(③→⑦)、 Mn^{4+} ピークの増加する傾向が確認された。また

これらの試料からは、紫外光励起により Mn^{2+} 以外のものと思われる発光ピーク($580 \sim 600 \text{ nm}$)を観測しており、本測定の結果から、 Mn^{4+} が存在する可能性が高いことがわかった。

Fig. 2. Mn K-edge XANES spectra of Li_2MnO_3 doped alkali borate glasses; ① MnCO₃, ② Li_2MnO_3 , ③ $1\,\text{Li}_2\text{MnO}_3$ - $1\,0\,0\,\text{B}_2\text{O}_3$, ④ $0.1\text{Li}_2\text{MnO}_3$ - $10\text{Li}_2\text{O}$ - $90\text{B}_2\text{O}_3$, ⑤ $0.1\text{Li}_2\text{MnO}_3$ - $30\text{Li}_2\text{O}$ - $70\text{B}_2\text{O}_3$, ⑥ $1\text{Li}_2\text{MnO}_3$ - $30\text{Li}_2\text{O}$ - $70\text{B}_2\text{O}_3$, ⑦ $1\text{Li}_2\text{MnO}_3$ - $30\text{K}_2\text{O}$ - $70\text{B}_2\text{O}_3$.

今後の課題:

ZnO-GeO₂: Mn²⁺,Eu³⁺試料中の Eu²⁺がごく微量存在する可能性もあるため、蛍光法でなく表面敏感な電子収量法による測定を検討中である。また、アルカリホウ酸塩ガラスにおいては、アルカリの比率をさらに大きくする、出発物質に KMnO₄ (Mn⁷⁺)を用いることを考えている。さらに、EXAFS 領域までの測定も検討中である。

論文·学会等発表

[1] 秋田大地、眞田智衛、和田憲幸、小島一男、 片山真祥、稲田康宏、小堤和彦、"ゾルーゲル 法によって作製した Mn^{2+} および Eu^{3+} を共含有し た ZnO- GeO_2 ガラスセラミックスの発光と構造評 価"、第 13 回 XAFS 討論会、6P-21 (2010).