Hierarchical image-scrambling method with
scramble-level controllability for privacy protection

Toshiya Honda, Yuma Murakami, Yuki Yanagihara, Takeshi Kumaki, and Takeshi Fujino
Department of Electronic and Computer Engineering, Ritsumeikan University
1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
Telephone: +81-77-561-5150
Email: { ri008085@ed, ri009071 @ed, ri0007hh@ed, kumaki@fc, fujino@se } .ritsumei.ac.jp

Abstract— Privacy-protecting technology is essential in this
surveillance society. The applications of cameras widely vary, e.g.,
crime surveillance, monitoring of an environment, and marketing.
Furthermore, the scale of surveillance systems is predicted to
become more diverse (from home area networks to wide area
networks) due to the decrease in size and price of cameras.
Therefore, a simple privacy protection system that does not
require central servers or large databases is needed. Scrambling
private information in a captured image can be a solution to sim-
plifying a system. We propose an image-scrambling method for
bitmap and JPEG formatted images to private information. Our
method enables access control by providing keys to authorized
individuals. They cannot view private information that they do
not have permission to access. The image’s format is retained;
therefore, no special viewer is necessary in display-only console.
Experimental results suggest that scramble level can be controlled
linearly by using parameters (three for JPEG formatted image,
and one for bitmap image). We also developed a demo system
for this method and confirm that this method can be applied
to embedded systems such as those equipped with surveillance
cameras.

I. INTRODUCTION

Cameras are now widely used for a variety of applications,
e.g., crime surveillance, monitoring of an environment, and
marketing. Since the size of the camera sensor and power
consumption is decreasing, some researchers focused on ap-
plying camera sensors to wireless multimedia sensor networks
(WMSNs) [1], [2].

However, invasion of privacy has become a serious social
problem, especially due to the use of surveillance cameras.
The Surveillance Studies Network in the United Kingdom
reported on the surveillance society [3]. This report argues
that a large number of our daily activities are under surveil-
lance, and surveillance has both benefits and risks. There-
fore, surveillance requires “regulation”, e.g., applying rules
or setting limits and controls. As a result, some surveillance
devices have functions to limit accessibility to information.
For example, current surveillance cameras on the market
have an un-restorable privacy protection function. It conceals
private information by pixel overwriting, such as filling or
creating mosaics, to the image. It can change concealing
method according to the target object. However, it is not
possible to restore the original image with this method. In
criminal investigation, for example, such a method could
render evidence captured as an image useless.

Methods have been proposed as measures to cope with
invasion of privacy. IBM Smart Surveillance System, previ-
ously called the PeopleVision project, is a middleware system
equipped with a a surveillance camera system with privacy
protection [4]. Senior reported a part of a project for devel-
oping a technology to protect privacy in video systems [5]. It
minimizes intrusion into individuals’ privacy by transforming
private information. It also encrypts the video stream that is
transformed (e.g., removed, replaced, or reduced in resolution)
according to the system policy. However, the transforming pro-
cess is un-restorable; therefore, the transformed information
cannot be used as original information.

Such large systems are not suitable for small-scale surveil-
lance (e.g., home networks and WMSNS5), because they require
database servers for storing the analyzed information , and
complex subsystems. In such systems, it is reasonable to
scramble an image in the camera, and distribute information of
scrambled area and parameters within the scrambled image to
save system costs. Therefore, we should apply image privacy-
protecting technology to cameras and consoles. Methods have
been proposed for scrambling private information and distribu-
tion. Yabuta et al. proposed a restorable masking method for
JPEG (Joint Photographic Experts Group) formatted images
[6]. This method converts private information to JPEG format
and embeds it to a masked (e.g., mosaic, permeated, or filled)
image by watermarking. There is a limitation to the data
size of embedding information due to this watermarking.
Fujii et al. proposed an image-scrambling method for content
distribution [7]. This method inputs a JPEG image or MPEG
(Moving Picture Experts Group) video stream. They have
coded by entropy encoding; therefore, they have many pairs
of Huffman-code and optional bit. This method encrypts these
optional bits to enable scrambling. This method can change the
quality of the masked area by using parameters and density of
scrambling. However, especially in high-rate compressed data,
the length of optional bits will be zero or a few bits. Therefore,
an attacker may be able to restore the original image by brute-
force attacking of the coefficients.

Our goal of this study is to develop a light-weight (ap-
plicable to an embedded system) and secure (regardless of
contents in an image) image scrambling method for privacy
protection. In this paper, we propose a restorable image-
scrambling method for bitmap and JPEG formatted images

- Monitoring display
- - Saveto storage

\’%Analysis g
p

(b) Monitor restored

!
| Key2 |—>
3=

y ' |

|

(¢) Face restored
4

Criminal \& \‘E\)E Use as Gi(N
investigation evidence N
"

Application example: indoor surveillance system

(d) Fully restored

Fig. 1.

for protecting privacy. This method has a simple structure
that consists of a cipher subsystem, object detector, and
format conversion module (e.g., JPEG compressor). It can
scramble an image hierarchically by applying different keys
and control the scramble level according to the target object.
The data structure of the scrambled image remains unchanged,
therefore, no special viewer is necessary to view the scrambled
image. We evaluated the scramble level controllability by
using parameters and processing speed of this method in an
embedded system.

1I. HIERARCHICAL IMAGE-SCRAMBLING METHOD

Our proposed hierarchical image-scrambling method has
three special features: restoration of the original image from
only the scrambled image and its key, controlling of the
scramble-level by using parameters for the length of random
number, and opening the image with a general image viewer.

A. Privacy-protecting surveillance system

Figure 1 shows an example application of protecting private
information using the proposed method. The surveillance sys-
tem using the proposed method is for an indoor environment.
For example, we can recognize individuals from their face,
and the PC monitor might display confidential information.
Therefore, the system scrambled people’s faces and the PC
monitor. Normally, scrambled images are displayed on a
monitoring console, and saved in storage. When there is a
problem with the monitoring area, the system supervisor can
authorize access to the scrambled area with scramble keys.
The authorized individuals can only access the necessary in-
formation; therefore, this method prevents private information
from being opened to the public.

B. Parameters for scramble level control

Our proposed method can control the scramble level by
using three parameters for each color component. Table I
lists these parameters. We set these parameters to each color

TABLE
PARAMETERS FOR SCRAMBLE LEVEL CONTROL

Parameter Value
0-63

Description

Start coefficient in 8x8 block
(For JPEG image only)

End coefficient in 8x8 block
(For JPEG image only)

Bit length of cipher pseudorandom number

Start_coef

End_coef 0-63

Bit_length 0-8

TABLE II
INFORMATION FOR ONE SCRAMBLE (QUADRILATERAL)

Information Description
s ID Scramble ID of this area

Start_coef Start coefficient in 8x8 block

(For JPEG image only)
End coefficient in 8x8 block
(For JPEG image only)

Repeat
as many as
components

End_coef

Bit_length Bit length of cipher pseudorandom number
Start_x X-coordinate of start pixel

Start_y Y-coordinate of start pixel

End x X-coordinate of end pixel

End y Y-coordinate of end pixel

component (e.g., Y/Cb/Cr for JPEG image, R/G/B for bitmap
image). The JPEG format divides an image into 8 x 8 blocks
for processing, then parameters Start_coef and End_coef can be
set in JPEG format. The values Start_coef and End_coef mean
the first and last coefficient to scramble in “zigzag™ ordering.

The quality of a scrambled image is affected by parameters
Start_coef and End_coef. A block’s information is concentrated
to low-frequency components by discrete cosine transform
(DCT); therefore, scrambling low-frequency components takes
more effect in concealing visual information than scrambling
high-frequency components. The number of coefficients (de-
termined by Parameter Start_coef — End_coef) affects the
security of a scrambled image. One coefficient has only a few
bits of information due to quantization; therefore, scrambling
less coefficients could enable the image to be restored through
brute-force attacks.

C. Header format for scramble information

Information used for scrambling is stored in the image
header. Therefore, the scrambled image can be restored only
with the correct key. Table II lists this information for one
quadrilateral scramble area. The scramble ID s_ID and pa-
rameters Start_coef, End_coef, and Bit_length of each color
component (e.g. Y/Cb/Cr for JPEG image), and area coordi-
nates Start_x, Start_y, End_x, and End_y of each scramble are
required to properly restore an image.

D. Processing flow

To produce a scrambled image that can be opened without a
specific image viewer, the proposed method retains the image
format structure. In this section, the processing flow of this
method is discussed.

1) Scramble subsystem and scramble flow: Figure 2(a)
shows the processing flow of scrambling a captured frame.
First, an object (e.g., face, human body, window, or car license
plate) is detected using an object detector to determine the
area of the object that is to be scrambled. In this figure,

@H Scramble area information l

Seramble arca
information

Scramble
information
in header

Scramble
subsystem

- Color space
transformation [Scrambled] = -
Dow ling || meze block ntropy
- Downsampling || s encoding
T’P-DCT —>|
- Quanti

Captured frame

Scrambled
image data

For JPEG format onl

(a) Overview of processing flow

Heade
informaiign| | Descramble
subsystem

- Dequantization

Scramble
in header
Restored [[[DCT
crambled block U
Entropy ||_block,
decoding >

(a) Overview of processing flow

- Color space

{8

Restored image

For JPEG format only

{ Keys\o /
Header
information /

Descramble
subsystem|

Keys
[~ Yo / Scramble
subsystem
Parameter -/ Parameter
sets sets
Scramble area - 'Scramble area
information information
Area information Parameter for Key for Number of
fors ID= s ID= s ID=x scramble
‘Bit_length Raoaied
Cipher
oot subsystem

Number of
scramble

Parameter for|
s ID=

Area information|
fors ID =i

Key for
s ID=i

o ey num_area
e _

Sty Cipher

Endy Endcoet subsystem

Scramble “_Yes
coefficient for
s_ID =i

Scramble block
fors 1D =17

>

Allarea
serambled?

/ imageblock/ A

Yes

Scramble block

Yes

All area
scrambled?

Image block

H

Yes Scrambled
image block

coefficient for
s ID=x?

No No

For JPEG format onl:

(b) Details of scramble subsystem

Fig. 2. Processing flow of scrambling image

Detector 1 for face detection (s_ID = 1) and Detector 2 for
window detection (s_I D = 2) are used. If both the camera and
target object to be scrambled are fixed, the system supervisor
can manually input the coordinates. The system supervisor
must specify as many parameter sets (mentioned in Section
II-B) and cipher keys as there are object detectors. Then,
the image pixels (for bitmap image format) or coefficients
(for JPEG format) are processed in the scramble subsystem.
Since the conversion of a raw image to JPEG format is
irreversible due to DCT and quantization, scrambling occurs
between quantization and entropy coding processes for the
JPEG format. Parameter sets and scramble area information
are stored in the image header. This enables the restoration
only with the correct cipher key and scrambled image data.
The processing flow in the scramble subsystem is shown
in Figure 2(b). The image pixels (for bitmap image format)
or coefficients (for JPEG format) are XORed with the cipher
pseudorandom number stream if they are in the scramble
area. Parameter Bit_length determines the bit length of the
pseudorandom number (0 — 8 bit) and controls the scramble
level. In JPEG compression, each coefficient in 8 x 8 blocks is
EXORed between quantization and entropy coding processes.
2) Descramble subsystem and restoration flow: Figure 3(a)
shows the processing flow for restoring an original image.
After a supervisor sets the cipher key, this method analyses the
scramble information from the data header. From this informa-
tion, the descramble subsystem (shown in Figure 3(b)) restores
the original image by XOR operation between the scrambled
(encrypted) pixel value and cipher pseudorandom number. If
the supervisor sets the wrong cipher key or does not have a

For JPEG format onl;

(b) Details of descramble subsystem

Fig. 3. Processing flow of restoring image

cipher key, the scrambled image cannot be restored since the
cipher pseudorandom numbers are uniformly distributed.

1II. EXPERIMENTAL RESULTS

We discuss the correlation of the parameter sets and
scramble-level controllability. We evaluated the processing
speed of our method in a demo system. We use a modified
libjpeg-turbo library [8] in this experiment.

A. Scramble level controllability

We scrambled the entire area of “Lena” image in various
parameter sets (JPEG format, 512 x 512 pixels, quality =
75, file size of 38,710 bytes without scramble) to evaluate
scramble-level controllability. Figure 4 shows that we can
control the scramble level (the degree of intensity). With
parameter set (b), the image is roughly visible, but there is
no detailed information for distinguishing the individual. In
parameter set (c), the image is completely invisible. JPEG
handles luminance and chrominance as an image color space.
Luminance represents brightness and chrominance represents
color difference, usually in two components. Therefore, we
can control color change by applying different parameter sets
to both components (Figure 4-(d).

Figure 5 shows clippings of scrambled JPEG images. We
applied the same parameter sets to the brightness and chromi-
nance components. As can be seen from the figure, the particle
size of the scramble becomes small when applying large
End_coef parameter. It is because low-frequency coefficients
(small value of coefficient parameter) in 8 x 8 block have
information of the outline, and high-frequency coefficients
(large value) have the detailed information.

%

{4 W
(b) Roughly visible

(a) Originalimage (¢) Completelyinvisible () Low color-change

scramble

Parameter sets
{Start_coef, End_coef, Bit_length}

for Luminance {1,4,6} {0,4, 8} {1,9,6}

for Chrominance {1,4,6} {0,4,5} {1,9,3}
PSNR [dB] 9.70 7.21 11.59
File size [Byte] 60,471 72,459 81,510

Fig. 4. Scrambled images and parameter sets
ﬁ v

originalr image

Parameter: Bit_length
2 3 5 8

0.0}

73

{0, 63}
Parameter:
{Start_coef, {1, 4
End_coef}
{5, 9}
{10, 19}
Fig. 5. Scramble-level transition (JPEG image)

To quantitatively observe the scramble level transition, we
used the peek signal-to-noise ratio (PSNR) as an index. The
PSNR transition of scrambled images (Figure 5) derived from
parameters Bit_length, Start_coef, and End_coef is shown
in Figure 6. We applied the same parameter sets to each
component. The PSNR decreased when parameter Bit_length
increased. The PSNR also decreased in proportion to the
number of coefficients (End_coef — Start_coef + 1).

B. Demo system and its processing speed

We developed a demo system to confirm that our method
is applicable to embedded systems such as those equipped
with surveillance cameras. The system uses a single board
computer (BeagleBoard-xM with ARM Cortex-A8 processor
1 GHz and running the Ubuntu 12.04 operating system) and a
USB web camera (Figure 7-(a)). We confirm that this method
can scramble several areas hierarchically (Figure 7-(b)).

The average processing time of the proposed method in the
demo system when scrambling an image of a face is shown
in Figure 8. In this experiment, we used OpenCV’s object
detection function based on a Haar-like feature [9], and the
image size was 640 x 480 pixels. It took about 500 ms on
average to process one frame. Object detection took up high

45.00 :
40.00 Start_coef, End_coef}

35.00 \ ——{0,63} —={0,0} |l
30.00 N 5o
2500 S
20.00
15.00
10.00

5.00

0.00

{4}

— 110,19}

PSNR[dB]

Parameter Bit_length

Fig. 6. PSNR transition of scrambled “Lena” image (JPEG format)

(a) Overview of the demo system

(b) Hierarchical scramble

Fig. 7. Demo system and scrambled image

Scramble and

Face detection JPEG compression

Preprocessing

Scramble

No scramble

0.00 0.5 0.0 015 020 025 030 035 040 045 050
Time [s]

Fig. 8. Average processing time in demo system

percentage of the processing time. This is because a software-
based object detector incurs a high-load on an embedded
CPU; therefore using hardware-based object detector may be a
solution to shorten processing time. When we use a hardware
object detector (ASIC or FPGA), the increase in processing
time compared to non-scrambling is about 1.4%. Therefore,
our method can be applied to embedded systems such as those
equipped with surveillance cameras.

IV. CONCLUSION

We proposed a light-weight and secure hierarchical image-
scrambling method. It can be used to protect privacy by
scrambling images, and the information of scramble area and
parameter sets is included in the image. This allows restoration
of the original image from only scrambled image and its
key. The image format structure is retained; therefore, it can
be opened with a general image viewer. Furthermore, our
evaluation indicated that our method can flexibly control of
scrambling with parameter sets regardless of contents in an
image. There is little increase in processing time compared to
non-scrambling when scrambling a face in an image; therefore,
it can be applied to embedded systems such as those equipped
with surveillance cameras.

REFERENCES

[1] I. T. Almalkawi, et. al., “Wireless multimedia sensor networks: current
trends and future directions,” Sensors, vol. 10, no. 7, pp. 6662-6717,
2010.

[2] T. Honda, et. al., “Development of low-power camera sensor node using
infrared array sensor and cmos image sensor,” in NCSP 2013, 2013, pp.
508-511.

[3] L. Amoore, et. al., “A Report on the Surveillance Society,” the Surveil-
lance Studies Network, Tech. Rep., 2006.

[4] C. F. Shu, et. al,, “Ibm smart surveillance system (s3): a open and
extensible framework for event based surveillance,” in IEEE Conference
on Advanced Video and Signal Based Surveillance, 2005. AVSS 2005.,
2005, pp. 318 - 323.

[S] A. Senior, et. al., “Blinkering surveillance: Enabling video privacy
through computer vision,” IBM Research Report, vol. 22886, 2003.

[6] K. Yabuta, et. al., “Privacy Protection by Masking Moving Objects for
Security Cameras,” IEICE Trans. Fundamentals, vol. 92, pp. 919-927,
2009.

[7] H. Fujii, et. al., “Partial-scrambling of information,” NTT review, vol. 11,
no. 1, pp. 116-123, 1999.

[8] [Online]. Available: http:/libjpeg-turbo.virtualgl.org

[9] [Online]. Available: http://opencv.org

