ホウ酸添加に伴う炭酸リチウムの表面・バルク電子状態変化

Surficial and bulk electronic structure of Li_{2+x}C_{1-x}B_xO₃ solid solution

<u>奥村 豊旗 a</u>, 竹内 友成 a, 小林 弘典 a Toyoki Okumura^a, Tomonari Takeuchi^a, Hironori Kobayashi^a

ª 產業技術総合研究所

^aNational Institute of Advanced Science and Technology (AIST)

Li₂CO₃に数%のLi₃BO₃を置換すると、バルクイオン伝導率向上に加え、粒子表面に異なる安定相 が形成することで焼結性が向上し、粒界抵抗が低減することがわかっている。今回、Li_{2+x}C_{1-x}B_xO₃ 粒子のOK及びBK吸収端XANESスペクトルを測定することで、実際にバルク構造と表面状態で は異なる電子状態をもつことが明らかになった。本結果は、酸化物固体電解質を用いた全固体電池 作製における、酸化物粒子の焼結性向上と粒界抵抗低減を考える上での指針を与える。

Li-ion conductivity at the grain-boundary of Li₂CO₃ was enhanced by the substitution for several % of Li₃BO₃ since the densification was assisted by the formation of the stabilized phase at grain-boundary of Li_{2+x}C_{1-x}B_xO₃ solid solution. The characteristic electronic structure at the surface of Li_{2+x}C_{1-x}B_xO₃ particle could be confirmed by the O *K*-edge and B *K*-edge XANES spectra measured by surface-sensitive TEY method as well as bulk-sensitive PFY method.

Keywords: All-solid-state Li-ion battery, solid-state electrolyte, Li-ion conductor, O *K*-edge XANES, B *K*-edge XANES

背景と研究目的:電気自動車等への搭載を想 定した高エネルギー密度の大型蓄電池では、 より一層の安全性の確保が重要となり、漏液 の懸念がなく大気中で安定な酸化物固体電解 質の活用が期待されている。その中で Li_{2+x}C_{1-x}B_xO₃は、低融点・高焼結性といった 特色から、これまで作製が困難とされている 酸化物バルク型全固体電池の固体電解質とし て用いることができる。¹また本系は、Li₂CO3 と同様の結晶構造でありながら、イオン導電 率は 10 万倍高い。このことは、Li₃BO₃ 置換 によるバルク構造変化のみでは解釈できない。 XRD や SEM、交流インピーダンス等の分析 結果より、粒子表面に異なる安定相が形成す ることにより焼結性が向上し、粒界抵抗が低 減するためであることがわかった。そこで本 研究では、軟 X 線吸収分光法を利用し、 Li_{2+x}C_{1-x}B_xO₃ 粒子の表面電子状態を、バルク と区別して測定し、焼結の起点となる表面構 造を明らかにすることを目的とする。

<u>実験</u>: Li_{2+x}C_{1-x}B_xO₃は固相反応法により合成 した。出発原料としてLi₂CO₃とLiOH·H₂O、 H₃BO₃を用い、600 °C、6時間、煆焼後、さら にペレット成型後650 °C、12時間、焼成した。 得られたLi_{2+x}C_{1-x}B_xO₃ペレットはメノウ粒撥 で粉砕した後、振動ミルを用いて1時間粉砕す ることで、焼結前粒子として用意した。 なお、XAFS測定においてチャージアップを 緩和するために表面上の酸化物を除去したイ ンジウム金属上にLi_{2+x}C_{1-x}B_xO₃粒子を圧着し た試料を用いた。

立命館大学SRセンター BL-11にて、主な構 成成分であるO、BのK吸収端XANES測定をお こなった。測定モードは全電子収量(TEY)法 及び蛍光収率(PFY)法にて行った。

<u>結果、および、考察</u>: Fig. 1 に表面敏感な TEY 法(A)と主にバルクを捉える PFY 法(B) で測定した O K 吸収端 XANES スペクトルを 示す。まずバルクでの酸素の電子状態(Fig. 1-A) に着目すると、 $Li_{2+x}C_{1-x}B_xO_3$ は、 Li_2CO_3 と類似の結晶配列を有するため、スペクトル がよく重なることがわかる。一方、表面付近 の電子状態(Fig. 1-B) は、 Li_3BO_3 置換量の増 加に伴い、特に 533 eV 付近の π *軌道への遷 移に伴うピークが(低エネルギー側に歪んだ ように)ブロード化しており、 Li_3BO_3 に類似 するスペクトルへと変化した。このことから、 特に Li_3BO_3 置換量の多い $Li_{2+x}C_{1-x}B_xO_3$ 粒子で は、バルクと表面における酸素の電子状態が 異なることがわかった。 Fig. 2 には、表面敏感な TEY 法(点線)によって測定した B K 吸収端 XANES スペクトルを、バルク敏感な PFY 法 (実線) での測定結果と共に示す。各 Li₃BO₃ 置換量において、バルクおける $1s \rightarrow 2p$ 遷移によるピーク位置に比べて、表面付近のほうが高エネルギー側にシフトしていることがわかった。つまり、バルクと表面におけるホウ素の電子状態が異なることがわかった。O K 吸収端 XANES スペクトルに比べ、B K 吸収端 XANES スペクトルでは、置換された Li₃BO₃周囲の電子状態を直接捉えることから、置換量の少ない (例えば Li_{2.01}C_{0.99}B_{0.01}O₃) 粒子においても表面状態の違いを確認することができた。

以上の結果より、 $Li_{2+x}C_{1-x}B_xO_3$ 粒子の表面 では、バルクと異なる電子状態を有している ことが明らかになった。このことは、他の分 析結果より示された粒界における安定相の存 在を支持しており、酸化物粒子の焼結性向上 と粒界抵抗低減を考える上での重要な知見を 得ることができた。また、 $Li_{2+x}C_{1-x}B_xO_3$ 粒子 表面における電子状態の違いは、表面での Li配列にも変化をもたらしている可能性が高く、 Li K 吸収端 XANES スペクトルを評価することも興味深いと考えている。

文 献

[1] T. Okumura, T. Takeuchi, H. Kobayashi, *Solid State Ionics*, DOI: 10.1016/j.ssi.2016.01.045

論文・学会等発表(予定)

[1] T. Okumura, T. Takeuchi, H. Kobayashi, K. Yamanaka, *Journal of the American Chemical Society* (論文)

Fig. 1. O K-edge XANES spectra of (a) Li_2CO_3 , (b) $Li_{2.01}C_{0.99}B_{0.01}O_3$, (c) $Li_{2.02}C_{0.98}B_{0.02}O_3$, (d) $Li_{2.05}C_{0.95}B_{0.05}O_3$, (e) $Li_{2.1}C_{0.9}B_{0.1}O_3$, (f) $Li_{2.3}C_{0.7}B_{0.3}O_3$, and (g) Li_3BO_3 , observed by (A) TEY method and PFY method, reversibility.

Fig. 2. B K-edge XANES spectra of (a) $Li_{2.01}C_{0.99}B_{0.01}O_3$, (b) $Li_{2.02}C_{0.98}B_{0.02}O_3$, (c) $Li_{2.05}C_{0.95}B_{0.05}O_3$, (d) $Li_{2.1}C_{0.9}B_{0.1}O_3$, (e) $Li_{2.3}C_{0.7}B_{0.3}O_3$, and (f) Li_3BO_3 , observed by TEY method (dash lines) and PFY method (solid lines), reversibility.