Takaaki Kagawa • Nobuhiro Terai

Squares in Lucas sequences and some Diophantine equations

Received: 8 November 1996 / Revised version: 4 December 1997

1. Introduction

Let P and Q be non-zero relatively prime integers. The Lucas sequence $\left\{U_{n}\right\}$ and the companion Lucas sequence $\left\{V_{n}\right\}$ with parameters P and Q are defined as follows:

$$
\begin{array}{ll}
U_{0}=0, & U_{1}=1, \\
V_{0}=2, & U_{n+2}=P U_{n+1}-Q U_{n} \\
& V_{n+2}=P V_{n+1}-Q V_{n}
\end{array}
$$

For all odd relatively prime values of P and Q such that $P^{2}-4 Q$ is positive, Ribenboim and McDaniel [6] recently determined all indices n such that U_{n}, $2 U_{n}, V_{n}$ or $2 V_{n}$ is a square $(=\square)$. (See introduction in [6] for known other results.)

In this paper, we consider the above problem when P is even and $Q=-1$. Using elementary properties of elliptic curves as well as the methods in [6], we show that if $P=2 t$ with t even and $Q=-1$, then $U_{n}, 2 U_{n}, V_{n}$ or $2 V_{n}=\square$ implies $n \leq 3$ under some assumptions.

Applying these results, we prove some theorems concerning Diophantine equations of the forms

$$
4 x^{4}-D y^{2}= \pm 1, \quad x^{4}-D y^{2}=-1, \quad x^{2}-4 D y^{4}= \pm 1, \quad x^{2}-D y^{4}=1
$$

This provides the main result of Kagawa [3], who uses Baker theory, with an elementary proof.
T. Kagawa: Department of Mathematics, School of Science and Engineering, Waseda University, Ohkubo, Shinjuku, Tokyo 169, Japan. e-mail: kagawa@mn.waseda.ac.jp
N. Terai: Division of General Education, Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326, Japan. e-mail: terai@aitsun5.ashitech.ac.jp

2. Preliminaries

Let t be even and $D=t^{2}+1$. The sequences $\left\{v_{n}\right\},\left\{u_{n}\right\}$ are defined by

$$
\begin{cases}v_{0}=1, & v_{1}=t, \quad v_{n+2}=2 t v_{n+1}+v_{n} \tag{1}\\ u_{0}=0, & u_{1}=1, \quad u_{n+2}=2 t u_{n+1}+u_{n}\end{cases}
$$

Note that $v_{n}=V_{n} / 2$ and $u_{n}=U_{n}$ for all integers n. We easily find from (1) that

$$
v_{n} \text { is even } \Longleftrightarrow n \text { is odd, } \quad u_{n} \text { is even } \Longleftrightarrow n \text { is even. }
$$

We also have the following relations:

$$
\begin{align*}
& v_{n}^{2}-D u_{n}^{2}=(-1)^{n}, \quad v_{-n}=(-1)^{n} v_{n}, \quad u_{-n}=(-1)^{n+1} u_{n}, \tag{2}\\
& v_{m+n}=v_{m} v_{n}+D u_{m} u_{n}, \quad u_{m+n}=v_{m} u_{n}+v_{n} u_{m}, \tag{3}\\
& v_{2 n}=2 v_{n}^{2}+(-1)^{n+1}, \quad u_{2 n}=2 v_{n} u_{n}, \tag{4}\\
& \left\{\begin{array}{l}
v_{3 n}=v_{n}\left(4 v_{n}^{2}+3(-1)^{n+1}\right), \\
u_{3 n}=u_{n}\left(4 v_{n}^{2}+(-1)^{n+1}\right),
\end{array}\right. \tag{5}\\
& \left\{\begin{array}{l}
v_{5 n}=v_{n}\left\{16 v_{n}^{4}+(-1)^{n+1} 20 v_{n}^{2}+5\right\}, \\
u_{5 n}=u_{n}\left\{16 v_{n}^{4}+(-1)^{n+1} 12 v_{n}^{2}+1\right\},
\end{array}\right. \tag{6}\\
& \left\{\begin{array}{l}
v_{7 n}=v_{n}\left\{64 v_{n}^{6}+(-1)^{n+1} 112 v_{n}^{4}+56 v_{n}^{2}+(-1)^{n+1} \cdot 7\right\}, \\
u_{7 n}=u_{n}\left\{64 v_{n}^{6}+(-1)^{n+1} 80 v_{n}^{4}+24 v_{n}^{2}+(-1)^{n+1}\right\} .
\end{array}\right. \tag{7}
\end{align*}
$$

It is clear from (1) that if $n>0$, then $v_{n}, u_{n}>0$. Thus from (2) if $n<0$, then

$$
v_{n}>0 \Longleftrightarrow n \text { is even, } \quad u_{n}>0 \Longleftrightarrow n \text { is odd. }
$$

We need the following Diophantine lemmas which will be used in the proofs of the theorems.

Lemma 1 (Ljunggren [4]). The Diophantine equation

$$
x^{2}-3 y^{4}=1
$$

has only the positive integral solutions $(x, y)=(2,1),(7,2)$.
Lemma 2. The Diophantine equation

$$
x^{2}-D y^{4}=1 \quad(D=12,111,444)
$$

has no positive integral solutions x, y.
(See Mordell [5] for the cases $D=12,444$, and Cohn [1] for the case $D=111$.)

3. Theorems

For a prime p and an integer $t \neq 0$, let $e_{p}(t)$ be the integer such that $p^{e_{p}(t)}$ exactly divides t. We assume that t is an even integer such that

$$
e_{p}(t) \text { is odd for } p=3,5 \text { or } 7
$$

In this paper, we devote ourselves to the study of this case.
Under this assumption, we prove the following:
Theorem 1. The equation $v_{n}=2 \square$ has only the solution $n=3, t=6$, $D=37$.

Theorem 2. The equation $v_{n}=\square$ with n odd has no solutions.
Theorem 3. The equation $u_{n}=2 \square$ has only the solution $n=0$.
Theorem 4. The equation $u_{n}=\square$with n even has only the solution $n=0$.

Proof of Theorem 1. Since v_{n} is even, we see that n is odd. Thus if $n<0$, then $v_{n}<0$. Hence we may suppose that $n>0$.

The proof is divided into two cases: $n \equiv 0(\bmod p)$ and $n \not \equiv 0(\bmod p)$ with $p=3,5$ or 7 .

Case $1: n \equiv 0(\bmod p)$. Then let $n=p k$. Note that k is odd.
(i) If $p=3$, then from (5) we have $v_{3 k}=v_{k}\left(4 v_{k}^{2}+3\right)=2 \square$. Since k is odd and $t \equiv 0(\bmod 3)$, we see from (1) that $v_{k} \equiv 0(\bmod 3)$, so $\operatorname{gcd}\left(v_{k}, 4 v_{k}^{2}+3\right)=3$. Thus we have

$$
v_{k}=2 \cdot 3 x_{1}^{2} \text { and } 4 v_{k}^{2}+3=3 x_{2}^{2}
$$

so

$$
3\left(2 x_{1}\right)^{4}+1=x_{2}^{2}
$$

It follows from Lemma 1 that $x_{1}=1, x_{2}=7, v_{k}=6$. Hence from (2) we obtain $D=37, t=6, k=1, n=3$.
(ii) If $p=5$, then from (6) we have $v_{5 k}=v_{k}\left(16 v_{k}^{4}+20 v_{k}^{2}+5\right)=2 \square$. Since k is odd and $t \equiv 0(\bmod 5)$, we see that $\operatorname{gcd}\left(v_{k}, 16 v_{k}^{4}+20 v_{k}^{2}+5\right)$ is 5 . Thus we have

$$
v_{k}=2 \cdot 5 x_{1}^{2} \text { and } 16 v_{k}^{4}+20 v_{k}^{2}+5=5 x_{2}^{2}
$$

so

$$
\left(2^{2} \cdot 5 x_{1}^{2}\right)^{4}+5\left(2^{2} \cdot 5 x_{1}^{2}\right)^{2}+5=5 x_{2}^{2} .
$$

Hence we obtain the elliptic curve

$$
E: Y^{2}=X^{3}+5^{2} X^{2}+5^{3} X
$$

with $x_{3}=2^{2} \cdot 5 x_{1}^{2}, X=5 x_{3}^{2}, Y=5^{2} x_{3} x_{2}$. The substitution $X=X^{\prime}-8$, $Y=Y^{\prime}$ yields the elliptic curve

$$
E^{\prime}: Y^{\prime 2}=X^{\prime 3}+X^{\prime 2}-83 X^{\prime}+88
$$

which is the curve 400F1 in Cremona's table [2]. Thus we see that the MordellWeil group $E^{\prime}(\mathbf{Q})$ of E^{\prime} over \mathbf{Q} is given by $E^{\prime}(\mathbf{Q})=\langle(8,0)\rangle \cong \mathbf{Z} / 2 \mathbf{Z}$. Therefore we have $E(\mathbf{Q})=\{O,(0,0)\}, x_{1}=0$, so $v_{k}=0$, which contradicts $v_{k}>0$.
(iii) If $p=7$, then we similarly have from (7)

$$
v_{k}=2 \cdot 7 x_{1}^{2} \text { and } 64 v_{k}^{6}+112 v_{k}^{4}+56 v_{k}^{2}+7=7 x_{2}^{2}
$$

so the elliptic curve

$$
E: Y^{2}=X^{3}+7^{2} X^{2}+2 \cdot 7^{3} X+7^{4}
$$

with $x_{3}=\left(2^{2} \cdot 7 x_{1}^{2}\right)^{2}, X=7 x_{3}, Y=7^{2} x_{2}$. The substitution $X=X^{\prime}-16$, $Y=Y^{\prime}$ yields

$$
E^{\prime}: Y^{\prime 2}=X^{\prime 3}+X^{\prime 2}-114 X^{\prime}-127
$$

which is the curve 196B1 in Cremona's table [2]. Thus we see that $E^{\prime}(\mathbf{Q})=$ $\langle(16,49)\rangle \cong \mathbf{Z} / 3 \mathbf{Z}$. We therefore have $E(\mathbf{Q})=\{O,(0, \pm 49)\}, x_{3}=0, x_{1}=$ 0 , so $v_{k}=0$, which contradicts $v_{k}>0$.

Case 2: $n \not \equiv 0(\bmod p)$. Then we can put $n=p k \pm l$, where k is even and l is odd with $1 \leq l<p$.

Now suppose that $d=e_{p}(t)$ is odd. From (2) and (3), we have $v_{p k \pm l}=$ $\pm v_{p k} v_{l}+D u_{p k} u_{l}=2 \square$. Then the following claim holds:

Claim. (a) $e_{p}\left(v_{l}\right)=d, e_{p}\left(u_{l}\right)=0 . \quad$ (b) $e_{p}\left(v_{p k}\right)=0, e_{p}\left(u_{p k}\right) \geq d+1$.
The claim above implies that $e_{p}\left(v_{p k \pm l}\right)=d$, which is impossible, since d is odd and $v_{p k \pm l}=2 \square$. Thus to prove Theorem 1, it suffices to show the claim.

Proof of claim. (a) Since l is odd ($<p \leq 7$), we have $l=1,3$, 5. Then $v_{1}=t$, $v_{3}=t\left(4 t^{2}+3\right), v_{5}=t\left(16 t^{4}+20 t^{2}+5\right)$. These imply that $e_{p}\left(v_{l}\right)=d$ for each l, p with $1 \leq l<p \leq 7$. From $\left(v_{l}, u_{l}\right)=1$, we have $e_{p}\left(u_{l}\right)=0$.
(b) Since k is even, we have $u_{k} \equiv 0(\bmod t)$, so $e_{p}\left(u_{k}\right) \geq d, e_{p}\left(v_{k}\right)=0$.

Since $v_{p k}+u_{p k} \sqrt{D}=\left(v_{k}+u_{k} \sqrt{D}\right)^{p}$, we have

$$
u_{p k}=u_{k} \sum_{j=0}^{(p-1) / 2}\binom{p}{2 j} v_{k}^{2 j}\left(u_{k}^{2} D\right)^{\frac{p-1}{2}-j}:=u_{k} \sum_{j=0}^{(p-1) / 2} a_{j} .
$$

Then $e_{p}\left(u_{p k}\right) \geq d+1$. In fact, if $j<(p-1) / 2$, then $e_{p}\left(a_{j}\right) \geq d(p-1-$ $2 j)>1$. If $j=(p-1) / 2$, then $e_{p}\left(a_{j}\right)=1$. Thus $e_{p}\left(\sum_{j=0}^{(p-1) / 2} a_{j}\right)=1$. From $\left(v_{p k}, u_{p k}\right)=1$, we have $e_{p}\left(v_{p k}\right)=0$. This completes the proof of the claim and hence of Theorem 1.

Proof of Theorem 2. Suppose that n is odd.
Case $1: n \equiv 0(\bmod p)$. In the same way as in the proof of Theorem 1 , we obtain the following, respectively.
(i) If $p=3$, then we have the equation

$$
12 x_{1}^{4}+1=x_{2}^{2}
$$

which has no non-trivial solutions by Lemma 2.
(ii) If $p=5$, then we have the elliptic curve defined by

$$
Y^{2}=X^{3}+5^{2} X^{2}+5^{3} X
$$

which implies $X=0$, so $v_{k}=0$, as above.
(iii) If $p=7$, then we have the elliptic curve defined by

$$
Y^{2}=X^{3}+7^{2} X^{2}+2 \cdot 7^{3} X+7^{4}
$$

which implies $X=0$, so $v_{k}=0$, as above.
Case 2: $n \not \equiv 0(\bmod p)$. Similarly, comparing p-adic values of both sides of $v_{n}=\square$ leads to a contradiction.

Remark 1. In the proof of Theorems 1, 2, the fact that the elliptic curves above have rank 0 is a lucky thing. Thus the integral points are very easy to find. When an elliptic curve has positive rank, methods are known for determining the integral points on such a curve, but these methods are far from elementary.

In order to prove Theorems 3, 4, we need the following two propositions:
Proposition 1. If the equation $u_{n}=\square$ or $2 \square$ with n even >0 has any solutions, then we have $D=37, n=2^{e} \cdot 3$ with $e \geq 1$.

Proof. Let $n=2^{e} s$, where $e \geq 1$ and s is odd. Then applying (4) e times yields

$$
u_{n}=2 v_{n / 2} u_{n / 2}=2^{2} v_{n / 2} v_{n / 4} u_{n / 4}=\cdots=2^{e}\left(\prod_{j=1}^{e} v_{n / 2^{j}}\right) u_{s}
$$

Since $v_{n / 2^{j}}(1 \leq j \leq e), u_{s}$ are pairwise relatively prime, we have $v_{s}=\square$ or $2 \square$ with s odd. By Theorem 2 the first equation has no solutions. By Theorem 1 the second equation has only the solution $s=3, t=6, D=37, n=2^{e} \cdot 3$ with $e \geq 1$.

Proposition 2. Let $D=37$ and $n=2^{e} \cdot 3$ with $e \geq 1$. Then neither $u_{n}=$ nor $u_{n}=2 \square$ has solutions.

Proof. Write $n=3 k$, where $k=2^{e}$. Then by (2) and (5), we have $u_{3 k}=$ $u_{k}\left(4 \cdot 37 u_{k}^{2}+3\right)$. Note that k is even. We see that $u_{k} \equiv 0(\bmod 3)$. Otherwise, $u_{n}=\square$ or $2 \square$ implies $4 \cdot 37 u_{k}^{2}+3=\square$, which is found impossible by taking modulo 4. Hence it follows from $u_{n}=\square$ that

$$
u_{k}=3 x_{1}^{2}, \quad 4 \cdot 37 u_{k}^{2}+3=3 x_{2}^{2}
$$

so

$$
444 x_{1}^{4}+1=x_{2}^{2},
$$

which has no non-trivial solution by Lemma 2. It also follows from $u_{n}=2 \square$ that

$$
u_{k}=3 \cdot 2 \cdot x_{1}^{2}, \quad 4 \cdot 37 u_{k}^{2}+3=3 x_{2}^{2}
$$

so

$$
111\left(2 x_{1}\right)^{4}+1=x_{2}^{2}
$$

which has no non-trivial solutions by Lemma 2.
Proof of Theorem 3. Since u_{n} is even, we see that n is even and hence $n \geq 0$. Thus by (4), we have

$$
v_{n / 2}=\square, \quad u_{n / 2}=\square .
$$

If $n / 2$ is odd, then the first equation has no solution by Theorem 2. If $n / 2$ is even, then the second equation has only the solution $n=0$ by Propositions 1,2 .

Proof of Theorem 4. Theorem 4 is clear from Propositions 1, 2.

4. Applications

As a corollary to Theorems in § 3, we now deduce some results concerning the following Diophantine equations. We consider only non-negative integral solutions.

Now suppose that $X=a, Y=b$ is the fundamental solution of the Pell equation $X^{2}-D Y^{2}=-1$. Then the general solution is given by

$$
X+Y \sqrt{D}=(a+b \sqrt{D})^{n}
$$

Let $\alpha=a+b \sqrt{D}, \beta=a-b \sqrt{D}$. Then $\alpha+\beta=2 a, \alpha \beta=-1$. We now define for all integers n

$$
v_{n}=\frac{1}{2}\left(\alpha^{n}+\beta^{n}\right), \quad u_{n}=\frac{1}{2 \sqrt{D}}\left(\alpha^{n}-\beta^{n}\right)
$$

Then we have $v_{n+2}=2 a v_{n+1}+v_{n}$ and $u_{n+2}=2 a u_{n+1}+u_{n}$.
Now let $a=t$ and $D=t^{2}+1$. Then $X=t, Y=1$ is the fundamental solution of the Pell equation $X^{2}-D Y^{2}=-1$. As in $\S 3$, we assume that t is an even integer such that $e_{p}(t)$ is odd for $p=3,5$ or 7 .

Theorem 1'. The equation

$$
4 x^{4}-D y^{2}= \pm 1
$$

has only the solution $x=21, y=145, D=37$.
For, $2 x^{2}=v_{n}$, and hence by Theorem 1 we have $n=3, D=37$.
Hence this provides an elementary proof of the main result in Kagawa [3]. Note that the curve $4 x^{4}-37 y^{2}=-1$ is birationally equivalent over \mathbf{Q} to the elliptic curve $y^{2}=x^{3}-37^{2} x$, whose rank is 1 .

Theorem 2'. The equation

$$
x^{4}-D y^{2}=-1
$$

has no solutions.
For, $x^{2}=v_{n}$ with n odd, and hence by Theorem 2 we have no solutions.

Theorem 3'. The equation

$$
x^{2}-4 D y^{4}= \pm 1
$$

has only the solution $x=1, y=0$.
For, $2 y^{2}=u_{n}$, and hence by Theorem 3 we have $x=1, y=0$.

Theorem 4'. The equation

$$
x^{2}-D y^{4}=1
$$

has only the solution $x=1, y=0$.
For, $y^{2}=u_{n}$ with n even, and hence by Theorem 4 we have $x=1, y=0$.

References

[1] Cohn, J.H.E.: The Diophantine equation $y^{2}=D x^{4}+1$, III. Math. Scand. 42, 180-188 (1978)
[2] Cremona, J.E.: Algorithms for modular elliptic curves. Second edition, Cambridge Univ. Press, 1997
[3] Kagawa, T.: The Diophantine equation $4 x^{4}-37 y^{2}=-1$. Preprint
[4] Ljunggren, W.: Einige Eigenschaften der Einheiten reeller quadratischer und reinbiquadratischer Zahlkörper. Oslo Vid.-Akad. Skrifter 1 (1936), Nr. 12
[5] Mordell, L.J.: The Diophantine equation $y^{2}=D x^{4}+1$. J. London Math. Soc. 39, 161-164 (1964)
[6] Ribenboim, P. and McDaniel, W.L.: The square terms in Lucas sequences. J. Number Theory 58, 104-123 (1996)

