溶融法およびゾル-ゲル法で作製したガラス、および ガラスセラミックス中に おける Mn と Eu のXANES状態分析

XANES studies of Mn in alkali borate glasses and Eu in Mn²⁺ and Eu³⁺ co-doped ZnO-GeO₂ glasses

<u>真田 智衛</u>^a, 秋田 大地^b, 和田 憲幸^c, 小島 一男^d, 片山 真祥^a, 稲田 康宏^d, 小堤 和彦^d Tomoe Sanada^a, Daichi Akita^b, Noriyuki Wada^c, Kazuo Kojima^b, Misaki Katayama^a, Yasuhiro Inada^b, Kazuhiko Ozutsumi^b

^a立命館大学総合理工学研究機構,^b立命館大学大学院理工学研究科, 。鈴鹿高専材料工学科,^d立命館大学生命科学部

^aResearch Organization of Science and Engineering, Ritsumeikan University ^bGraduate School of Science and Engineering, Ritsumeikan University ^cDepartment of Materials Science and Engineering, Suzuka National College of Technology ^dCollege of life Sciences, Ritsumeikan University

ゾルーゲル法により作製した Mn²⁺および Eu³⁺含有 ZnO-GeO₂ガラス・ガラスセラミックスは、紫外光照射下 で強い発光を示し、また照射遮断後も長残光を示した。この残光メカニズムを明らかにするためには、試料 に含まれている Eu の価数 (Eu³⁺、Eu²⁺)を調べることが重要である。今回、Eu の L 端の XANES 測定をおこ ない、この試料中における Eu の価数について調べた。また、Mn⁴⁺による赤色発光を得ることを目的として、 アルカリホウ酸塩ガラスを溶融法で作製し、XANES 測定により Mn の価数を調べた。

Glasses and glass ceramics of ZnO-GeO₂:Mn²⁺,Eu³⁺ prepared by sol-gel method showed strong green luminescence under UV irradiation and long-lasting green afterglow after UV irradiation. Investigation of real Eu valence is important for considering the afterglow mechanism in the samples. Therefore, Eu L-edge XANES measurement was carried out. Mn K-edge XNASE measurement was also done to know valences of Mn in alkali borate glasses prepared by melting method to obtain red luminescence of Mn⁴⁺.

Keywords: glass, glass ceramics, luminescence, Eu L-XANES, Mn K-XANES

背景と研究目的:

私たちは、Mn を含有させたガラスおよびガラ スセラミックスをゾルーゲル法によって作製し、そ の光学特性などについて調査・報告してきた。 ZnOとGeO2を母体、Mnイオンを発光中心とした 試料は、紫外光照射下で Mn²⁺による強い緑色 発光を示した。さらに、この系に Eu イオンを加え た Mn²⁺および Eu³⁺含有 ZnO-GeO2ガラス・ガラス セラミックスは、紫外光照射後も発光を持続させ、 その残光時間は最長で 180 分間を記録した。こ の長残光のメカニズムを考察する際には、試料 中の Eu の価数を調べることが重要である。今回 は、ZnO-GeO2ガラスセラミックス中の Eu の価数 を調べることを目的として、Eu の L 端の XANES 測定をおこなった。

Mn²⁺は、上記の系では緑色の、また MgO-GeO₂ 中では赤色の発光を示すが、**Mn⁴⁺も赤色の発** 光を示すことが知られている。**Mn⁴⁺の赤色発光** は **Mn²⁺のそれよりも長波長側に生じるため、** より色純度の高い赤色発光体を得ることができる。 そこで、溶融法によりアルカリホウ酸塩ガラスを作 製し、Mn による発光と価数について検討するこ とを目的として、MnのK端のXANES測定をお こなった。

<u>実験</u>:

MnおよびEu含有ZnO-GeO₂長残光体をゾル ーゲル法により作製し、得られた試料を粉末にし て、還元雰囲気下(Ar:H₂ = 95:5)で熱処理をお こなった。その後、0.04 mm厚ポリエチレンバッグ に密閉し、立命館大学SRセンターBL-3で蛍光 法によるEuL-edge XANESスペクトルの測定をお こなった。

Li₂MnO₃をMn源として、Mn含有アルカリホウ 酸塩ガラス(K₂O-B₂O₃、Li₂O-B₂O₃)を溶融法に より作製した。得られたガラスを同様に密閉し、こ のBL-3で蛍光法によるMn K-edge XANESスペ クトルの測定をおこなった。

結果と考察:

Fig. 1 に Mn および Eu 含有 ZnO-GeO₂ 長残 光体の Eu L-edge XANES スペクトルを示す。 Eu³⁺および Eu²⁺の標準試料として、化成オプトニ クス社の蛍光体の LP-RE1 および LP-B4 を用い た。スペクトル A がその両者の混合試料のスペク トルである。6972 および 6996 eV に Eu²⁺由来の、 また 6979 および 7016 eV に Eu³⁺由来のピークが 観測された。今回作製した試料中 (B ~ G) にお いて、Eu は Mn の添加濃度に関わらずほぼ全て 3 価の状態で存在していることがわかった。この 結果から、本系 (ZnO-GeO₂: Mn²⁺,Eu³⁺)の試料 においては、Eu³⁺を含む化合物が残光機構に関 与していると考えられる。

Fig. 1. Eu L-edge XANES spectra of $yMnO-1.5Eu_2O_3-25ZnO-75GeO_2$ samples heat treated at 900 °C in a mixed gas of 95 % Ar and 5 % H₂.

Fig. 2 にアルカリホウ酸塩ガラスの Mn K-edge XANES スペクトルを示す。 Mn^{2+} の参照試料とし て $MnCO_3(①)$ を、 Mn^{4+} の参照試料として $Li_2MnO_3(②)$ をそれぞれ用いた。作製した試料 の XANES スペクトル測定の結果、試料中の Li_2MnO_3 の添加濃度および母体中の K_2O もしく は Li_2O 量の割合が増加するにつれて(③→⑦)、 Mn^{4+} ピークの増加する傾向が確認された。また これらの試料からは、紫外光励起により Mn^{2+} 以外のものと思われる発光ピーク(580~600 nm)を 観測しており、本測定の結果から、 Mn^{4+} が存在 する可能性が高いことがわかった。

Fig. 2. Mn K-edge XANES spectra of Li_2MnO_3 doped alkali borate glasses; ① MnCO₃, ② Li_2MnO_3 , ③ $1Li_2MnO_3-100B_2O_3$, ④ $0.1Li_2MnO_3-10Li_2O-90B_2O_3$, ⑤ $0.1Li_2MnO_3-30Li_2O-70B_2O_3$, ③ $1Li_2MnO_3-30Li_2O-70B_2O_3$, ⑦ $1Li_2MnO_3-30K_2O-70B_2O_3$.

<u>今後の課題</u>:

ZnO-GeO₂: Mn²⁺,Eu³⁺試料中の Eu²⁺がごく微 量存在する可能性もあるため、蛍光法でなく表 面敏感な電子収量法による測定を検討中である。 また、アルカリホウ酸塩ガラスにおいては、アルカ リの比率をさらに大きくする、出発物質に KMnO₄ (Mn⁷⁺)を用いることを考えている。さらに、 EXAFS 領域までの測定も検討中である。

<u>論文·学会等発表</u>

[1] 秋田大地、眞田智衛、和田憲幸、小島一男、 片山真祥、稲田康宏、小堤和彦、"ゾルーゲル 法によって作製した Mn²⁺および Eu³⁺を共含有し た ZnO-GeO₂ ガラスセラミックスの発光と構造評 価"、第 13 回 XAFS 討論会、6P-21 (2010).