Chemical Composition of Essential Oil from Alpinia zerumbet Fruits

Yuto NISHIDONO*1, Azis SAIFUDIN*2, Yuting YANG*3, Ken TANAKA*4

Abstract:

Alpinia zerumbet, commonly known as shell ginger, is a perennial plant that belongs to the Zingiberaceae family. Its various parts, including fruits and seeds, are used in traditional medicines, each of which exhibits a different therapeutic efficacy. In this study, we employed gas chromatography/mass spectrometry to investigate the chemical composition of essential oils extracted from shell ginger fruits, seeds, and pericarps. Fifty-four metabolites, including monoterpenoids, sesquiterpenoids, diterpenoids, and aromatic compounds in the essential oils were either annotated or identified. Among the metabolites, oxygenated sesquiterpenes were identified as the major constituents of the essential oils extracted from the fruits, seeds, and pericarps. The diterpenoids and oxygenated monoterpenes in the fruit oil were derived from the seeds and pericarps, respectively. The predominant constituent of fruit and seed oils was α -cadinol. In the pericarp oil, humulene epoxide II was predominant. Furthermore, quantitative analysis of the n-hexane extracts revealed that the (E)-labda-8(17), 12-diene-15,16-dial and 7,8-dihydro-5,6-dehydrokawain in the fruits are derived from the seeds and pericarps, respectively. These results demonstrate the difference between the chemical compositions of the seeds and the pericarps of shell ginger and reveal that fruits contain phytochemicals derived from the seeds and pericarps, providing understanding of the differences in the medicinal properties of A. zerumbet fruits and seeds.

Keywords: Alpinia zerumbet, shell ginger, fruits, essential oil, GC/MS

1. Introduction

Alpinia zerumbet (Pers.) B.L.Burtt & R.M.Sm., commonly known as shell ginger, is a perennial plant of the Zingiberaceae family that is widely distributed in South America, Asia, and Oceania

©Asia-Japan Research Institute of Ritsumeikan University: Journal of the Asia-Japan Research Institute of Ritsumeikan University, 2025. PRINT ISSN 2435-0184 ONLINE ISSN 2435-0192, Vol.7, pp.66–80.

^{*1} Assistant Professor, College of Pharmaceutical Sciences, Ritsumeikan University

^{*2} Associate Professor, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta

^{*3} Doctoral Student, Graduate School of Pharmacy, Ritsumeikan University

^{*4} Professor, College of Pharmaceutical Sciences, Ritsumeikan University Email: *1 nisidono@fc.ritsumei.ac.jp Received on 2024/12/3, accepted after peer reviews on 2025/4/22.

(Paulino et al. 2019). Its parts have been used in traditional medicines owing to their therapeutic efficacy (Wei et al. 2020). In Brazil, the plant is called *Colônia* (Victório 2011), and tea made from the leaves have been used as an anti-hypertensive and diuretic medicine (da Cruz et al. 2020; Mpalantinos et al. 1998). In Japan, where it is known as *Gettou* (Okazaki et al. 2023), the seeds were used as aromatic stomachics (Itokawa et al. 1980). In China, the rhizomes and mature fruits of *A. zerumbet* (*Yàn shān jiāng* in Chinese) have been used in medicines (Hsu et al. 1994; Xiao et al. 2024). The Miao people of Guizhou Province have used the mature fruits of the plant to treat cardiovascular diseases (Ji et al. 2019).

Essential oil is a key bioactive ingredient of A. zerumbet fruits and has pharmacological properties, including endothelial protective, anti-inflammatory, analgesic, anti-atherosclerotic, antimicrobial, and neuroprotective activities (Ji et al. 2019; Nishidono and Tanaka 2024). Previous studies have revealed the chemical composition of essential oils extracted from shell ginger fruits (Feng et al. 2021; Hou et al. 2023; Tao et al. 2013). Tao et al. (2013) identified 58 metabolites in the essential oil extracted from shell ginger fruits collected from Zhenfeng County, Guizhou Province, China, among which β -phellandrene (16.4%), β -pinene (15.1%), 1,8-cineole (11.0%), and camphene (10.1%) were predominant. Feng et al. (2021) identified 38 metabolites in the essential oil extracted from shell ginger fruits collected from Guizhou Province, China, and revealed that 1,8-cineole (8.8%) is the major constituent. Hou et al. (2023) identified 26 sesquiterpenoids (sesquiterpenes and oxygenated sesquiterpenes) and 27 monoterpenoids (monoterpenes and oxygenated monoterpenes) in the essential oil prepared from shell ginger fruits purchased from Yulin, Guangxi Province, China, and reported that β -pinene (15.1%) is the major volatile constituent. Furthermore, the ethyl acetate extract of A. zerumbet fruits, which is rich in 7,8-dihydro-5,6-dehydrokawain, has an anti-hypertensive effect (Xiao et al. 2024), and the petroleum ether extract contains a high proportion of phenolic compounds and exhibits antimicrobial activities (Hou et al. 2023).

Previous studies have revealed the chemical composition of shell ginger fruits; however, the distribution and concentration of phytochemicals in different parts of the fruits, including the seeds and pericarps, remain unclear. Investigating these aspects could contribute to the scientific validation of the traditional understanding that *A. zerumbet* fruits and seeds possess different medicinal properties. Therefore, herein, we prepared essential oils and *n*-hexane extracts from shell ginger fruits, seeds, and pericarps and investigated their chemical compositions using gas chromatography/mass spectrometry (GC/MS).

2. Experimental

(1) General Experimental Procedures

Nuclear magnetic resonance (NMR) spectra were recorded using a JNM-ECZ500R spectrometer (JEOL Ltd., Tokyo, Japan) with tetramethylsilane as the internal standard. GC/MS was performed using a GCMS-QP2010 equipped with an AOC-20i auto-injector (Shimadzu Corporation, Kyoto, Japan). Medium-pressure liquid chromatography (MPLC) was performed using a Yamazen pump 540 (Yamazen Corporation, Osaka, Japan), and thin-layer chromatography was performed using precoated silica gel $60~F_{254}$ or RP-18 F_{254} plates (Merck, Darmstadt, Germany).

(2) Plant Materials

Dried mature fruits of Alpinia zerumbet (Pers.) B.L.Burtt & R.M.Sm. (Zingiberaceae) were

purchased from Gettou farm (Okinawa, Japan). Samples were identified by DNA barcoding of the gene regions, internal transcribed spacer 1 and *trnH-psbA* (Nishidono et al. 2023). The fruits were manually shucked and separated into seeds, pericarps, and placentas (Figure 1). Rhizomes of *Zingiber officinale* Roscoe (*Zingiberaceae*) for isolating authentic compound were purchased from Kimura farm (Aichi, Japan). Voucher specimens (RIN:210301 of shell ginger and RIN-170101 of ginger) were deposited at the Museum of Materia Medica, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan.

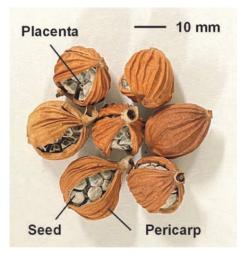


Figure 1. Photo of Alpinia zerumbet Fruits

(3) Preparation of Standards

Extraction using acetone was applied to 2 kg of ginger to yield 45.4 g of extract. The extract was suspended in water, and extraction with ethyl acetate was applied to obtain the ethyl-acetate-soluble fraction (14.8 g). Next, 12.0 g of the ethyl-acetate-soluble fraction was subjected to silica gel column chromatography using a solvent gradient elution of n-hexane—ethyl acetate mixtures at ratios of 8:2 to 0:1 (v/v) to yield 13 fractions (Nishidono et al. 2020b). Fraction 3 (0.4 g) was further separated by MPLC with an octadecylsilyl column (95% MeOH) to obtain (E)-labda-8(17),12-diene-15,16-dial (82.7 mg). The compound was identified by comparing its NMR spectra with the previously reported data (Morita and Itokawa 1988). The isolation of 7,8-dihydro-5,6-dehydrokawain and (E)-15,16-dinorlabda-8(17),11-dien-13-one was described in our previous studies (Nishidono et al. 2020a; Saifudin et al. 2013).

(4) Sample Preparation

The fruits, seeds, and pericarps were ground into powder using a Tube Mill 100 control (IKA, Staufen, Germany). Samples (50 g of fruits, 50 g of seeds, and 20 g of pericarps) mixed with distilled water (sample:water ratio = 1:10) were hydrodistilled for 4 h to obtain essential oils. Next, 1 μ L of the obtained essential oils was diluted with 1 mL of *n*-hexane, and then, 1 μ L of the diluted oil was injected into the GCMS-QP2010 system. Furthermore, extraction was performed on 30 mg of fruits, seeds, and pericarps using *n*-hexane (3 mL) at room temperature for 24 h. The extract was filtered through a 0.45- μ m millipore filter (Advantec, Tokyo, Japan), and 1 μ L of the filtered extract was injected into the GCMS-QP2010 system.

(5) GC/MS

The GC parameters included an injector temperature of 270°C and a carrier gas (helium) with a flow rate of 1 mL/min. The compounds were separated using a DB-5ms capillary column (30 m \times 0.25 mm i.d., film thickness 0.25 μ m, Agilent Technologies, Santa Clara, CA, USA). For the essential oil analysis, the initial oven temperature was 50°C, the initial hold time was 3 min, the temperature rampup rates were 3°C/min from 50°C to 200°C and 10°C/min from 200°C to 300°C, and the final hold time was 5 min. For the *n*-hexane extract analysis, the initial oven temperature was 50°C, the initial hold time was 3 min, the temperature ramp-up rate was 10°C/min, and the final temperature and hold times were 300°C and 5 min, respectively. For the MS conditions, the ionization mode was electron ionization (EI), the ionization current and voltage were 60 μ A and 70 eV, respectively, and the ion source and interface temperature were 270°C.

Eluted metabolites were annotated via library search using the NIST08 and Wiley 9 databases and verified by comparing the retention index (RI) and EI-MS spectrum with those in the literature. Some eluted metabolites were identified using standards. The RI value for each compound was calculated using an alkane mixture (GL Sciences, Tokyo, Japan) as a reference. Metabolite annotation and identification were performed according to the confidence levels of the Metabolomics Standards Initiative (MSI) (Sumner et al. 2007), which include the following four levels: MSI level 1, identified compounds; MSI level 2, putatively annotated compounds; MSI level 3, putatively characterized compound classes; MSI level 4, unknown compounds.

The peaks in the total ion current (TIC) chromatograms were detected (slope = 10,000 min⁻¹; width = 3 s; no smoothing), and their absolute peak areas were obtained using the Shimadzu GCMS Solution software (Shimadzu Corporation). Among them, peaks with absolute peak areas exceeding 1,000,000 were considered the major metabolites.

3. Results and Discussion

(1) Chemical Composition of the Essential Oils

The dried mature fruits were manually shucked and separated into seeds, pericarps, and placentas. Because the fruits were mainly composed of seeds (76.7%, w/w) and pericarps (22.5%, w/w), with the placentas constituting only 0.8% (w/w), the placentas were not considered in further studies. Essential oils were prepared from the fruits, seeds, and pericarps by hydrodistillation and analyzed by GC/MS. The yield of essential oils from the fruits, seeds, and pericarps was less than 0.2%, 0.2%, and 0.5% (v/w), respectively. Figure 2 shows the GC/MS TIC chromatograms of the samples. Table 1 lists the major metabolites annotated or identified in the essential oils and their contents (%), and Figure 3 shows their chemical structures. These metabolites represent 90.1%, 94.0%, and 94.5% of the essential oils prepared from the shell ginger fruits, seeds, and pericarps, respectively. The annotations of peaks 1–32, 34–37, and 39–46 were obtained from library searches (NIST and Wiley Mass Spectral libraries) and were verified by comparing their RI values and EI-MS spectra with those given in the Adams database (Adams 2007). Peaks 49 and 52 were annotated as γ -bicyclohomofarnesal and (E)-15,16dinorlabda-8(17),12-dien-14-al, respectively, based on previous studies (Urbanova et al. 2024; Weyerstahl et al. 1995). Peaks 51, 53, and 54 were identified as (E)-15,16-dinorlabda-8(17),11-dien-13-one, tricosane, and (E)-labda-8(17),12-diene-15,16-dial, respectively, based on the authentic compound. Peaks 33, 38, 47, 48, and 50 could not be identified (Figure 4). Peaks 33, 38, and 48 were tentatively annotated as oxygenated sesquiterpenes based on the peak at 220 (m/z), and peak 47 was

tentatively annotated as an oxygenated sesquiterpene based on the peak at 218 (m/z). Peak 50 was tentatively annotated as norlabdane diterpene based on the peak at 246 (m/z) and previous report (Weyerstahl et al. 1995). Based on these results, peaks 51, 53, and 54 were identified at MSI level 1, peaks 1–32, 34–37, 39–46, 49, and 52 were annotated at MSI level 2, and peaks 33, 38, 47, 48, and 50 were tentatively annotated at MSI level 3.

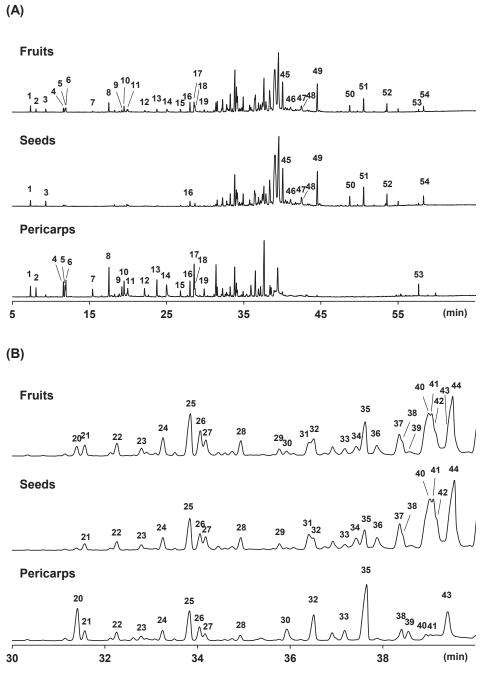


Figure 2. Gas Chromatography/Mass Spectrometry Total Ion Current (TIC) Chromatograms
(A) TIC chromatograms of essential oils extracted from the fruits, seeds, and pericarps of shell ginger. (B) Enlarged TIC chromatograms (retention times from 30 to 40 min). The numbers in the figure indicate the compounds in Table 1 and Figure 3.

Table 1. Composition of Essential Oils of the Fruits, Seeds, and Pericarps of A. zerumbet

Peak No.	RT	RI	Compounds –	Relative contents (%)		
	(min)			Fruits	Seeds	Pericarps
1	7.36	936	α-Pinene	0.6	0.6	1.3
2	8.07	952	Camphene			1.1
3	9.33	978	β -Pinene		0.5	
4	11.62	1025	p-Cymene			2.1
5	11.82	1030	Limonene			1.8
5	11.94	1032	1,8-Cineol			2.3
7	15.40	1100	Linalool			1.2
8	17.50	1146	Camphor	1.0		4.3
)	19.19	1180	Terpinen-4-ol			1.7
10	19.48	1185	Cryptone	0.7		2.7
11	19.96	1194	α-Terpineol			1.4
12	22.13	1242	Cuminaldehyde			1.5
13	23.74	1276	p-Menth-1-en-7-al			2.8
14	25.04	1303	Carvacrol	0.6		3.0
15	26.80	1344	α-Cubebene		0.6	0.9
16	28.03	1372	α-Copaene	1.2	0.6	2.5
17	28.56	1383	(E)-Cinnamic acid methyl ester	1.3		6.0
18	28.67	1386	β -Elemene	0.8		1.1
19	29.87	1413	β -Caryophyllene	1.0		1.3
20	31.39	1450	α-Humulene	1.2	0.0	5.5
21	31.56	1455	allo-Aromadendrene	1.4	0.8	1.4
22	32.26	1471	γ-Muurolene	1.6	1.1	1.3
23	32.79	1483	β -Selinene	1.0	0.7	0.8
24	33.25	1494	α-Muurolene	2.6	1.7	1.7
25	33.84	1508	γ-Cadinene	6.4	4.6	5.2
26	34.06	1514	δ -Cadinene	3.7	2.4	2.3
27	34.18	1517	cis-Calamenene	2.2	1.8	1.1
28	34.93	1537	α-Calacorene	1.9	1.6	0.8
29	35.77	1558	β-Calacorene	0.9	0.8	2.4
30	35.92	1562	(E)-Nerolidol	0.6	2.0	2.4
31	36.41	1574	Spathulenol	1.8	2.8	4.0
32	36.51	1576	Caryophyllene oxide	2.6	1.3	4.9
33	37.18	1592	Oxygenated sesquiterpene	1.1	0.9	1.9
34	37.43	1598	Ledol	1.7	2.3	10.7
35 36	37.62 37.87	1603	Humulene epoxide II	5.3	3.0	12.7
87		1610	1,10-Di- <i>epi</i> -Cubenol	2.1 3.2	2.4 4.0	
88	38.35	1624	1-epi-Cubenol	0.9	1.0	2.1
90 39	38.40 38.55	1625	Oxygenated sesquiterpene γ-Eudesmol	0.9	1.0	1.7
10		1629	•	9.0	12.7	0.9
10 11	38.93	1639	<i>epi-α</i> -Cadinol <i>epi-α</i> -Muurolol	5.1	5.7	0.9
12	39.03 39.16	1642 1645	δ -Cadinol	2.5	3.7	0.9
13	39.10	1652		2.3	3.4	6.9
14	39.40	1654	β-Eudesmol $α$ -Cadinol	12.2	18.0	0.9
1 4 15	40.04	1668	α-Cadinoi Cadalene	4.1	6.0	
16 17	41.06	1695 1735	4-Isopropyl-6-methyl-1-tetralone	0.5	0.7	
18	42.47 42.53	1735 1736	Oxygenated sesquiterpene Oxygenated sesquiterpene	0.6	1.1 0.7	
+8 19	44.53	1730	γ-Bicyclohomofarnesal	4.0	5.3	
50	44.53		γ-Bicyclonomotarnesat Norlabdane diterpene	4.0 0.7		
		1915	-		1.1	
51	50.54	1970	(E) 15,16-Dinorlabda-8(17),11-dien-13-one	1.7	2.5	
52	53.56	2071	(E)-15,16-Dinorlabda-8(17),12-dien-14-al	0.9	1.3	0.0
53	57.68	2300	Tricosane	0.5	0.0	0.9
54	58.31	2351	(E)-Labda-8(17),12-diene-15,16-dial	0.5	0.8	

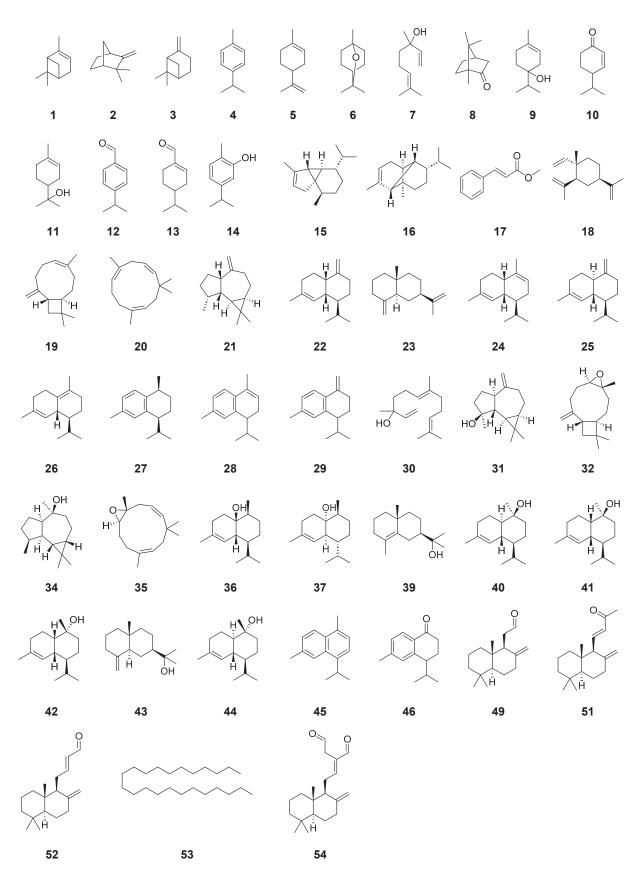


Figure 3. Chemical Structures of the Annotated or Identified Metabolites

The absolute chemistry of each compound remains to be clarified.

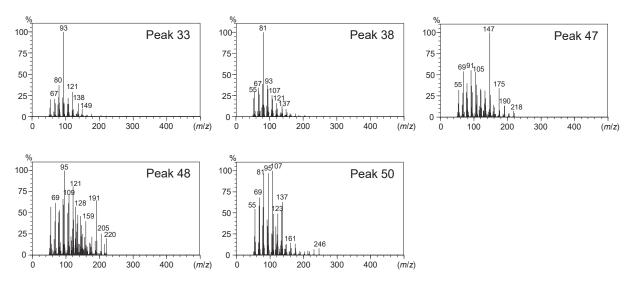


Figure 4. Electron Ionization Mass Spectrometry Spectra of Unidentified Peaks

The essential oil extracted from the shell ginger fruits mainly contained sesquiterpenoids, including α -cadinol (12.2%), epi- α -cadinol (9.0%), γ -cadinene (6.4%), humulene epoxide II (5.3%), and $epi-\alpha$ -muurolol (5.1%) (Table 1). Among them, α -cadinol, $epi-\alpha$ -cadinol, and $epi-\alpha$ -muurolol were mainly derived from the seeds, and humulene epoxide II was mainly from pericarps. γ -Cadinene was derived from both the seeds and pericarps. These results differ from those reported for shell ginger fruits collected in China, in which monoterpenoids are predominant (Feng et al. 2021; Hou et al. 2023; Tao et al. 2013). In the seed oil, α -cadinol (18.0%), $epi-\alpha$ -cadinol (12.7%), cadalene (6.0%), $epi-\alpha$ muurolol (5.7%), and γ -bicyclohomofarnesal (5.3%) were the major constituents (Table 1). This is consistent with a previous report (Elzaawely et al. 2007) in which α-cadinol (oxygenated sesquiterpene) was identified as the most abundant volatile constituent (13.5%) of the seed oil extracted from shell ginger cultivated in Japan. However, several studies have shown that monoterpenoids are the major volatile constituents of seed oils extracted from shell ginger from Taiwan (Ho 2010; Lin et al. 2008). Therefore, the chemical composition of essential oils from the shell ginger fruits and seeds may depend on the location where the plant is grown. To date, only a few studies have analyzed the essential oils extracted from the seeds and fruits of shell ginger (Elzaawely et al. 2007; Feng et al. 2021; Ho 2010; Hou et al. 2023; Lin et al. 2008; Tao et al. 2013). Therefore, there is a need for further research to confirm the compositions of the essential oils and determine their variations with plant locations.

The essential oil from the pericarps was dominated by humulene epoxide II (12.7%), followed by β -eudesmol (6.9%), (E)-cinnamic acid methyl ester (6.0%), α -humulene (5.5%), and γ -cadinene (5.2%) (Table 1). To the best of our knowledge, this is the first report that describes the chemical composition of essential oils of A. zerumbet pericarps.

Figure 5 shows the chemical classes of the volatiles and their relative contents in the essential oils. The essential oil from the fruits mainly contains monoterpenoids, sesquiterpenoids, diterpenoids, and aromatic compounds. Among them, oxygenated sesquiterpenes were predominant, and diterpenoids and oxygenated monoterpenes were derived from the seeds and pericarps, respectively. A previous study revealed that most essential oils prepared from shell ginger leaves, rhizomes, and flowers are rich in oxygenated monoterpenes (1,8-cineole and terpinen-4-ol) (Nishidono and Tanaka

2024). The chemical composition of essential oils prepared from the fruits and seeds mainly contains oxygenated sesquiterpenes, which differ from those extracted from the leaves, rhizomes, and flowers.

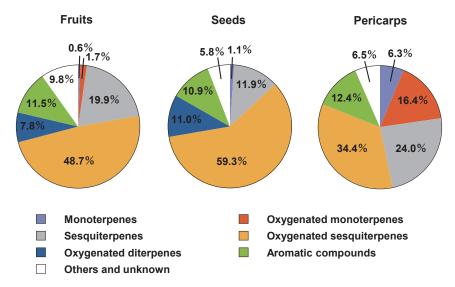


Figure 5. Chemical Classes of the Volatiles and their Relative Contents (%) in the Essential Oils from the Fruits, Seeds, and Pericarps of Shell Ginger

The bioactivities of essential oils prepared from shell ginger fruits and seeds are shown in Table 2. The pericarps are included in the fruits but not in the seeds. Therefore, the difference in clinical efficacy between the whole fruits, including the seeds and pericarps, and the seeds alone of shell ginger may be because of the phytochemicals in the pericarps.

Table 2. Bioactivities of Fruit and Seed Essential Oils of Shell Ginger

Plant parts	Bioactivities	References	
Fruits	Analgesic	(Xiao et al. 2018)	
	Anti-atherosclerotic	(Wang et al. 2024)	
	Anti-inflammatory	(Hou et al. 2023)	
		(Xiao et al. 2018)	
	Antimicrobial	(Hou et al. 2023)	
	Endothelial protective	(Ji et al. 2019)	
		(Shen et al. 2012)	
		(Xiao et al. 2014)	
		(Zhang et al. 2022)	
		(Zhang et al. 2020)	
	Neuroprotective	(Yang et al. 2020)	
	Vasodilator	(Tao et al. 2013)	
Seeds	Antimicrobial	(Ho 2010)	
	Hypolipidemic	(Chuang et al. 2011)	
		(Lin et al. 2008)	
	Larvicidal	(Ho 2010)	
	Tyrosinase inhibitory	(Ho 2010)	

(2) Chemical Composition of the *n*-Hexane Extracts

Extraction was performed on shell ginger fruits, seeds, and pericarps using n-hexane, which efficiently extracts bioactive compounds from shell ginger plants (Nishidono and Tanaka 2024). The chemical compositions of the extracts were analyzed by GC/MS, and their TIC chromatograms are

shown in Figure 6A. The chemical compositions of the *n*-hexane extracts differ significantly from those of the essential oils. The TIC chromatograms of the *n*-hexane extract of the fruits show two major peaks (22.26 and 24.33 min), which originate from the pericarps and seeds, respectively. These peaks were identified based on standards. The retention time and EI-MS spectra of 7,8-dihydro-5,6-dehydrokawain and (*E*)-labda-8(17),12-diene-15,16-dial were matched with those of the peaks at 22.26 and 24.33 min, respectively (Figure 6B–D). These results show that 7,8-dihydro-5,6-dehydrokawain and (*E*)-labda-8(17),12-diene-15,16-dial can be extracted more efficiently from shell ginger fruits using *n*-hexane than through hydrodistillation.

Table 3 lists the metabolite contents of the samples. The fruits and pericarps contained 0.24% and 0.59% 7,8-dihydro-5,6-dehydrokawain, respectively. These results are consistent with a previous study, which reported that shell ginger pericarps contain 0.54% 7,8-dihydro-5,6-dehydrokawain (Rao

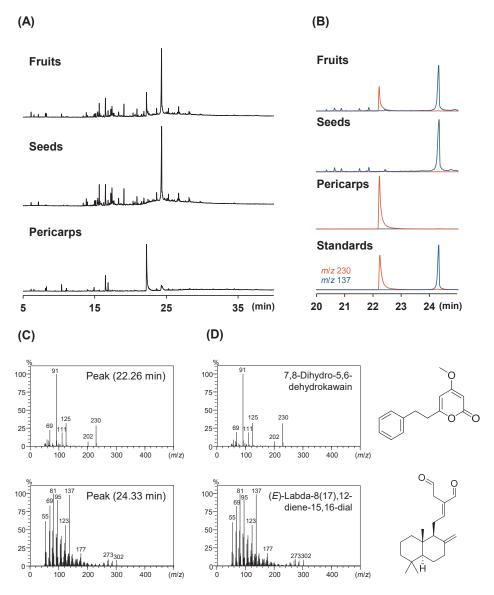


Figure 6. Identification of Two Major Peaks in the Total Ion Current (TIC) Chromatogram of the *n*-Hexane Extract of Shell Ginger Fruits

(A) TIC chromatograms of the *n*-hexane extracts of the fruits, seeds, and pericarps of shell ginger. (B) Extracted ion current chromatograms of the *n*-hexane extracts of the fruits, seeds, and pericarps of shell ginger and standards. (C) Electron Ionization Mass Spectrometry (EI-MS) Spectra of the two major peaks in the TIC chromatogram of the *n*-hexane extract of the shell ginger fruits. (D) EI-MS Spectra of the Standards.

et al. 2014). The (E)-labda-8(17),12-diene-15,16-dial contents in the fruits and seeds were 0.84% and 1.22%, respectively. Chompoo et al. (2011, 2012) also estimated the content of diterpene in shell ginger extracts but not in dried plants. Herein, we determined the content of (E)-labda-8(17),12-diene-15,16-dial in different plant parts of shell ginger for the first time. As listed in Table 3, 7,8-dihydro-5,6-dehydrokawain and (E)-labda-8(17),12-diene-15,16-dial in the fruit extracts were derived from the pericarps and seeds, respectively.

Table 3. Quantification of the Characterized Compounds (%) in the *n*-Hexane Extracts of Fruits, Seeds, and Pericarps of Shell Ginger

	Fruits	Seeds	Pericarps
7,8-Dihydro-5,6-dehydrokawain	0.24		0.59
(E)-Labda-8(17),12-diene-15,16-dial	0.84	1.22	

The bioactivities of these metabolites are listed in Table 4. These results demonstrate that the medicinal properties of (E)-labda-8(17),12-diene-15,16-dial are expected in shell ginger fruits and seeds, whereas those of 7,8-dihydro-5,6-dehydrokawain are expected in the fruits but not the seeds.

Table 4. Bioactivities of the Characterized Compounds

Compounds	Bioactivities	References	
7,8-Dihydro-5,6-dehydrokawain	Antifungal	(Tawata et al. 1996)	
	Antihypertensive (Xiao et al. 2024)		
	Anti-inflammatory	(Nishidono et al. 2020a)	
	Anti-obesity	(Tu and Tawata 2014)	
	Antiplatelet	(Teng et al. 1990)	
	Antiulcer	(Hsu et al. 1994)	
	HIV-1 integrase inhibitory	(Upadhyay et al. 2011)	
	Neuraminidase inhibitory	(Upadhyay et al. 2011)	
	Neuroprotective	(Rao et al. 2014)	
(E)-Labda-8(17),12-diene-15,16-dial	α-Amylase inhibitory	(Ghosh and Rangan 2014)	
	Anti-alopecia	(Taira et al. 2017)	
	Antibacterial	(Ghosh et al. 2013)	
	Anticancer	(Taira et al. 2017)	
	Antifungal	(Morita and Itokawa 1988)	
	Antiglycation	(Chompoo et al. 2011)	
	Anti-hyperlipidemic	(Jalaja et al. 2021)	
	Anti-inflammatory	(Chen et al. 2013)	
		(Chen et al. 2017)	
		(Hsiao et al. 2020)	
		(Morikawa et al. 2002)	
	Antimicrobial	(Tatsimo et al. 2005)	
	Anti-Trypanosoma	(Igoli et al. 2012)	
	Anti-tubercular	(Singh et al. 2010)	
	Anti-proliferative	(Liu and Nair 2011)	
	COX-2 inhibitory	(Liu and Nair 2011)	
	Cytotoxicity	(Itokawa et al. 1988)	
		(Malek et al. 2011)	
		(Morita and Itokawa 1988)	
	α -Glucosidase inhibitory	(Ghosh and Rangan 2015)	
	β -Glucuronidase inhibitory	(Liew et al. 2020)	
	Lipid peroxidation inhibitory	(Liu and Nair 2011)	
	5-Lipoxygenase inhibitory	(Abe et al. 2006)	
	Neuraminidase inhibitory	(Upadhyay et al. 2011)	
	Pancreatic lipase inhibitory	(Jalaja et al. 2018)	

4. Conclusion

In this study, we determined the chemical composition of essential oils prepared from the fruits, seeds, and pericarps of shell ginger using GC/MS. Fifty-four metabolites in the essential oils were annotated or identified, and oxygenated sesquiterpenes were identified as the major constituents of the essential oils. The presence of diterpenoids and oxygenated monoterpenes in the essential oil from the fruits is attributed to the seeds and pericarps, respectively. Among the volatile constituents, α -cadinol in the fruit and seed oils and humulene epoxide II in the pericarp oil were predominant, which differ from the results reported for the essential oils of shell ginger leaves, rhizomes, and flowers. Furthermore, analysis of the bioactive compounds in the n-hexane extracts revealed that 7,8-dihydro-5,6-dehydrokawain and (E)-labda-8(17),12-diene-15,16-dial present in the fruits are derived from the pericarps and seeds, respectively. These results demonstrate the differences in the chemical compositions of the seeds and pericarps of shell ginger and reveal that the fruits contain phytochemicals derived from the seeds and pericarps, providing valuable insights into the differences in the medicinal properties of A. zerumbet fruits and seeds.

Acknowledgments

This research was partly funded by the AJI research advancement promotion program (2024-III-2) of the Asia-Japan Research Institute, Ritsumeikan University (Ibaraki, Osaka, Japan).

References

- Abe, Masako, Yoshio Ozawa, Yasushi Uda, Yasujiro Morimitsu, Yoshimasa Nakamura and Toshihiko Osawa. 2006. A Novel Labdane-Type Trialdehyde from Myoga (*Zingiber mioga* Roscoe) That Potently Inhibits Human Platelet Aggregation and Human 5-Lipoxygenase. *Bioscience Biotechnology and Biochemistry*, 70(10), 2494–2500.
- Adams, Robert P. 2007. *Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th Edition*. Allured Publishing Corporation.
- Chen, Jih-Jung, Chia-Wei Ting, Yi-Chin Wu, Tsong-Long Hwang, Ming-Jen Cheng, Ping-Jyun Sung, Tai-Chi Wang and Jinn-Fen Chen. 2013. New Labdane-type Diterpenoids and Anti-inflammatory Constituents from *Hedychium coronarium*. *International Journal of Molecular Sciences*, 14(7), 13063–13077.
- Chen, Jih-Jung, Hsiang-Ruei Liao, Keh-Shaw Chen, Ming-Jen Cheng, Chih-Wen Shu, Ping-Jyun Sung, Yun-Ping Lim, Tai-Chi Wang and Wen-Lung Kuo. 2017. A New 2H-Pyran-2-One Derivative and Anti-inflammatory Constituents of *Alpinia zerumbet*. *Chemistry of Natural Compounds*, 53(1), 40–43.
- Chompoo, Jamnian, Atul Upadhyay, Wataru Kishimoto, Tadahiro Makise and Shinkichi Tawata. 2011. Advanced Glycation End Products Inhibitors from *Alpinia zerumbet* Rhizomes. *Food Chemistry*, 129(3), 709–715.
- Chompoo, Jamnian, Atul Upadhyay, Masakazu Fukuta and Shinkichi Tawata. 2012. Effect of *Alpinia zerumbet* Components on Antioxidant and Skin Diseases-related Enzymes. *BMC Complementary and Alternative Medicine*, 12, 106.
- Chuang, Chao-Ming, Hui-Er Wang, Chiung-Chi Peng, Kuan Chou Chen and Robert Y. Peng. 2011. Hypolipidemic Effects of Different Angiocarp Parts of *Alpinia zerumbet*. *Pharmaceutical Biology*, 49(12), 1257–1264.
- da Cruz, Jefferson D., Maria A. Mpalantinos, Aline de S. Ramos, José Luiz P. Ferreira, Aimêe A. de Oliveira, Nilton L. Nett. Júnior, Jefferson Rocha de A. Silva and Ana Claudia F. Amaral. 2020. Chemical Standardization, Antioxidant Activity and Phenolic Contents of Cultivated *Alpinia zerumbet* Preparations. *Industrial Crops and Products*, 151, 112495.
- Elzaawely, Abdelnaser A., Tran D. Xuan, Haruo Koyama and Shinkichi Tawata. 2007. Antioxidant Activity and Contents of Essential Oil and Phenolic Compounds in Flowers and Seeds of *Alpinia zerumbet* (Pers.) B.L. Burtt. & R.M. Sm. *Food Chemistry*, 104(4), 1648–1653.
- Feng, Yi-Xi, Xu Zhang, Yang Wang, Zhen-Yang Chen, Xin-Xin Lu, Yue-Shen Du and Shu-Shan Du. 2021. The

- Potential Contribution of Cymene Isomers to Insecticidal and Repellent Activities of the Essential Oil from *Alpinia zerumbet*. *International Biodeterioration and Biodegradation*, 157, 105138.
- Ghosh, Sudipta, Kiran Indukuri, Somasekhar Bondalapati, Anil K. Saikia and Latha Rangan. 2013. Unveiling the Mode of Action of Antibacterial Labdane Diterpenes from *Alpinia nigra* (Gaertn.) B. L. Burtt Seeds. *European Journal of Medicinal Chemistry*, 66, 101–105.
- Ghosh, Sudipta, and Latha Rangan. 2014. Molecular Docking and Inhibition Studies of α-Amylase Activity by Labdane Diterpenes from *Alpinia nigra* Seeds. *Medicinal Chemistry Research*, 23, 4836–4852.
- ——. 2015. Molecular Docking and Inhibition Kinetics of α-Glucosidase Activity by Labdane Diterpenes Isolated from Tora Seeds (*Alpinia nigra* B.L. Burtt.). *Applied Biochemistry and Biotechnology*, 175, 1477–1489.
- Ho, Jiau-Ching. 2010. Chemical Composition and Bioactivity of Essential Oil of Seed and Leaf from *Alpinia speciosa* Grown in Taiwan. *Journal of the Chinese Chemical Society*, 57(4A), 758–763.
- Hou, Jiaojiao, Huxuan Gong, Zan Gong, Xiangxiang Qin, Jing Nie, Hua Zhu and Shian Zhong. 2023. Chemical Composition and Potential Antimicrobial and Anti-inflammatory Activities of Essential Oil from Fruits of *Alpinia zerumbet* (Pers.) B.L.Burtt & R.M.Sm. *Chemistry and Biodiversity*, 20(12), e202301269.
- Hsiao, Jen-Wen, Li-Chai Chen, Chien-Liang Lin, Tsung-Hsien Chang, Chun-Lin Chen, Ping-Jyun Sung, Ming-Jen Cheng, Ching-Ju Hung and Jih-Jung Chen. 2020. A New Sesquiterpenoid and Bioactive Constituents of *Curcuma zedoaria*. *Chemistry of Natural Compounds*, 56(6), 1076–1080.
- Hsu, Shih-Yuan, Ming-Hsuan Lin, Lie-Chwen Lin and Cheng-Jen Chou. 1994. Toxicologic Studies of Dihydro-5,6-Dihydrokawain and 5,6-Dehydrokawain. *Planta Medica*, 60(1), 88–90.
- Igoli, Ngozichukwuka Peace, Zak Ahamefula Obanu, Alexander I. Gray and Carol Clements. 2012. Bioactive Diterpenes and Sesquiterpenes from the Rhizomes of Wild Ginger (*Siphonochilus aethiopicus* (Schweinf) B.L Burtt). *African Journal of Traditional, Complementary and Alternative Medicines*, 9(1), 88–93.
- Itokawa, Hideji, Makoto Morita and Susumu Mihashi. 1980. Labdane and Bisnorlabdane Type Diterpenes from *Alpinia speciosa* K. SCHUM. *Chemical and Pharmaceutical Bulletin*, 28(11), 3452–3454.
- Itokawa, Hideji, Hiroshi Morita, Ikuko Katou, Koichi Takeya, Alberto J. Cavalheiro, Roberto. C. B. de Oliveira, Marie Ishige and Mario Motidome. 1988. Cytotoxic Diterpenes from the Rhizomes of *Hedychium coronarium*. *Planta Medica*, 54(4), 311–315.
- Jalaja, Renjitha, Shyni G. Leela, Praveen K. Valmiki, Chettiyan Thodi F. Salfeena, Kizhakkan T. Ashitha, Venkata Rao D. Krishna Rao, Mangalam S. Nair, Raghu K. Gopalan and Sasidhar B. Somappa. 2018. Discovery of Natural Product Derived Labdane Appended Triazoles as Potent Pancreatic Lipase Inhibitors. ACS Medicinal Chemistry Letters, 9(7), 662–666.
- Jalaja, Renjitha, Shyni G. Leela, Sangeetha Mohan, Mangalam S. Nair, Raghu K. Gopalan and Sasidhar B. Somappa. 2021. Anti-hyperlipidemic Potential of Natural Product Based Labdane-pyrroles via Inhibition of Cholesterol and Triglycerides Synthesis. *Bioorganic Chemistry*, 108, 104664.
- Ji, Yun-peng, Ting-Yu Shi, Yan-Yan Zhang, Dan Lin, Ke-Gang Linghu, Yi-Ni Xu, Ling Tao, Qing Lu and Xiang-Chun Shen. 2019. Essential Oil from Fructus Alpinia zerumbet (Fruit of *Alpinia zerumbet* (Pers.) Burtt.et Smith) Protected Against Aortic Endothelial Cell Injury and Inflammation *in vitro* and *in vivo*. *Journal of Ethnopharmacology*, 237, 149–158.
- Liew, Sook Yee, Yasodha Sivasothy, Nimra Naveed Shaikh, Diyana Mohd Isa, Vannajan Sanghiran Lee, M. Iqbal Choudhary and Khalijah Awang. 2020. β-Glucuronidase Inhibitors from Malaysian Plants. *Journal of Molecular Structure*, 1221, 128743.
- Lin, Li-Yun, Chiung-Chi Peng, Yu-Jing Liang, Wan-Ting Yeh, Hui-Er Wang, Tung-Hsi Yu and Robert Y. Peng. 2008. *Alpinia zerumbet* Potentially Elevates High-density Lipoprotein Cholesterol Level in Hamsters. *Journal of Agricultural and Food Chemistry*, 56(12), 4435–4443.
- Liu, Yunbao and Muraleedharan G. Nair. 2011. Labdane Diterpenes in *Curcuma mangga* Rhizomes Inhibit Lipid Peroxidation, Cyclooxygenase Enzymes and Human Tumour Cell Proliferation. *Food Chemistry*, 124(2), 527–532.
- Malek, Sri Nurestri A., Guan Serm Lee, Sok Lai Hong, Hashim Yaacob, Norhanom Abdul Wahab, Jean-Frédéric Faizal Weber and Syed Adnan Ali Shah. 2011. Phytochemical and Cytotoxic Investigations of *Curcuma mangga* Rhizomes. *Molecules*, 16(6), 4539–4548.
- Morikawa, Toshio, Hisashi Matsuda, Iwao Toguchida, Kazuho Ueda and Masayuki Yoshikawa. 2002. Absolute

- Stereostructures of Three New Sesquiterpenes from the Fruit of *Alpinia oxyphylla* with Inhibitory Effects on Nitric Oxide Production and Degranulation in RBL-2H3 Cells. *Journal of Natural Products*, 65(10), 1468–1474.
- Morita, Hiroshi and Hideji Itokawa. 1988. Cytotoxic and Antifungal Diterpenes from the Seeds of *Alpinia galanga*. *Planta Medica*, 54(2), 117–120.
- Mpalantinos, M. A., R. Soares de Moura, J. P. Parente and R. M. Kuster. 1998. Biologically Active Flavonoids and Kava Pyrones from the Aqueous Extract of *Alpinia zerumbet*. *Phytotherapy Research*, 12, 442–444.
- Nishidono, Yuto, Ryo Okada, Yuuna Iwama, Tetsuya Okuyama, Mikio Nishizawa and Ken Tanaka. 2020a. Anti-inflammatory Kavalactones from *Alpinia zerumbet*. *Fitoterapia*, 140, 104444.
- Nishidono, Yuto, Azis Saifudin, Phengxay Deevanhxay and Ken Tanaka. 2020b. Metabolite Profiling of Ginger (*Zingiber officinale* Roscoe) Using GC-MS and Multivariate Statistical Analysis. *Journal of the Asia-Japan Research Institute of Ritsumeikan University*, 2, 1–14.
- Nishidono, Yuto, Yuuna Iwama, Saki Shirako, Toshinari Ishii, Tetsuya Okuyama, Mikio Nishizawa and Ken Tanaka. 2023. Two New Monoterpene Esters from the Pericarps of *Alpinia zerumbet*. *Natural Product Research*, 37(21), 3694–3701.
- Nishidono, Yuto and Ken Tanaka. 2024. Phytochemicals of Alpinia zerumbet: A Review. Molecules, 29(12), 2845.
- Okazaki, Kiyo, Hidenobu Sumitani, Katsutada Takahashi and Yuji Isegawa. 2023. Mode of Antifungal Action of Daito-Gettou (*Alpinia zerumbet* var. *exelsa*) Essential Oil Against *Aspergillus brasiliensis*. *Foods*, 12(6), 1298.
- Paulino, Emanuel Tenório, Amanda Karine Barros Ferreira, Jessyka Carolina Galvão da Silva, Cintia Danielli Ferreira Costa, Salete Smaniotto, João Xavier de Araújo-Júnior, Edeíldo Ferreira Silva Júnior, Janaína Herbele Bortoluzzi and Êurica Adélia Nogueira Ribeiro. 2019. Cardioprotective Effects Induced by Hydroalcoholic Extract of Leaves of *Alpinia zerumbet* on Myocardial Infarction in Rats. *Journal of Ethnopharmacology*, 242, 112037.
- Rao, Yerra Koteswara, Hui-Nung Shih, Yi-Ching Lee, Wen-Tai Cheng, Hui-Chin Hung, Huang-Chi Wang, Ching Jung Chen, Yew-Min Tzeng and Meng-Jen Lee. 2014. Purification of Kavalactones from *Alpinia zerumbet* and Their Protective Actions Against Hydrogen Peroxide-induced Cytotoxicity in PC12 Cells. *Journal of Bioscience and Bioengineering*, 118(6), 679–688.
- Saifudin, Azis, Ken Tanaka, Shigetoshi Kadota and Yasuhiro Tezuka. 2013. Sesquiterpenes from the Rhizomes of *Curcuma heyneana. Journal of Natural Products*, 76(2), 223–229.
- Shen, Xiang-Chun, Ling Tao, Wan-Kui Li, Yan-Yan Zhang, Hong Luo and Yu-Yi Xia. 2012. Evidence-based Antioxidant Activity of the Essential Oil from Fructus A. zerumbet on Cultured Human Umbilical Vein Endothelial Cells' Injury Induced by ox-LDL. *BMC Complementary and Alternative Medicine*, 12, 174.
- Singh, Sailendra, Jonnala Kotesh Kumar, Dharmendra Saikia, Karuna Shanker, Jay Prakash Thakur, Arvind Singh Negi and Suchitra Banerjee. 2010. A Bioactive Labdane Diterpenoid from *Curcuma amada* and Its Semisynthetic Analogues as Antitubercular Agents. *European Journal of Medicinal Chemistry*, 45(9), 4379–4382.
- Sumner, Lloyd W., Alexander Amberg, Dave Barrett, Michael H. Beale, Richard Beger, Clare A. Daykin, Teresa W. M. Fan, Oliver Fiehn, Royston Goodacre, Julian L. Griffin, Thomas Hankemeier, Nigel Hardy, James Harnly, Richard Higashi, Joachim Kopka, Andrew N. Lane, John C. Lindon, Philip Marriott, Andrew W. Nicholls, Michael D. Reily, John J. Thaden and Mark R. Viant. 2007. Proposed Minimum Reporting Standards for Chemical Analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). *Metabolomics*, 3, 211–221.
- Taira, Nozomi, Binh Cao Quan Nguyen and Shinkichi Tawata. 2017. Hair Growth Promoting and Anticancer Effects of p21-activated kinase 1 (PAK1) Inhibitors Isolated from Different Parts of *Alpinia zerumbet*. *Molecules*, 22(1), 132.
- Tao, Ling, Han Shuai Hu and Xiang Chun Shen. 2013. Endothelium-dependent Vasodilatation Effects of the Essential Oil from Fructus Alpiniae zerumbet (EOFAZ) on Rat Thoracic Aortic Rings *in vitro*. *Phytomedicine*, 20(5), 387–393.
- Tatsimo, Simplice Joel N., Pierre Tane, Pullela V. Srinivas, Beibam L. Sondengam, Jacob Melissa, Christopher O. Okunji, Brian M. Schuster, Maurice M. Iwu and Ikhlas A. Khan. 2005. Novel Antimicrobial Diterpenoids from *Turraeanthus africanus*. *Planta Medica*, 71(12), 1145–1151.
- Tawata, Shinkichi, Shigehiko Taira, Naotada Kobamoto, Masanobu Ishihara and Seizen Toyama. 1996. Syntheses and Biological Activities of Dihydro-5,6-dehydrokawain Derivatives. *Bioscience Biotechnology and Biochemistry*, 60(10), 1643–1645.

- Teng, Che Ming, Shih Yuan Hsu, Chien Huang Lin, Sheu Meei Yu, Kuei Jane Wang, Ming Hsuan Lin and Chieh Fu Chen. 1990. Antiplatelet Action of Dehydrokawain Derivatives Isolated from *Alpinia speciosa* Rhizoma. *The Chinese Journal of Physiology*, 33(1), 41–48.
- Tu, Pham Thi Be and Shinkichi Tawata. 2014. Anti-obesity Effects of Hispidin and *Alpinia zerumbet* Bioactives in 3T3-L1 Adipocytes. *Molecules*, 19(10), 16656–16671.
- Upadhyay, Atul, Jamnian Chompoo, Wataru Kishimoto, Tadahirio Makise and Shinkichi Tawata. 2011. HIV-1 Integrase and Neuraminidase Inhibitors from *Alpinia zerumbet*. *Journal of Agricultural and Food Chemistry*, 59(7), 2857–2862.
- Urbanova, Klara, Andreas Romulo, Marketa Houdkova, Pavel Novy and Ladislav Kokoska. 2024. Chemical Composition and Antistaphylococcal Activity of Essential Oil of *Curcuma mangga* Rhizome from Indonesia. *Separations*, 11(2), 49.
- Victório, Cristiane P. 2011. Therapeutic Value of the Genus *Alpinia*, Zingiberaceae. *Revista Brasileira de Farmacognosia*, 21(1), 194–201.
- Wang, Sheng-Quan, Jun Xiang, Guang-Qiong Zhang, Ling-Yun Fu, Yi-Ni Xu, Yan Chen, Ling Tao, Xiao-Xia Hu and Xiang-Chun Shen. 2024. Essential Oil from Fructus *Alpinia zerumbet* Ameliorates Atherosclerosis by Activating PPARγ-LXRα-ABCA1/G1 Signaling Pathway. *Phytomedicine*, 123, 155227.
- Wei, Qing, Wei Li and Gui-Fang Chai. 2020. Research Progress on Miao Medicine of Alpinia zerumbet. *Chinese Journal of Experimental Traditional Medical Formulae*, 24, 206–216.
- Weyerstahl, Peter, Helga Marschall, Sabina Schneider and Gyan C. Subba. 1995. Constituents of the Essential Oil from the Rhizomes of *Hedychium acumnatum* Roscoe. *Flavour and Fragrance Journal*, 10(3), 179–185.
- Xiao, Rui-Yao, Ling-Jing Wu, Xiao-Xiao Hong, Ling Tao, Peng Luo and Xiang-Chun Shen. 2018. Screening of Analgesic and Anti-inflammatory Active Component in Fructus *Alpiniae zerumbet* Based on Spectrum–effect Relationship and GC–MS. *Biomedical Chromatography*, 32(3), e4112.
- Xiao Tingting, Yu Zeng, Yini Xu, Yanyan Zhang, Yan Jiang, Ling Tao and Xiangchun Shen. 2014. The Endothelial Protective Properties of Essential Oil from Fructus Alpiniae zerumbet via the Akt/NOS-NO Signaling Pathway *in vitro*. *Planta Medica*, 80(17), 1628–1634.
- Xiao, Ting, Ai Wu, Xiaowei Wang, Zhenghong Guo, Feilong Huang, Xingyan Cheng, Xiangchun Shen and Ling Tao. 2024. Anti-hypertensive and Composition as Well as Pharmacokinetics and Tissues Distribution of Active Ingredients from *Alpinia zerumbet*. *Fitoterapia*, 172, 105753.
- Yang, Hong, Shiquan Gan, Zhaohui Jiang, Xiaomei Song, Tingting Chen, Yini Xu, Lingyun Fu, Yanyan Zhang, Ling Tao and Xiangchun Shen. 2020. Protective Effects of Essential Oil from Fructus *Alpiniae zerumbet* on Retinal Müller Gliosis via the PPAR-γ-p-CREB Signaling Pathway. *Chinese Medicine*, 15, 4.
- Zhang, Yanyan, Chen Li, Yongpan Huang, Shuang Zhao, Yini Xu, Yan Chen, Feng Jiang, Ling Tao and Xiangchun Shen. 2020. EOFAZ Inhibits Endothelial-to-Mesenchymal Transition Through Downregulation of KLF4. *International Journal of Molecular Medicine*, 46(1), 300–310.
- Zhang, Yanyan, Shuang Zhao, Mengxin Tu, Li He, Yini Xu, Shiquan Gan and Xiangchun Shen. 2022. Inhibitory Effect of Essential Oil from Fructus of *Alpinia zerumbet* on Endothelial-to-Mesenchymal Transformation Induced by TGF-β₁ and Downregulation of KLF4. *Journal of Cardiovascular Pharmacology*, 80(1), 82–94.