官能基によって修飾された HOPG 表面化学状態の NEXAFS 分析

NEXAFS analysis of the surface chemical state of the functional modified HOPG

小川 智史 ª, 森下 翔平 a, 上野 智永 a, 八木 伸也 a,b Satoshi Ogawa^a, Shohei Morishita^a, Tomonaga Ueno^a, Shinya Yagi^{a,b}

^a名古屋大学大学院工学研究科,^b名古屋大学 未来材料・システム研究所 ^aGraduate School of Engineering, Nagoya University, ^bInstitute of Materials and Systems for Sustainability, Nagoya University

εアミノカプロン酸によって表面修飾された HOPG の表面化学状態を明らかにすることを目的と して C K-edge NEXAFS 分析を行なった。εアミノカプロン酸を用いた表面修飾によって HOPG 表 面上ではカルボキシル基(COOH)や窒素を含有する官能基由来と考えられる C-N 結合が存在して おり、HOPG 表面上の改質が確認された。表面修飾後の HOPG の表面化学状態は、単純な HOPG と εアミノカプロン酸の化学状態の線形結合とは異なっており、新たな化学状態の形成が考えられる。

In order to clarify the surface chemical state of the surface-modified HOPG with ε -aminocaproic acid, C K-edge NEXAFS analysis using the synchrotron radiation has been carried out. The carboxyl group and nitrogen-containing group (such as amino or amido groups) exist on the surface of the surface-modified HOPG. The chemical state of the surface-modified HOPG can not be expressed by the linear combination of the chemical states of the HOPG and the ε -aminocaproic acid, which implies that the formation of the other chemical state by the surface modification.

Keywords: Surface modification, HOPG, Solution plasma, NEXAFS

グラフェンやカーボン 背景と研究目的: ナノチューブ (CNT) に代表される炭素材料 は電子物性、電気伝導の点で大変興味深い特 性を有しており、さまざまな分野での応用が 期待されている。特に、炭素材料をフィラー としてプラスチックや高分子材料中に分散さ せる場合に重要となってくるのが、炭素材料 の表面化学状態および母材との間の界面化学 状態である。材料中のグラファイトや CNT の分散性はこれら表面、界面における化学状 態に密接に関係しており、母材との親和性の 高い官能基で炭素材料表面を修飾することで 分散性の向上が期待できる。官能基修飾法と しては液中プラズマ法 (SP法) が近年注目を 集めている[1]。液体中でのグロー放電によっ て反応性の高いラジカルを発生させ、炭素材 料表面における官能基修飾反応を促進するこ とが可能である。特に、アミノ基から生じる ラジカルによって炭素材料表面を効率よく修 飾できることが報告されている[2]。これまで SP 法によって処理された炭素材料は元素分 析や電気化学的な分析によって評価されてき たが、材料設計指針を得るためにもより詳細 な分析として表界面化学状態を直接評価する ことが望ましい。

本研究では SP 法によって官能基修飾され た炭素材料の表界面化学状態の基礎的な検討 を目的として、&アミノカプロン酸(EACA) で表面修飾した高配向グラファイト(HOPG) の化学状態分析をCK吸収端近傍X線吸収微 細構造測定(CK-edge NEXAFS)によって調 べた。

<u>実</u>験: SP法によるHOPGのEACA修飾手順 は以下のとおりである。

 <u>**溶液準備**</u> エタノール溶媒中のEACA 濃度が0.1 Mになるように調整をし、プラズマ に伴って生じる気泡付近にHOPGを設置した。
<u>**放電条件**</u> 溶液中で対向した電極間に 電圧1.2 kV、繰り返し周波数20 kHz、パルス 幅2.0 µsの高周波パルス電力を供給すること で液中プラズマを発生させた。電極としては W (1.0 mm^Φ)を用いた。HOPGを液中プラズ マに伴う気泡付近に60分間曝すことで、 EACA修飾を行なった。

EACAによって修飾したHOPGのC K-edge

NEXAFS測定を立命館大学SRセンターBL-2 超軟X線分光ビームラインにて行なった。超 高真空中(~1×10⁻⁸ Torr)における全電子収 量法によってNEXAFSスペクトルを取得した。

<u>結果、および、考察</u>: Fig. 1 に HOPG 及び EACA によって修飾された HOPG (EACA/HOPG)のCK-edge NEXAFS スペク トルを示す。化学状態の標準として EACA 粉 末のスペクトルを同様に示している。

HOPG のスペクトルには 293.0 eV に明瞭な C-Cσ*由来のピークが見られ、EACA のスペ クトルにはカルボキシル基(COOH)中の C=Oπ*由来の鋭いピークが 288.7 eV に見られ る。ピーク構造として明瞭に確認は出来ない が、EACA のスペクトル中の 290.7 eV にアミ ノ基のC-N 結合に起因する構造が存在すると 考えられる[3]。

EACA によって修飾された HOPG において も同様の特徴が見て取れる。290 eV から 315 eV にかけて HOPG の C-Cσ*由来の構造が見 られるのに加えて、より低エネルギー側に EACA 由来と考えられる構造が見て取れる。 これらの構造をより詳細に見るために EACA で修飾された HOPG のスペクトルから未修飾 のHOPGのスペクトルを差し引いた差分スペ クトルを Fig. 2 に示す。スペクトルの差し引 きは293.0 eVのC-Cσ*ピークの強度がゼロに なるように行なった。Fig. 2 中の 286~292 eV の範囲を拡大した図からも明らかなように、 SP 法による処理によって EACA が HOPG 上 に修飾されたことが見て取れるが、C-N 結合 に起因するピーク(290.7 eV)に対するカル ボキシル基由来のピーク(288.7 eV)の相対 強度が、EACA 粉末のそれとは大きく異なっ ており、288.7 eV のピーク強度が減少してい ることが分かる。詳細な吸着様式や吸着構造 までは本結果から断定することは出来ないが、 SP 法による処理によってカルボキシル基ま たはアミノ基を形成する炭素原子周りの配位 環境に変化があったことは確かであり、今後 は N K-edge NEXAFS 測定による分析を予定 している。

文 献

[1] O. Takai, *Pure Appl. Chem.* **80**, 9, pp. 2003–2011 (2008).

[2] 原田大,上野智永,齋藤永宏,*資源・素* 材 2013, 596 (2013).

[3] K. Kaznacheyev, A. Osanna, C. Jacobsen, O. Plashkevych, O. Vahtras, H. Ågren, V. Carravetta, A.P. Hitchcock, *J. Phys. Chem.* **106**, pp. 3153-3168 (2002).

Fig. 1. C K-edge NEXAFS spectra of the HOPG, EACA-modified HOPG (ECAA/HOPG) and EACA powder. All spectra were normalized with respect to the edge jumps.

Photon Energy [eV]

Fig. 2. Subtraction of the spectrum for the HOPG from that of the ECAA/HOPG. The black dots, blue and green lines show the spectra of the ECAA/HOPG, the HOPG and the residual, respectively.