

前回の講義の復習(1)

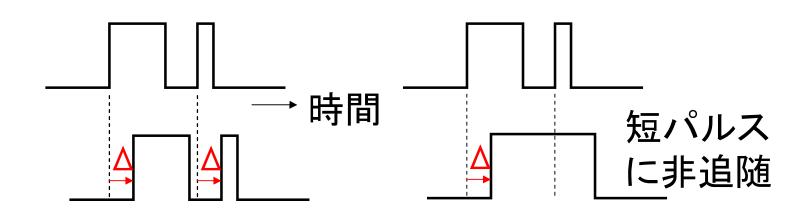
フリップフロップ

前回の講義の復習(2)

クロックパルス (ck) 入力 (d, s, r, j, k, t) 必要

り フリップフロップの駆動回路

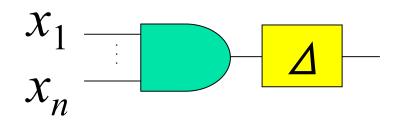
q_i	$q_i^{(1)}$	d_{i}	S_{i}		j_i	k_{i}	t_i
0	0	0	0			*	
0	1	1	1	•	1	*	1
1	1	1	*	0	*	0	0
1	0	0	0	1	*	1	1


	$q^{(1)}$				
q^t	0	1			
0	0	1			
1	1	0			

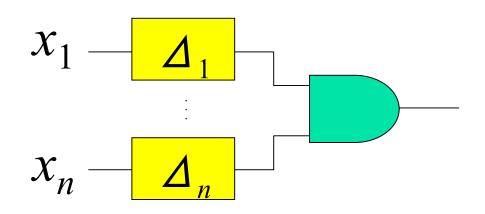
(1)

回路の遅延

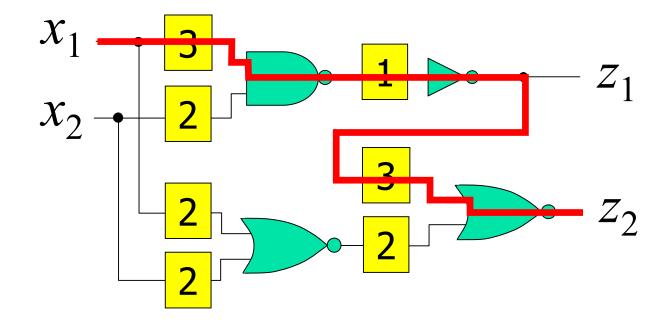
- ■純粋遅延(タイミング調整)
- ■浮遊遅延(論理素子や配線に付随)



純粋遅延


浮遊遅延

論理素子の遅延モデル


出力遅延型 (TTL)

入力遅延型 (MOS,VLSI)

クリティカルパス

遅延が最大の経路

ハザード

- 「ハザードが存在する」
 - ■浮遊遅延のばらつき
 - ■組合せ回路の出力に 瞬時的な不正パルス (可能性)

ハザード

■静的ハザード 定常値同じ

$$0 \to 1 \to 0$$
 0/1ザード $1 \to 0 \to 1$ 1/1ザード

動的ハザード 定常値異なる

$$0 \rightarrow 1 \rightarrow 0 \rightarrow 1$$

論理ハザード

回路構成に依存するハザード

 $z = x_1 x_2 x_3 + \overline{x}_1 x_3 x_4 + x_2 \overline{x}_3 x_4$

x_1x_2	00	01	11	10
00				
01		1	1	
11	1	1	$\boxed{1}$	
10			$\lfloor 1 \rfloor$	

0	1 1	L
$x_1 = 0$	10	
x_2 1		
X_3 $0 \rightarrow 1$ $1 \rightarrow 0$	$\longrightarrow 1$	
1	<i>J</i> 1	
$X_4 \xrightarrow{1} 0$		
1 1		

1ハザード 存在

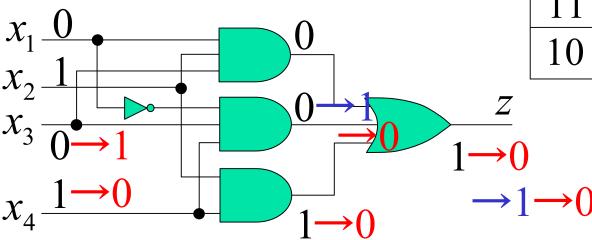
全ての主項を含むAND-OR2段回路

 $z = x_1 x_2 x_3 + \overline{x}_1 x_3 x_4 + x_2 x_4$

0	11
$x_1 = 0$	10
x_2	\overline{z}
$x_3 \xrightarrow{0 \to 1} 1$	
\mathbf{r} 1	

x_1x_2	00	01	11	10
00				
01		1	1	
11	1	1	1	
10			1	

Z


静的論理ハザード無

論理ハザード

全ての主項を含むAND-OR2段回路

多入力変化

x_1x_2	00	01	11	10
00				
01		1	1	
11	1	$\left(\begin{array}{c}1\end{array}\right)$	1	
10			1	

動的論理ハザード有

関数ハザード

全ての主項を含むAND-OR2段回路

多入力変化

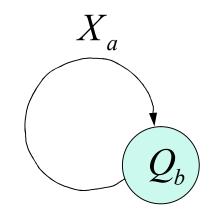
r = 0	11
$\begin{array}{c} x_1 \\ x_2 \\ \hline \end{array}$	10
X_2 X_3 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0	→ 1
$x_4 \xrightarrow{1} 0$	1

x_1x_2	00	01	11	10
00				
01	1	1	1	
11		$\left(\begin{array}{c}1\end{array}\right)$	1	
10			1	

関数 ハザード有

ハザード

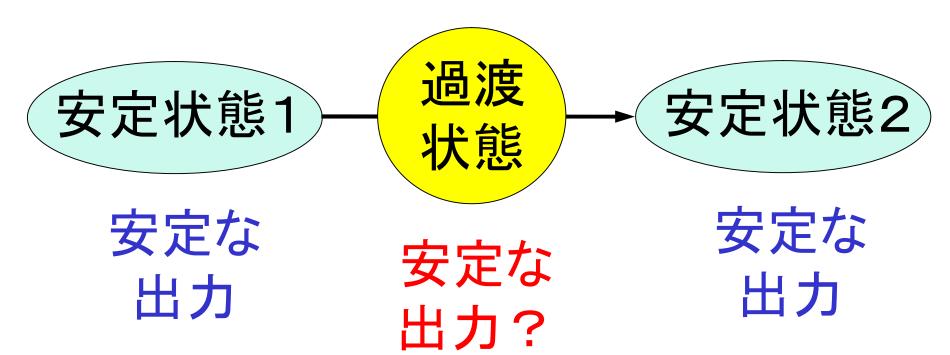
- ■全ての主項を含むAND-OR 2段回路
 - ■単一入力変化
 - ハザード無し
 - ■多入力変化
 - ■動的ハザードの可能性
 - 関数ハザード有り


論理回路の誤動作

- 過渡的な不正パルス
 - ■組合せ回路
 - 誤動作?
 - ■同期式順序回路
 - ■同時クロックパルス⇒誤状態遷移
 - ■非同期式順序回路
 - 誤動作

安定状態

$$\delta(X_a, Q_b) = Q_b$$



 Q_b :入力 X_a の下での安定状態

状態遷移表⇒○で囲む

過渡状態

順序回路の誤動作防止

■非同期式順序回路

<方針>

入力変化の起点

安定状態

単一入力変化

→ 状態遷移先の確定