2010.11.11 Ecobalance 2010 Miraikan, Tokyo, Japan

Scenario Analysis about LC-GHG Emission of Household Food Consumption Considering Household Characteristics

Naoki YOSHIKAWA*, Koji AMANO*, Koji SHIMADA**

*College of Science and Engineering, Ritsumeikan University ** College of Economics, Ritsumeikan University

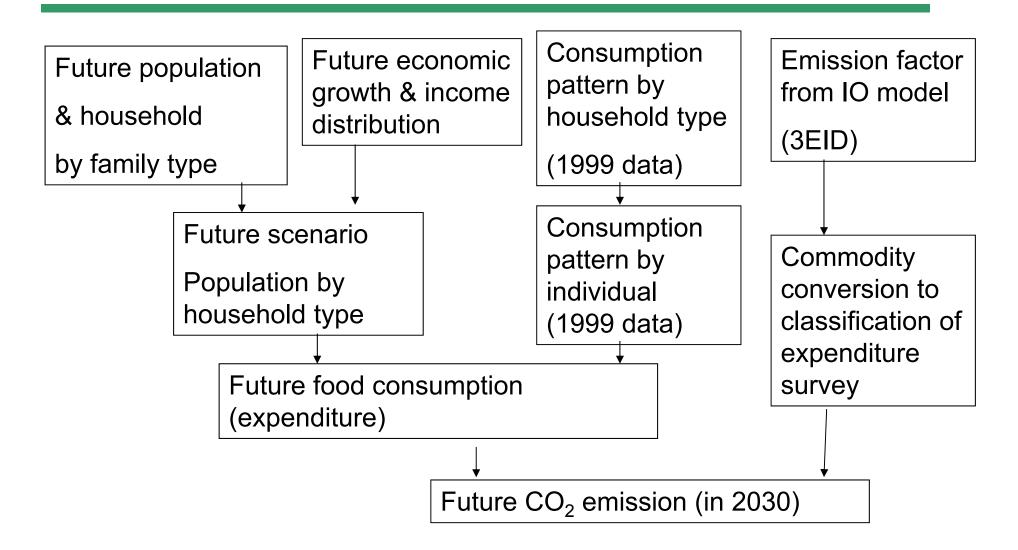
Background

- LC-GHGs from food consumption
- →One of major cause of the emission related daily living
- Future trend of emission in Japan seems to be affected by multiple factors: economic condition, population decrease,

increase of single household, population aging....

• Modeling and estimating future trend is important for life cycle management of food consumption

Objectives


 Estimating future food consumption by household and CO₂ emission considering future economic and demographic changes Methodology

Combining household expenditure survey and future economic/demographic scenario

Estimate future food consumption of households by commodity

Estimate future CO₂ emission from food consumption

Estimation Flow

Household type

By age of householder	20s,30s,40s,50s,60s,		
	over 70		
By family structure	single		
	nuclear		
	other		
By (equivalent) income	-200, 200-300, 300-400		
(Household income)	400-500,500-600,600-700		
$\sqrt{\text{Number of household}}$	700-		

Estimation of consumption per capita

Household expenditure data is surveyed by household

(micro data) for 70 food products

 \rightarrow need to breakdown to individuals

$$E_x = \sum_k a_{i,j,k} e_{x,k}$$

E: consumption by household x

e: number of household member of age *k* in household x

a: coefficient of regression

i: family structure

j: family income

k: age of household member

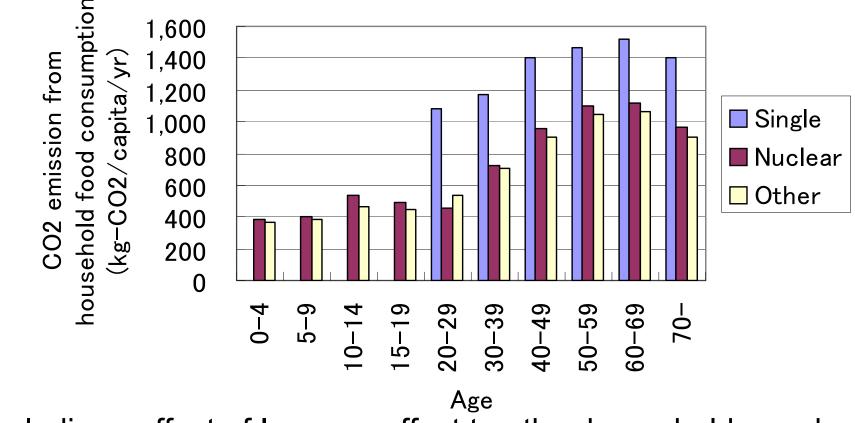
Future Scenarios

- Economical scenario
 - Based on IPCC scenario

GDP rowth rate	A1	1.7%
	A2	1.1%
	B1	1.9%
	B2	1.3%

Future Scenarios

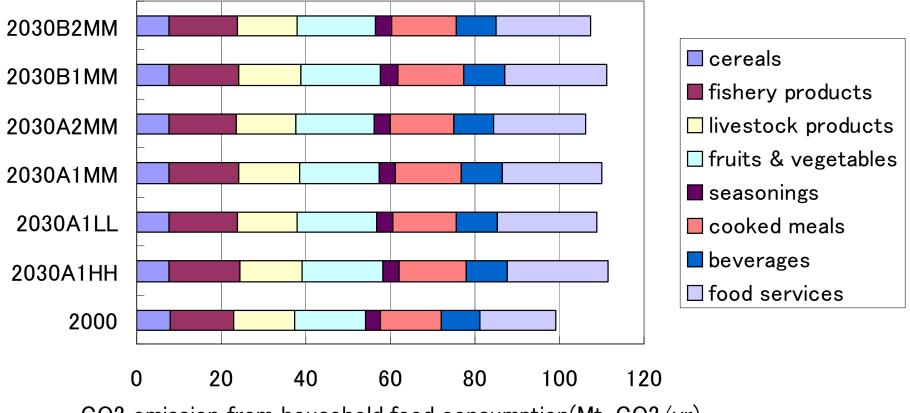
- Population & household scenario
 - Population estimation by National Institute of Population and Social Security Research
 - Population is allocated to each household type by simplified allocation model (Yoshikawa et al.,2009)


Scenario		population	households	single households	
		(million)	(million)	(million)	
High	Н	118	48.9	18.3	
Middle	Μ	115	48.8	18.2	
Low	L	113	48.7	18.1	

Condition in 2030

• Significance of regression coefficient

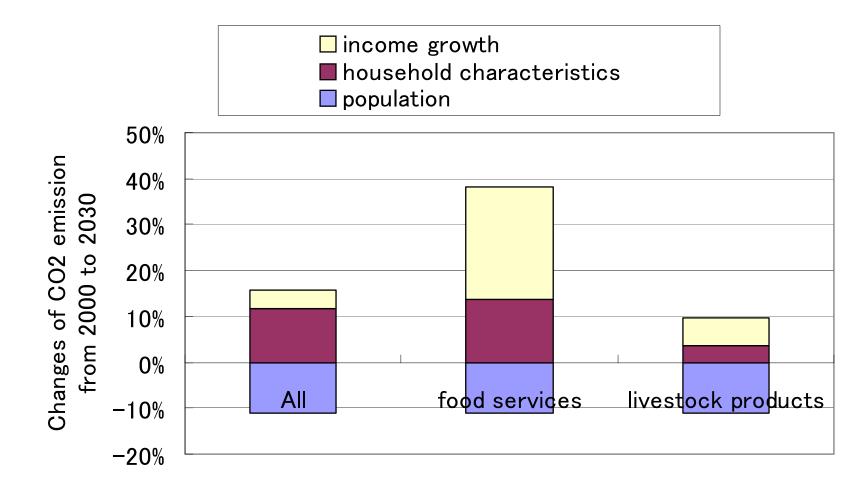
	cereals	fishery products	livestock products	fruits & vegetables
ratio of 5% significant	55%	49%	52%	40%
number of parameters	1120	1120	3360	5600
	seasonings	cooked meals	beverages	food services
ratio of 5% significant	39%	41%	25%	29%
number of parameters	3640	3080	6440	1400


•CO₂ emission from household food consumption per capita

•Including : effect of Income, effect to other household members

•Excluding: expenditure from allowance

• Estimation in future scenario



CO2 emission from household food consumption(Mt-CO2/yr)

• Emission change ratio from 2000

	cereals	fishery	livestock	cooked	food	Total
	Cereals	products	products	meals	services	TOLAI
2030A1HH	-1.3%	10.5%	1.3%	9.6%	34.1%	12.6%
2030A1LL	-4.5%	8.7%	-3.1%	5.9%	31.7%	9.8%
2030A1MM	-3.0%	9.6%	-1.0%	7.6%	32.8%	11.1%
2030A2MM	-3.4%	6.8%	-3.2%	5.0%	22.4%	7.3%
2030B1MM	-2.9%	10.4%	-0.4%	8.4%	36.2%	12.3%
2030B2MM	-3.2%	7.7%	-2.5%	5.8%	25.6%	8.5%

• Factors of changes CO2 emission to 2030

Conclusion

- Estimated future CO₂ emission from household food consumption by scenario analysis
- Should consider more factor (ex. cohort effect)