次世代リチウム二次電池用硫化物正極材料の構造解析に関する研究(1)

Local structure analysis of the sulfur-based positive electrode material for next-generation lithium secondary battery by XAFS

<u>竹内 友成 a</u>, 蔭山 博之 a, 小川 雅裕 b, 中西 康次 c, 太田 俊明 b Tomonari Takeuchi^a, Hiroyuki Kageyama^a, Masahiro Ogawa^a, Koji Nakanishi^c, Toshiaki Ohta^b

*産業技術総合研究所, ^b立命館大学 SR センター, ^c京都大学

^aNational Institute of Advanced Industrial Science and Technology, ^bSR Center, Ritsumeikan University, ^cKyoto University

熱処理およびメカニカルミリング法を併用することにより、 Li_2S -FePS₃ 複合体電極材料を作製した。得られた複合体は XRD 測定からは主として低結晶性の Li_2S から成ることが分かった。Li 金属を負極にした充放電試験では、 $4Li_2S$ -FePS₃ 複合体は予備段階充放電無しで約 780mAh・g⁻¹の放電容量が得られた。試料の SK端 XAFS 測定から、各充放電後にスペクトルが可逆的に変化していることが分かった。

 Li_2S -FePS₃ composite positive electrode materials were prepared using the thermal heating and the mechanical milling processes. The obtained samples showed the XRD profiles similar to that of Li_2S with broader peak width. The electrochemical tests of the $4Li_2S$ -FePS₃ composite cells showed the discharge capacity of *ca*. 780 mAh \cdot g⁻¹ without any pre-cycling treatments. S K-edge XAFS results showed reversible spectral changes for the Li extraction / insertion reactions.

Keywords: Lithium secondary battery, Sulfur-based positive electrode materials, S K-XANES

背景と研究目的: 硫化リチウム (Li₂S) は 約 1170mAh・g⁻¹の理論容量を持つため、高 エネルギー密度電池用正極活物質として有望 な材料の一つである。しかしながら、電子伝 導性に乏しいため高率充放電特性に欠けると いう問題があった。我々は、硫化鉄(FeS, FeS2) との複合化を試みており[1]、熱処理お よび炭素とのメカニカルミリング処理を組み 合わせることで Li_2S -FeS_x 複合体を作製し、 これが予備的段階充放電を行うことで放電容 量約730mAh・g⁻¹を示すことを見出した[2]。 製造プロセスの観点からは、予備的段階充放 電の必要がない方が望ましく、そのための材 料探索が必要である。最近、Li₂S に P₂S₅等 を複合化して部分的に Li₃PS4 等の Li イオン 導電体を含有した Li₂S 系活物質が、比較的高 い容量およびサイクル特性を示すことが報告 されている[3]。本研究では、Li₂S-FeS, 複合 体への P 添加を試みるため、FePS3 を原料に 用いて Li₂S-FePS₃ 複合体を作製し、その充 放電特性を調べ、充放電に伴う微細構造変化 をSK端XAFS測定により調べた。

FePS₃は、市販のFeスポンジ、P、S 実験: をモル比1:2:6で混合後、還元雰囲気下550℃ で熱処理することにより作製した。得られた FePS₃を市販のLi₂Sとモル比1:4で混合後、還 元雰囲気下600℃で熱処理し、更にアセチレ ンブラックを10重量%混合して8時間メカニ カルミリング処理することによりLi₂S-FePS3複合体を作製した。得られた複合体は、 XRD測定、SEM観察等を行うとともに、1M LiPF₆/(EC+DMC)電解液を用い、対極金属リ チウム、電流密度46.7mA・g⁻¹(0.04C)で1.0 -3.0Vの範囲で充放電特性を評価した。また、 各充放電後のセルを解体し、XRD測定を行う とともに、立命館大学SRセンターBL-10およ びBL-13においてSおよびP K吸収端XAFSを 測定した。

<u>結果、および、考察</u>: 得られた Li₂S-FePS₃ 複合体は黒色で、XRD パターンから低結晶性 の Li₂S および少量の不純物(FeP)から成るこ とが分かった。ピーク位置から見積もった Li₂S の格子定数は *a* = 5.7016(6) Åと、既報値 (5.7158(1) Å)[4]よりも小さく、また Rietveld 解析から見積もった Li₂S と FeP の存在比は 92:8 であるため、低結晶性 Li₂S に P または Fe が含まれる可能性が示唆された。

有機電解液 LiPF6/(EC+DMC)を用いたセ ルでは、Fig. 1(a)に示す通り、充電容量約 520mAh・g⁻¹を示した。これは、Li含有量か ら見積もった容量値(約580mAh・g⁻¹)の約 89%の値であった。また、放電容量は予備的 段階充放電なしで約780mAh・g⁻¹を示した。 Pを含まない Li₂S-FeS 複合体では、Fig. 1(b)(c)に示す通り、充電容量約620mAh・g⁻¹ を示すものの、予備的段階充放電なしでは放 電容量は約330mAh・g⁻¹と低い値であり、 段階充放電を行うことで放電容量約 730mAh・g⁻¹が得られる。

Li₂S-FeS 複合体における XRD 測定および SK端 XAFS 測定からは、予備的段階充放電 を行うことで、Li の脱離・挿入に伴う構造の 可逆性が保持されることが示唆されている [2]。Li₂S-FePS₃ 複合体においては、P の含有 がこれと類似の効果を発現しているのではな いかと推察される。Li₂S-FePS₃ 複合体の各充 放電後の XRD 測定からは、充放電に伴い、 Li₂S のピーク強度が増減することが分かり、 構造の可逆性が保持されていることが明らか となった。またSK吸収端XAFS 測定からは、 Fig. 2 に示す通り、XANES スペクトルが充 放電により可逆的に変化していることが分か り、S の価数および局所構造が可逆的に変化 していることが確認できた。これら良好な可 逆性が予備的段階充放電無しで良好な充放電 特性が得られた原因と推察される。

<u>文</u>献

- T. Takeuchi et al., J. Electrochem. Soc., 159, A75 (2012).
- [2] 竹内 他、第 54 回電池討論会、3E09 (2013).
- [3] Z. Lin et al., ACS Nano, 7, 2829 (2013).
- [4] F. Kubel et al., Z. Kristallogr., **214**, 302 (1999).

<u>論文・学会等発表(予定)</u>

- [1] 竹内友成、蔭山博之、小川雅裕、中西康 次、太田俊明、作田敦、栄部比夏里、小林 弘典、辰巳国昭、小久見善八、第55回電池 討論会(京都、2014.11).
- [2] T. Takeuchi, H. Kageyama, M. Ogawa, K. Nakanishi, T. Ohta, A. Sakuda, H. Sakaebe, H. Kobayashi, and Z. Ogumi, 20th International Conference on Solid State Ionics (Keystone (USA), 2015.6).

Fig. 1. Charge and discharge profiles for the Li_2S -FePS₃ (4:1) and Li_2S -FeS (4:1) composite cells with and without pre-cycling treatment.

Fig. 2. S K-edge XANES spectra for the Li_2S -FePS₃ (4:1) composite cells after charge and discharge. Spectra for Li_2S and S are also shown for comparison.