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• The effect of different lactate accumulation on executive function (EF) was examined.
• Lactate accumulation decreased with repeated high-intensity interval exercise (HIIE).
• Repeated HIIE was accompanied by a shorter positive effect on EF.
• A potential link between lactate accumulation and EF should be further elucidated.
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A single bout of aerobic exercise improves executive function (EF), but only for a short period. Comparedwith a sin-
gle bout of aerobic exercise, we recently found that high-intensity interval exercise (HIIE) could maintain a longer
improvement in EF. However, themechanismunderlying the effect of different exercisemodes on themodifications
of EF remains unclear. The purpose of the current investigation was to test our hypothesis that the amount of
exercise-induced lactate production and its accumulation affects human brain function during and after exercise,
thereby affecting post-exercise EF. Ten healthymale subjects performed cycle ergometer exercise. The HIIE protocol
consisted of four 4-min bouts at 90% peak VO2 with a 3-min active recovery period at 60% peak VO2. The amount of
lactate produced during exercise was manipulated by repeating the HIIE twice with a resting period of 60 min be-
tween the 1st HIIE and 2ndHIIE. To evaluate EF, a color-word Stroop taskwas performed, and reverse-Stroop inter-
ference scores were obtained. EF immediately after the 1st HIIEwas significantly improved compared to that before
exercise, and the improved EFwas sustained during 40min of the post-exercise recovery. However, for the 2ndHIIE,
the improved EFwas sustained for only 10min of the post-exercise recovery period, despite the performance of the
same exercise. In addition, during and following HIIE, the glucose and lactate accumulation induced by the 2ndHIIE
was significantly lower than that induced by the 1st HIIE. Furthermore, there was an inverse relationship between
lactate and EF by plotting the changes in lactate levels against changes in EF from pre-exercise during the late phase
of post-exercise recovery. These findings suggested the possibility that repeated bouts of HIIE, which decreases
lactate accumulation, may dampen the positive effect of exercise on EF during the post-exercise recovery.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

During exercise, lactate, a glycolytic product, is formed in
contracting skeletal muscle and utilized continuously in diverse cells
under fully aerobic conditions. Lactate exchange occurs not only be-
tween white glycolytic and red oxidative fibers within a working
oto).

. This is an open access article under
muscle bed but also between working skeletal muscle and the heart,
liver, kidneys, and brain as oxidative and gluconeogenic substrates [1].
During prolonged exercise, muscle metabolism (e.g., lactate kinetics)
and brain cognitive function change [1–5]. In light of the fact that sys-
temic lactate is an energy source for the brain [6], theremight be an un-
explored association between muscle metabolism and the function of
the brain. Given its reliance on lactate as a fuel, particularly as lactate
concentrations rise, variations in lactate concentration in the blood
likely impact cognitive function in the peri-exercise period.
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During prolonged dynamic exercise, cerebral blood flow gradually
decreases towards resting values in association with hyperventilation
[7,8]. Similar to the decrease in cerebral blood flow (CBF), the
exercise-induced facilitation of cognitive function disappears during
such prolonged exercise [9]. We previously hypothesized that cognitive
function might be impaired during prolonged exercise and could be re-
stored by an increase in CBF. However, this hypothesis was not vali-
dated by our finding that cognitive function was not impaired during
prolonged exercise, despite a conflict between an increase in cerebral
metabolism and a decrease in CBF [10]. In addition, hypercapnia-
induced increases in CBF did not improve cognitive function [10]. Soya
and colleagues reported that improved EF after acute aerobic exercise
was associated with increased left-dorsolateral prefrontal cortex (L-
DLPFC) activity in the brain [11,12]. Moreover, their recent study
showed that improved EF after exercise correlated with enhanced psy-
chological arousal levels [11]. These findings suggest that improved cog-
nitive function during exercise may be due to the augmented cerebral
neuronal activation and metabolism associated with exercise, rather
than cerebral perfusion [10].

Previous studies have demonstrated that during heavy exercise,
compensatory increases in the uptake (the difference between arterial
and venous concentration (a–v difference)) of lactate, glucose and oxy-
gen support elevated brain neuronal activity and metabolism [13].
When arterial lactate is elevated during exhaustive physical exercise,
the brain takes up lactate in amounts that may supersede the uptake
of glucose [14]. Furthermore, the arterial lactate concentration in-
creased several-fold during exercise, and the reduced oxygen-to-
carbohydrate ratio (cerebral metabolic ratio: CMR) during recovery
was associated with relatively high lactate uptake by the brain [15,16].
In addition, increased lactate availability through intravenous lactate in-
fusion increased lactate utilization by thebrain [6]. These results suggest
that lactate fuels the humanbrain during and after exercise to satisfy the
augmented cerebral neuronal activation and metabolic demand,
thereby affecting cognitive function. Indeed, lactate has emerged as a
central player in the maintenance of neuronal function and long-term
memory [17]. For example, albeit in animals, the administration of a gly-
cogen phosphorylase inhibitor in rat hippocampus resulted in abolished
extracellular lactate accumulation and long-termmemory, whereas ex-
ogenous L-lactate administration rescuedmemory loss [18]. In addition,
intracerebroventricular or intravenous injection of lactate has been
shown to exert a neuroprotective effect during experimentally induced
hypoglycemia or cerebral ischemia [19–21]. Furthermore, the intrave-
nous infusion of 100 mM L-lactate improved cognitive recovery by pre-
serving cerebral ATP generation following traumatic brain injury (TBI)
in rats [22]. Recently, George Brooks' group has examined the advan-
tages of using inorganic and organic lactate salts, esters and other com-
pounds in TBI patients [23–25]. The authors compared
dextrose + insulin treatment to exogenous lactate infusion in TBI pa-
tients with intact hepatic and renal functions, demonstrating that the
latter results in normal glycemia and provides nutritive support to the
injured brain [23–26]. However, no previous studies have investigated
the effect of exercise-induced lactate production on cognitive function.

High-intensity interval exercise (HIIE) training is emerging as an ef-
fective alternative to current health-related exercise guidelines [27]. It
has been reported that long-term HIIE was more effective at increasing
exercise capacity and metabolic and cardiovascular health compared to
long-term moderate-intensity continuous exercise in healthy individ-
uals [3,4,28]. Importantly, the effectiveness of HIIE has been demon-
strated in older individuals and patients with chronic diseases such as
diabetes [29,30], chronic obstructive pulmonary disease [31], and
heart failure [32,33]. In addition, Rognmo et al. [34] reported that the
adaptation of HIIE for cardiac rehabilitation had a low risk of acute ad-
verse cardiovascular events in a large population. Thus, in regard to eth-
ical issues, it is well known that HIIE can be safely applied to various
populations. However, few studies to date have examined the impact
of HIIE on the cerebrovasculature and corresponding implications for
cognitive function [27]. Recently, we found that HIIE-induced improve-
ments in cognitive function (especially EF) after exercisewere sustained
for significantly longer periods than after moderate-intensity continu-
ous exercise [35]. However, it is unclear whether the higher production
of lactate induced by HIIE compared to that induced by moderate-
intensity continuous exercise could sustain EF for a longer time period.

Lactate is produced continuously even under fully aerobic condi-
tions, especially during exercise, when rates of glycogenolysis and gly-
colysis are elevated [36]; decreased muscle glycogen during and/or
following prolonged exercise attenuates lactate production [3,4]. With
this knowledge, we hypothesized that repeated high intensity exercise
(e.g., first bout of HIIE) would reducemuscle glycogen and hence result
in low lactate production and low lactate availability during and after
second bout of HIIE and that in addition, this low lactate production/ac-
cumulationwould affect EF. To test our hypothesis,we examined lactate
production and EF in response to the first (1st HIIE) and second (2nd
HIIE) rounds of HIIE. In this protocol, it was expected that lactate pro-
duction and hence EF would be lower following the 2nd HIIE than fol-
lowing the 1st HIIE, although exercise workload (i.e., exercise volume:
intensity × duration) between 1st and 2nd bout of HIIE is identical.

2. Methods

2.1. Subjects

Ten healthy, male subjects (mean± SEM, age: 22.9± 0.6 yr, height:
171.4± 1.6 cm, weight: 67.5± 2.3 kg, peak oxygen uptake (peak VO2):
46.8 ± 2.1 ml/min/kg) participated in this study. The subjects were in-
formed of the experimental procedures and potential risks and pro-
vided written consent to participate in the study. All subjects were
right-hand dominant and free of any known neurological, cardiovascu-
lar, and pulmonary disorders as well as color-blindness and abnormal
vision. All procedures were approved by the Ethics Committee of
Ritsumeikan University (BKC-IRB-2015-005). Subjects were instructed
to avoid strenuous physical activity in the 24 h prior to each experimen-
tal session. Each subject also abstained from food (overnight fasting),
caffeine, and alcohol for 12 h prior to each experiment.

2.2. Experimental procedure

Before the day of the experiment, subjects were familiarized with
the EF test using the color-word Stroop task (CWST) [37] on their first
visit to our laboratory. The CWST was practiced until the subject
achieved consistent scores. Subsequently, peak VO2 was measured to
calculate the exercise intensity required for the exercise protocols.

On the day of the experiment, subjects ate a breakfast of approxi-
mately 580 kcal 2 h before the 1st exercise (8:00 a.m.). Thereafter, the
subject rested until approximately 20 min before the 1st exercise and
practiced the CWST for at least 10min before pre-exercise datawere re-
corded to prevent the learning effect. Next, the subjects rested for 5min
before undergoing measurements of cardiovascular and psychological
parameters and the collection of fingertip blood samples for the pre-
exercise data, which was concluded within 5 min. Ten min after the
practice CWST was conducted, the subjects performed the pre-
exercise CWST. Subsequently, the subjects performed the HIIE protocol
(1st HIIE). The post-exercise recovery period was set to 60 min, during
which the CWST was measured six times at 10-min intervals, including
immediately after exercise (i.e., 0 min, 10 min, 20 min, 30 min, 40 min,
and 50 min after exercise, Post 0, 10, 20, 30, 40, and 50, respectively).
The subjects drank 50ml of water while resting after the CWST. Shortly
thereafter, the subjects performed the same HIIE (2nd HIIE) and post-
exercise recovery protocol again.

2.3. Experimental conditions

The experimental protocol used in this study is presented in Fig. 1.



Fig. 1. Overview of the experimental protocol. Subject performed repeated high-intensity interval exercise (HIIE) twice, with a resting period of 60min between the 1st HIIE and 2ndHIIE
sessions. Bloodwas collected at the time pointsmarked by triangles. The evaluation of executive function (EF) using a CWSTwas performedpre-exercise (Pre) and during the 60minpost-
exercise recovery period (five times with 10-min intervals). Psychological parameters were measured at the same time points. These time points are denoted by the black bar.
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All subjects completed cycle ergometer exercise in both HIIE proto-
cols (1st and 2nd). Both protocols were performed following a warm-
up at 100 W for 3 min. After the warm-up period, the HIIE protocol
was initially carried out at 60% peak VO2 for 5 min, followed by four
4 min bouts at 90% peak VO2 with 3 min of active recovery at 60%
peak VO2 for a total exercise period of 33 min. The mean heart rate
(HR) at the end of the four 4-min bouts at 90% peak VO2 in the 1st
and 2nd HIIE were 175.8 ± 2.8 and 181.3 ± 2.7, respectively, which
was approximately 90% of the age-predicted maximum in healthy
adults, calculated as [208− 0.7× age] [38]. The subjectswere instructed
tomaintain a cadence of 60 rpm, whichwas carefully checked by an ex-
aminer. The exercise volumes between the 1st and 2nd HIIE protocols
were identical (354 ± 10 kJ vs. 354 ± 10 kJ; n.s.).
2.4. Ramp-incremental exercise test

During the first visit, all subjects performed a maximal incremental
exercise test to determine peak VO2 on a cycle ergometer. Initially, sub-
jects performed baseline cycling for 3 min at 30 W, after which the
workload was incrementally increased at a rate of 30 W/min until the
subjects could not maintain a cadence of 60 rpm. During the incremen-
tal exercise test, breath-by-breath pulmonary gas-exchange data were
collected and averaged every 10 s (AE-310S; Minato Medical Science,
Osaka, Japan). HR was measured continuously via telemetry (RS 400;
Polar Electro Japan, Tokyo, Japan). The peak VO2 was determined as
the highest 30-s mean value attained prior to exhaustion. Exhaustion
was assessed to be the maximum when three of the following criteria
were obtained: 1) a plateau in the VO2 despite increasing workload,
2) a respiratory exchange ratio above 1.10, 3) an HR above 90% of the
age-predicted maximum, and 4) task failure of the pedaling rate of at
least 55 rpm over 5 s despite maximal effort.
2.5. Measurements

Measurement of the following parameters was carried out before
the pre-exercise CWST, during exercise at the end of each active recov-
ery period, immediately before completion of the exercise, and during
the 60-min post-exercise recovery period (five 10-min intervals).
2.6. Cardiovascular parameters

During the experimental sessions, HR was measured continuously
via telemetry. Systolic blood pressure (SBP) and diastolic blood pressure
(DBP) were measured using a mercury manometer (FC-110ST; Focal,
Chiba, Japan). MAP was calculated as [(SBP− DBP) / 3 + DBP].
2.7. Psychological parameters

The felt arousal scale (FAS) and rating of perceived exertion (RPE)
were recorded to evaluate psychological responses.

FAS―The FASwasmeasured to assess arousal level. This is a six-item
scale ranging from 1 (low arousal) to 6 (high arousal), and subjects
were asked to report how they felt before CWST during pre- and post-
exercise. For example, a high arousal level represents “excitement,”
and a low arousal level represents “relaxation” [39].

RPE―The RPE was measured to assess the effort expended during
exercise. This scale ranges from 6 (no exertion) to 20 (maximal exer-
tion) [40].

VAS―The visual analog scale (VAS) for the CWST consisted of ques-
tions of three psychological types that assessedmental fatigue, the abil-
ity to concentrate, and motivation about CWST. Each VAS was labeled
from 0 mm (i.e., not at all) to 100 mm (i.e., extremely). The subjects
drew lines to indicate their responses.

2.8. Blood glucose and lactate levels

Fingertip blood samples were collected in capillary tubes to deter-
mine the glucose levels and lactate concentrations. The blood glucose
levels weremeasured using a glucose analyzer (Medisafe FIT Blood Glu-
cose Meter; Terumo, Tokyo, Japan). The blood lactate concentrations
were measured using a lactate analyzer (Lactate Pro 2; Arkray, Kyoto,
Japan).

2.9. EF

The evaluation of EF in this study was performed using the CWST
[37], which is awell-knownparadigm for investigating aspects of cogni-
tive performance that depend on EF, specifically, the selective attention
to specific information and the inhibition of prepotent responses during
decision-making tasks involving stimuli and responses [41]. The CWST
was adopted in an event-related design [10], and this CWST was pro-
grammed by modifying an Excel Visual Basic for Applications from our
previous study.Wemeasured both reaction time (RT) and response ac-
curacy using the CWST. The following instruction was given to the sub-
jects: “You must perform as accurately and quickly as possible.” The
stimulus words were four color names (“RED”, “YELLOW”, “GREEN”
and “BLUE”), and they were presented on a 98-in. display. All words
were written in Japanese for our Japanese subjects. We prepared a
color-labeled ten-key keyboard: number 1 keywas labeled red, number
2 keywas labeled yellow, number 3 keywas labeled green, and number
4 key was labeled blue. The subjects were required to press the color-
labeled key that corresponded to the text meaning of the stimulus
word. The subjects performed three types of CWST. The congruent
task, which is a facilitated (dummy) task, displayed the color names
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presented in the same-colored text. The neutral task, which is a control
task, displayed the color names presented in black text. The incongruent
task, which is an interference task, displayed the color names presented
in a differently colored text. The words for each type of task were pre-
sented in a random order. One trial of each task consisted of 24 stimulus
words and was repeated for three trials. To evaluate EF, reverse-Stroop
interference scores were calculated as [(RT of incongruent task− RT of
neutral task) /RT of neutral task × 100] [42]. In addition, we calculated
relative values (pre-exercise = 1).

2.10. Statistical analysis

The data are expressed as themean± SEM. Blood sample data were
used to calculate the incremental or decremental area under the curve
during exercise and following exercise and were compared using a
paired t-test (1st vs. 2nd HIIE). Other all data were analyzed using a
two-way (time × 1st or 2nd HIIE) repeated-measures analysis of vari-
ance after normal distributions were confirmed. Specific differences
were identified with a Bonferroni post-hoc test. The statistical signifi-
cance level was defined at P b 0.05. A linear regression was performed
to test the relationship between changes in blood glucose or lactate con-
centrations and changes in reverse-Stroop interference scores (i.e., EF)
at post-exercise recovery (Post 0, 10, 20, 30, 40, and 50). All statistical
analyses were conducted using IBM SPSS software (version 19.0; Inter-
national Business Machines Corp, NY, USA).

3. Results

3.1. Exercise parameters

The exercise parameters are shown in Table 1.
The HR values before and during every active recovery at 60% peak

VO2 for the 2ndHIIEwere significantly higher than those of correspond-
ing time points for the 1st HIIE, and the HR values in both HIIEs gradu-
ally increased towards just before the end of each HIIE (described as
“pre-recovery” in Table 1). MAP values during exercise did not signifi-
cantly differ between the 1st and 2nd HIIE. The pre-exercise tympanic
temperature near the brain for the 2nd HIIE was significantly higher
Table 1
Exercise parameters in healthy male participants.

Pre-exercise During exercise (active recovery)

1st point 2nd point

HR, bpm
1st HIIE 69.7 ± 2.6 136.5 ± 2.9†† 150.9 ± 2.6††,aa

2nd HIIE 78.6 ± 2.7⁎⁎ 148.2 ± 2.8⁎⁎,†† 159.8 ± 2.7⁎⁎,††,aa

MAP, mm Hg
1st HIIE 95.2 ± 4.2 109.6 ± 4.0† 112.8 ± 3.5†

2nd HIIE 92.3 ± 2.5 106.6 ± 4.0† 111.8 ± 3.5††

RPE
1st HIIE – 12.3 ± 0.2 14.3 ± 0.4a

2nd HIIE – 13.6 ± 0.4 ⁎ 15.5 ± 0.4⁎,a

FAS
1st HIIE 2.2 ± 0.2 3.3 ± 0.3 4.3 ± 0.4†,a

2nd HIIE 2.8 ± 0.2 3.7 ± 0.2 4.4 ± 0.3

Tympanic temperature, °C
1st HIIE 36.0 ± 0.1 36.3 ± 0.1 36.3 ± 0.1
2nd HIIE 36.3 ± 0.1⁎ 36.5 ± 0.2 36.5 ± 0.2

Values are presented as means ± SEM. HIIE; high-intensity interval exercise, HR; heart rate, M
HR [Condition F1, 9= 36.61, P b 0.01; Time F5, 45= 364.85, P b 0.01; Condition × Time F5, 45=1.5
× Time F5, 45= 0.50, P=0.78], RPE [Condition F1, 9= 6.13, P b 0.05; Time F4, 36=50.35, P b 0.01

= 12.66, P b 0.01; Condition × Time F5, 45 = 1.88, P = 0.12], Tympanic temperature [Condition

0.35].
⁎, ⁎⁎ P b 0.05, 0.01 vs. 1st HIIE, †, †† P b 0.05, 0.01 vs. pre-exercise, a, aa P b 0.05, 0.01 vs. 1st point
than for the 1st HIIE, while during HIIE there were no significant differ-
ences in tympanic temperature between the 1st and 2nd HIIE.

With regard to psychological responses, RPE values for the 2nd HIIE
during active recovery at the 1st, 2nd, and 3rd points were significantly
higher than those of the 1st HIIE. However, FAS values did not differ sig-
nificantly between the 1st and 2nd HIIE.

3.2. Blood sample data

The blood glucose and lactate concentrations as well as their in-
creased or decreased areas under the curve (AUCs: response compared
with the pre-exercise phase) during and after exercise are shown in Fig.
2. The glucose and lactate accumulated during and after the 2nd HIIE
were significantly lower than those during and after the 1st HIIE. The
time effects for blood glucose and lactate concentrations are summa-
rized in Supplemental Table 1.

3.3. EF and psychological parameters

The RT and response accuracy during the CWST for the 1st and 2nd
HIIE are shown in Table 2.

TheRT of the congruent tasks did not differ significantly between the
1st and 2nd HIIE protocols throughout the experimental sessions. For
the neutral tasks, the RT after 10 min of post-exercise recovery follow-
ing the 1st HIIE was significantly shorter than that at the same time
point following the 2nd HIIE. For the incongruent tasks, the RT prior to
the 2nd HIIE was significantly shorter than that prior to the 1st HIIE.
However, the RT after 40 min of post-exercise recovery following the
1st HIIE was significantly shorter than that at the same time point fol-
lowing the 2nd HIIE. Additionally, the RT for the incongruent tasks
after 30 and 40 min of post-exercise recovery following the 2nd HIIE
was significantly shorter than that immediately after the exercise. Fur-
thermore, the RT for incongruent tasks immediately after both HIIEs
was significantly shorter than those prior to exercise, and this shortened
RT was sustained during the 50 min post-exercise recovery following
the 1st HIIE, whereas it returned to pre-exercise levels for the 2nd
HIIE after 30 min of post-exercise recovery following the 2nd HIIE. The
response accuracy for all tasks did not differ significantly between the
3rd point 4th point Pre-recovery

156.8 ± 3.4††,aa 158.9 ± 4.0††,aa 158.8 ± 4.2††,a

162.3 ± 2.2⁎,††,aa 164.9 ± 3.1⁎,††,aa 165.8 ± 2.6⁎,††,aa

108.7 ± 3.6† 105.9 ± 3.4 104.5 ± 3.4
108.3 ± 3.4†† 105.9 ± 3.6††,bb 104.2 ± 3.8†,b,c

15.3 ± 0.4aa 16.2 ± 0.6aa,b 16.1 ± 0.5aa,b,c

16.3 ± 0.5⁎,aa 16.8 ± 0.3aa 16.1 ± 0.4aa

4.6 ± 0.4†,a 4.6 ± 0.5†,a 4.5 ± 0.4†

4.6 ± 0.5 4.5 ± 0.5 4.6 ± 0.4

36.6 ± 0.2 36.8 ± 0.2†,a 36.8 ± 0.2†

36.6 ± 0.2 36.8 ± 0.2a,bb 36.8 ± 0.2a,b

AP; mean arterial pressure, RPE; rate of perceived exertion, FAS; felt arousal scale.
1, P=0.21],MAP [Condition F1, 9=0.60, P=0.46; Time F5, 45=17.49, P b 0.01; Condition
; Condition × Time F4, 36= 1.86, P=0.14], FAS [Condition F1, 9= 1.42, P=0.26; Time F5, 45
F1, 9 = 2.78, P= 0.13; Time F5, 45 = 17.79, P b 0.01; Condition × Time F5, 45 = 1.16, P=

, b, bb P b 0.05, 0.01 vs. 2nd point, c P b 0.05 vs. 3rd point.



Fig. 2. Changes in blood glucose and lactate concentrations. The panels illustrate the changes in blood glucose (A) and lactate (B) concentrations for the 1st HIIE (open circles) and 2ndHIIE
(solid circles). The histogram represents increased or decreased blood glucose (A-2 and A-3) and lactate (B-2 and B-3) areas under the curve (AUCs) during (A-2 and B-2) and following
(A-3 and B-3) HIIE. The values are expressed as the mean ± SEM. *, ** P b 0.05, 0.01 vs. 1st HIIE.

30 H. Tsukamoto et al. / Physiology & Behavior 160 (2016) 26–34
1st and 2nd HIIE protocols throughout the experimental sessions and
did not differ significantly among all time points.

The changes in EF evaluated using the reverse-Stroop interference
score for the 1st and 2nd HIIE sessions are shown in Fig. 3.

The reverse-Stroop interference scores immediately after the 1st
HIIE were significantly reduced, indicating that EF was improved com-
pared to the pre-exercise scores; the improved EF was sustained for
40 min during the post-exercise recovery period. However, after the
2nd HIIE EF was transiently improved after 10 min of post-exercise re-
covery compared with the pre-exercise EF, and it returned to pre-
exercise levels after 20 min of post-exercise recovery. Notably, the EF
after 40 min post-exercise recovery after the 2nd HIIE was significantly
lower than that for the 1st HIIE.

Fig. 4 shows the relationship between lactate and EF by plotting the
changes in lactate levels against changes in EF from pre-exercise at each
time point during the post-exercise periods. There was an inverse
relationship at Post 20 (r = −0.48, P b 0.05), Post 30 (r = −0.46,
P b 0.05), Post 40 (r = −0.63, P b 0.01), and Post 50 (r = −0.58,
P b 0.01), between the two parameters, indicating that higher lactate
levels were associated with a lower interference score (i.e., better EF)
during post-exercise recovery (Fig. 4). These relationships were not ob-
served against glucose (Supplemental Fig. 1).

The changes in felt arousal level, mental fatigue, ability to concen-
trate, and motivation for the CWST following both HIIE protocols are
shown in Fig. 5.

Mental fatigue was significantly increased immediately after both
HIIE sessions. Increased mental fatigue was sustained after 20 min
post-exercise recovery after the 1st HIIE. The ability to concentrate dur-
ing post-exercise recovery (at 0 and 30 min) was significantly higher
after the 2nd HIIE than the 1st HIIE. Motivation during post-exercise re-
covery (at 30 min) was significantly higher after the 2nd HIIE than the
1st HIIE.



Table 2
Changes in reaction time and response accuracy in the color-word Stroop task.

Pre-exercise Post-exercise

0 min 10 min 20 min 30 min 40 min 50 min

Reaction time (ms)
Congruent task

1st HIIE 8814 ± 599 8207 ± 490 8478 ± 512 8645 ± 567 8841 ± 660 8805 ± 626 8728 ± 580
2nd HIIE 8940 ± 629 7988 ± 555 8538 ± 592 8513 ± 574 8999 ± 686‡ 9044 ± 566‡ 8968 ± 661

Neutral task
1st HIIE 9303 ± 607 8665 ± 578 8931 ± 576 9144 ± 652 9248 ± 634 9132 ± 607 9039 ± 597
2nd HIIE 9176 ± 642 8682 ± 593 9277 ± 628* 9140 ± 602 9153 ± 559 9192 ± 651 9239 ± 656

Incongruent task
1st HIIE 10,592 ± 697 9336 ± 620† 9500 ± 616†† 9702 ± 679†† 9902 ± 688† 9888 ± 678† 9766 ± 666†

2nd HIIE 10,146 ± 711* 9218 ± 653†† 9727 ± 654 9758 ± 622 9904 ± 658‡‡ 10,318 ± 711⁎,‡‡,§§ 10,243 ± 736‡

Response accuracy (%)
Congruent task

1st HIIE 98.7 ± 0.5 96.8 ± 0.8 96.7 ± 1.3 98.5 ± 0.4 96.9 ± 0.5 97.9 ± 0.4 97.3 ± 0.5
2nd HIIE 98.4 ± 0.5 98.4 ± 0.5 97.5 ± 0.8 97.6 ± 0.6 97.3 ± 0.7 96.8 ± 0.9 97.8 ± 0.9

Neutral task
1st HIIE 97.3 ± 0.8 97.6 ± 0.7 97.4 ± 0.8 98.1 ± 0.7 97.8 ± 0.9 98.7 ± 0.6 97.9 ± 0.7
2nd HIIE 97.6 ± 1.3 98.2 ± 0.6 98.2 ± 0.5 98.0 ± 0.4 97.9 ± 1.0 98.4 ± 0.5 96.7 ± 0.6

Incongruent task
1st HIIE 96.7 ± 1.1 96.7 ± 0.9 97.8 ± 1.0 97.4 ± 0.8 97.5 ± 0.8 97.8 ± 0.7 97.3 ± 0.6
2nd HIIE 97.8 ± 0.4 97.1 ± 0.7 96.7 ± 1.0 98.3 ± 0.6 97.7 ± 0.5 98.1 ± 0.7 98.5 ± 0.6

Values are presented as means ± SEM.
Congruent task (Reaction time [Condition F1, 9= 0.36, P=0.56; Time F6, 54= 6.36, P b 0.01; Condition × Time F6, 54= 0.64, P=0.70], Response accuracy [Condition F1, 9= 1.10, P=0.32;
Time F6, 54= 1.40, P=0.23; Condition × Time F6, 54= 1.28, P=0.28]), Neutral task (Reaction time [Condition F1, 9= 0.68, P=0.43; Time F6, 54= 7.42, P b 0.01; Condition × Time F6, 54=
1.42, P=0.23], Response accuracy [Condition F1, 9= 0.00, P=1.00; Time F6, 54= 1.24, P=0.30; Condition × Time F6, 54= 0.71, P=0.65]), Incongruent task (Reaction time [Condition F1,
9 = 0.53, P=0.49; Time F6, 54 = 16.00, P b 0.01; Condition × Time F6, 54 = 4.77, P b 0.01], Response accuracy [Condition F1, 9 = 0.58, P=0.47; Time F6, 54 = 1.07, P=0.39; Condition ×
Time F6, 54 = 0.98, P = 0.45]).
⁎ P b 0.05 vs. 1st HIIE, †, †† P b 0.05, 0.01 vs. pre-exercise, ‡, ‡‡ P b 0.05, 0.01 vs. 0 min, §§ P b 0.01 vs. 10 min.
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4. Discussion

Cognitive function involves various brain functions, including gen-
eral intellect, memory function, language function, perceptual function
and EF. Of these, EF is specifically involved in workingmemory, reason-
ing, task flexibility and problem solving [43]. Previous studies have
demonstrated that moderate-intensity continuous exercise can acutely
improve EF in various populations [12,44,45]. More recently, we have
found that the HIIE-induced improvement in EF was sustained for a sig-
nificantly longer period after exercise than with moderate-intensity
continuous exercise. Additionally we suggested that brain lactate me-
tabolism might have an important influence on post-exercise EF [35]
because Rasmussen et al. [46] suggested that the acceleration of lactate
Fig. 3. Changes in EF. The panel illustrates the changes in reverse-Stroop interference
score, which is an indicator of executive function (EF), for the 1st HIIE (open circles) and
2nd HIIE (solid circles). The values are expressed as the mean ± SEM. ** P b 0.01 vs. 1st
HIIE, †, †† P b 0.05, 0.01 vs. Pre, ‡‡ P b 0.01 vs. Post 0, §§ P b 0.01 vs. Post 10, # P b 0.05 vs.
Post 20.
metabolism in the brain during and after exercise is induced by blood
lactate levels ≥2 mM or 2–4 mM, respectively, and the mean values of
blood lactate levels at 30 min post-exercise recovery after HIIE were
found to be ≥2 mM. However, it is still unclear whether the increased
production of lactate induced by HIIE compared to moderate-intensity
continuous exercise could sustain high EF for longer. Therefore, the ini-
tial challenge of the present study was to examine the effects of differ-
ent concentrations of blood lactate during and after HIIE following the
same exercise procedure on EF. Lactate can accumulate during exercise,
particularly when rates of glycogenolysis and glycolysis are elevated
[36], probably due to 1) increased lactate production with speeded me-
tabolism, 2) increased recruitment of fast-twitch fibers with intense ex-
ercise, 3) decreased removal of blood; hence, decreased muscle
glycogen during and/or following prolonged exercise attenuates blood
lactate production and accumulation [3,4]. Lower lactate production
would be expected in response to the second session of HIIE (2nd
HIIE) if muscle glycogen was diminished by the first session of HIIE
(1st HIIE). Confirming our hypothesis, in the present study, we found
that blood lactate concentration during and after the 2nd HIIE was
lower than that during and after the 1st HIIE, even when implementing
the same exercise procedure. This finding also allowed us to examine
whether repeated HIIE, in which exercise increased lactate concentra-
tions, but that increase was lower in the second HIIE bout, affected
post-exercise EF.

Other novel findings of the present study were that EF increased
after the 1st HIIE and that the improvement was sustained for 40 min,
whereas the 2nd HIIE, during which blood lactate concentration was
lowered, failed to produce a sustained improvement in EF. In addition,
there was an inverse relationship at Post 20 (r = −0.48, P b 0.05),
Post 30 (r = −0.46, P b 0.05), Post 40 (r = −0.63, P b 0.01), and Post
50 (r=−0.58, P b 0.01), between changes in lactate and EF, indicating
that higher lactate levels were associated with a lower interference
score (i.e., better EF) during post-exercise recovery (Fig. 4). These rela-
tionships were not observed against glucose (Supplemental Fig. 1).
These findings suggested the possibility that repeated bouts of HIIE,
which decreases lactate accumulation, may dampen the positive effect



Fig. 4.Relationship between lactate and EF by plotting the changes in lactate levels against changes in EF (a.u., arbitrary unit) from pre-exercise at each time point during the post-exercise
periods. The open circles indicate the 1st HIIE response, and the solid circles indicate the 2nd HIIE response. There were inverse relationships at Post 20 (r = −0.48, P b 0.05), Post 30
(r = −0.46, P b 0.05), Post 40 (r = −0.63, P b 0.01), and Post 50 (r = −0.58, P b 0.01), between the two parameters. n.s., not significant.
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of exercise on EF, at least during the late phase of post-exercise
recovery.

Previous studies have posited that the aerobic exercise-induced im-
provement in EF might be related to increased psychological responses,
possibly through increases in neuronal activity in the brain. For exam-
ple, Soya and co-workers reported that improved EF after acute aerobic
exercisewas associatedwith increased L-DLPFC activity in the brain [11,
12]. Moreover, their recent study showed that improved EF after exer-
cise was correlated with enhanced psychological arousal levels [11].
However, the results of the present study demonstrated that felt arousal
level did not differ between the post-exercise recovery periods after
each round of HIIE. Additionally, after exercise, some psychological pa-
rameters such as concentration and motivation tended to be higher
Fig. 5.Changes in psychological parameters for the CWST. The panels illustrate the changes in fe
1st HIIE (open circles) and 2ndHIIE (solid circles). The arousal level was evaluated using a felt ar
visual analog scale. The values are expressed as the mean ± SEM. * P b 0.05 vs. 1st HIIE, †, †† P b
for the 2nd HIIE than for the 1st HIIE, indicating that psychological re-
sponses may not be sufficient to explain the lack of prolonged
exercise-induced improvements in EF following the 2nd HIIE.

We previously suggested that improved cognitive function during
exercise may be due to the augmented cerebral neuronal activation
andmetabolism associated with exercise rather than cerebral perfusion
[10]. It has been demonstrated that during high-intensity exercise, com-
pensatory increases in the uptake (a–v difference) of lactate, glucose
and oxygen support elevated brain neuronal activity and metabolism
[13]. In the present study, both the absolute glucose and lactate concen-
trations decreased, although the decreased level of glucose to the pre-
exercise phasewas lower, during and following the 2ndHIIE in compar-
ison to the 1st HIIE. Notably, however, at rest, the brain mainly relies on
lt arousal level (A),mental fatigue (B), ability to concentrate (C), andmotivation (D) for the
ousal scale.Mental fatigue, ability to concentrate, andmotivationwere evaluated using the
0.05, 0.01 vs. Pre, ‡, ‡‡ P b 0.05, 0.01 vs. Post 0.
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glucose, whereas during high-intensity exercise, glucose uptake signifi-
cantly decreases with increased blood lactate levels [47]. Interestingly,
due to the compensatory action of decreased glucose uptake, the main
energy source in the brain switches to lactate [6]. Rasmussen et al.
[46] suggested that the acceleration of lactate metabolism in the brain
is induced by blood lactate levels ≥2 mM. These findings suggest that
lactate fuels the human brain during and after exercise to satisfy aug-
mented cerebral neuronal activation and metabolic demand. Con-
versely, there is a possibility that lowered lactate concentration/
production during and after the 2nd HIIE compared to the 1st HIIE
might fail to adequately support elevated brain neuronal activity and
metabolism, thereby affecting improved EF following the 2nd HIIE.

Previously, Kamijo et al. [48] indicated that greater attentional re-
sources were allocated to the flanker task after moderate-intensity ex-
ercise, but not after high-intensity exercise, and suggested that EF a
fewminutes after exercisemay change in an inverted-U fashion relative
to exercise intensity. On the other hand, Chang et al. [49] reviewed the
effects of acute exercise on cognitive function (including EF) in a
meta-analysis, indicating the importance of exercise intensity and the
specific timing of the administration of cognitive tests in influencing
the size of the effect. The authors of this previous report noted that
when the cognitive test is administered following a delay after exercise,
more intense exercise produces the strongest effects. Although the
identification of themechanism regulating this relationship may be dif-
ficult owing to confounding factors involved in intense exercise, we
have shown that the lower production/accumulation of lactate without
decreased psychological responses diminished the size of the effect in
terms of prolonged EF after exercise in the present study. Thus,
exercise-induced lactate might, at least partially, affect EF following a
delay after exercise. To support this interpretation, we revisited the
data obtained in our recently published study [35] and found that
there were inverse relationships between EF and lactate as assessed
by plotting the changes in lactate levels against changes in EF from
pre-exercise at each time point during the post-exercise periods at
Post 20 (r=−0.36, P b 0.05) and Post 30 (r=−0.52, P b 0.01) follow-
ing HIIE, which was similarly performed in the current study or
workload-matched moderate-intensity continuous exercise (Supple-
mental Fig. 2). However, there was no relationship between EF and glu-
cose (Supplemental Fig. 3). These findings provide further support the
possibility that the improvement in EF with HIIE is linked to lactate
levels. Nevertheless, it should be noted that we did not demonstrate
the cause and effect relationship between lactate and post-exercise EF
such that it is merely a possibility that lactate is involved in the im-
proved EF (i.e., the results being merely co-relational and thus possibly
merely coinciding and possibly caused by other shared or non-shared
mechanisms). Thus, a potential direct link between lactate accumula-
tion and post-exercise EF should be further elucidated.

4.1. Limitations

The arterial lactate concentration increased several-fold during ex-
ercise, and the reduced oxygen-to-carbohydrate ratio (cerebral meta-
bolic ratio: CMR) during recovery was associated with a relatively
large lactate uptake by the brain [15,16]. We postulated that the accel-
eration of lactate metabolism in the brain during and after HIIE could
be associated with augmented neuronal activity, and hence improve-
ment in post-exercise EF; however, we did not measure lactate metab-
olism and neuronal activity in the brain. To test our hypothesis, further
studies are needed to assess the relationship between the exercise-
induced enhancement of neuronal activity aswell as lactatemetabolism
in the brain and EF. In addition, we did not examine the effect of re-
peated HIIE on EF compared to control conditions such as sedentary,
the same experiments performed later during the day, or repeated
very light-intensity interval exercise which would not be accompanied
by less lactate accumulation in the second bout of exercise. Further-
more, many physiological factors that could influence lactate
metabolism and hence EFmight be altered in the 2ndHIIE. For example,
O2 uptake kineticsmight be faster,which could contribute to less lactate
accumulation (less production, more removal). Alternatively, it would
be needed to add lactate infusion to the 2ndHIIE to see if simply increas-
ing the lactate concentration causes EF to return.

Furthermore, with repeated bouts of exercise, there might also be a
possibility that fatigue (e.g., central fatigue), which may not be evident
from the obtained subjectivemeasures, results in the lack of attention in
the subsequent tests. Neurohumoral and metabolite responses, includ-
ing their precursors, such as serotonin, tryptophan, dopamine, and the
depletion of brain glycogen stores, could be related to exercise-
induced central fatigue [14,16,50–52]. One may argue that there was
likely to be neurotransmitter quantitative and qualitative changes oc-
curring and there was a possibility of neural accommodation occurring
during the 2ndHIIE, reducing the effectiveness of the neurotransmitters
released. In addition, interactions between excitatory and inhibitory
pathways might influence the responses. Further studies are needed
to determine the association between neurohumoral andmetabolite re-
sponses and brain function during and after exercise.

Finally, we did not identify the interrelationship between changes in
lactate levels and EF at Post 0 and Post 10 followingHIIE, suggesting that
many other factors might affect EF, at least shortly after post-exercise
recovery. VAS analyses revealed that the arousal level tended to in-
crease immediately after each round of HIIE. In addition, the concentra-
tion tended to be higher for the 2nd HIIE than for the 1st HIIE at Post 0.
However, we cannot discount the possibility that these psychological
factors affected the interrelationship between changes in the lactate
levels and EF shortly after post-exercise recovery. As previously de-
scribed, direct evidence of lactate infusion to the 2nd HIIE to determine
whether simply increasing the lactate concentration causes EF to im-
prove is warranted.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.physbeh.2016.03.029.
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