Determination of elliptic curves with everywhere good
reduction over real quadratic fields Q(1/3p)
(Remix version)

Takaaki Kagawa

Abstract

This paper is a remix of author’s papers [7], [8] and [9].

1 Introduction

Let £k = Q(y/m) be a real quadratic field, where m is a square-free integer greater than
1. In our previous papers [5] and [6], we determined all elliptic curves with everywhere
good reduction over k when m = 37 and 29, respectively. There, in the course of the
determination, we constructed some unramified abelian extensions by applying Serre’s
results (the corollary to Proposition 11 and Proposition 12 in [18]) to the field of 3-
division points. Unfortunately, we cannot apply them to the case m = 0 (mod 3) because
of their assumption. However, without them, we can construct certain abelian extensions
unramified outside 3 and the infinite primes. Thus assuming certain conditions on ray
class numbers, we can deduce some criteria, and using them we can treat the case m =0
(mod 3).

If 1 <m < 100, m =0 (mod 3), and the class number of k is prime to 6, then m =
3,6,21,33,57,69 or 93. In [6], [10], [12], the proof is given for the nonexistence of elliptic
curves with everywhere good reduction over £ when m = 3,21 and the determination of
such curves is done when m = 6, while the cases m = 33, 57, 69 and 93 are still open. In
this paper, we determine all elliptic curves with everywhere good reduction over Q(1/33)
and show the nonexistence of such curves over Q(v/57), Q(+/69) and Q(+/93).

We use the following notation throughout this paper. For an algebraic number field
k, Ok, O; and hy denote the ring of integers, group of units and class number of £,
respectively. If m is a divisor of k (that is, a formal product of a fractional ideal of k
and some infinite primes of k), hx(m) denotes the ray class number modulo m. If k is
a real quadratic field, then ¢ and ' denote the fundamental unit greater than 1 and the
conjugation of k, respectively.

For an elliptic curve E, we denote j(E) and A(E) by the j-invariant and the discrim-
inant of F, respectively.
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2 Results

Let & = Q(v/33). The fundamental unit of k is ¢ = 23 + 4v/33. In [12], the following
elliptic curve with everywhere good reduction over k£ is given:

B2+ (5+V33)ay +ey =2, A(E) = —¢%, j(B)) = —32768.
This curve contains two k-rational subgroups Vi, V, of order 3, namely
Vi = Ei(k)tors = ((0,0)), Vo= ((-6— \/@, Y1),
where y; = (40 + 7V33 + /—=¢)/2 = (40 + 7V/33 + 2y/=3 + v/—11) /2. Let E, := E /V,

Es := E;/V;. Using Vélu’s formula [22], we obtain the following defining equations of Fj
and FEj:

By 2+ (54 V33)ay + ey = 2° — (1235 + 215v/33)z — (35915 + 6252v/33),
A(Ey) = —¢, j(Ey) = —(5+ v/33)%(5588 + 972v/33)%c

Es:y*+ (54 V33)xy + ey = 2° + (85 + 15v/33)x + (730 + 127v/33),
A(Es) = —€°, j(E3) = —(5 — V/33)%(5588 — 972v/33)%¢.

Although j(Ey) = j(E]) (resp. j(E2) = j(E%)), Ey and E] (resp. Ey and EY) are not iso-
morphic over k, since A(E;)/A(E}) = A(F,)/A(Ej;) = €% is not a 12-th power. Hence
there are at least six k-isomorphism classes of elliptic curves with everywhere good reduc-
tion over k.

By definition, Ey and Ej3 are 3-isogenous over k to Ey. Further we see that F; and E]
are 11-isogenous over k, since F; and Ej are quadratic twist by —my;/11 and 74, /112 of the
curves 121B1 and 121B2 in Table 1 of [2], respectively, 121B1 and 121B2 are 11-isogenous
over Q, and (—my;/11)(7},/11%) = 1/11%. Here my; = 11 + 24/33 is a prime element of k
dividing 11. Below is the isogeny graph among the related elliptic curves:

3 11 3
Es E E E}
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Here, for a prime p and elliptic curves £ and E defined over k, the graph

E—P F

means that F and E are p-isogenous over k. Hence there is at least one k-isogeny class
of elliptic curves with everywhere good reduction over k.
In this paper we prove

Theorem 1. Up to isomorphism over k = Q(v/33), the siz curves listed above are all the
elliptic curves with everywhere good reduction over k. In particular, there is exactly one
k-isogeny class of such curves.



We simultaneously prove the following theorem.

Theorem 2. There are no elliptic curves with everywhere good reduction over Q(y/m) if
m = 57,69 or 93.

Let d be the discriminant of a real quadratic field and x4 the Dirichlet character
associated to d. Let Sy = Sa2(15(d), xq) be the space of cuspforms of Neben-type of weight
2 and level d. It is conjectured (cf. [16]) that any elliptic curve having everywhere good
reduction over the real quadratic field Q(v/d) and admitting an isogeny over Q(v/d) to
its conjugate should be isogenous over @(\/E) to so-called Shimura’s elliptic curve which
arises from a 2-dimensional Q-simple factor of S;. When d = 33, 57, 69, 93, it is known
that S, is 2-dimensional and Q-simple, 4-dimensional and Q-simple, 6-dimensional and
Q-simple, 8-dimensional and Q-simple, respectively. Thus Theorems 1 and 2 confirm the
conjecture for these four values of d.

3 Preliminaries

Later we will give criteria for every elliptic curve with everywhere good reduction over a
real quadratic field k to admit a 3-isogeny defined over k (Propositions 11 and 12 below).
Thus we first study elliptic curves with 3-isogeny and some Diophantine equations arising
from the investigation of such curves. Further, since a key tool to prove the criteria is the
field L = k(FEI[3]) of 3-division points and Gal(L/k) can be viewed as a subgroup of the
general linear group GLy(F3), we will also study subgroups of GLy(F3).

3.1 Elliptic curves with 3-isogeny

Let E and E be elliptic curves defined over a number field k which are 3-isogenous over
k. We define a rational function J(x) by

(x4 27)(x + 3)3 '

J(z) =
Then, by Pinch [17], the j-invariants of E and E can be written as
J(E)=J(), j(E)=J(), t,t €k, tt =729 = 3°.

(This is nothing other than a parameterization of the modular curve Yy(3).) Moreover,
let ¢4(F) and cg(F) be the usual quantities associated to E. Then the following relations
hold.

, a(E)?  (t+27)(t+3)?

e = 4 - S (3.1)
c(E)? (12418t —27)?
AE) t '

Lemma 3. Let E, E, t and T be as above. Then

(a) If j(E) # 1728, then t/A(FE) is a square in k.

(b) If E and E have everywhere good reduction over k and j(E), j(E) # 0,1728, then
the principal ideals (t) and (t) are integral and sizth-powers.

(3.2)
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Proof. (a) follows immediately from (3.2).

(b) It suffices to prove the assertions only for ¢. Equation (3.1) and the assumption
that F has everywhere good reduction over k imply that ¢ is an integer in k. By the
same assumption, the principal ideal (A(E)) is a 12-th power, say (A(F)) = a'?. Since
J(E) # 1728, we see from (3.2) that (¢t) = ((t*+ 18t — 27) /cs(F))?a'? is a square. To show
that (¢) is a cube, it is enough to show that ord,(¢) = ord,(27) (mod 3) for any prime ideal
p dividing 3, where ord, is the normalized valuation corresponding to p, since ¢,t € O
and tt = 3% If ord,(t) = ord,(27), then there is nothing to prove. If ord,(t) > ord,(27),
then ord,((t 4+ 27)/t) = ord,(27) — ordy(¢). On the other hand, since j(E) # 0, we see
from (3.1) that ((¢ 4+ 27)/t) = (ca(E)/(t + 3))*/a'? is a cube. Hence ord,(t) = ord,(27)
(mod 3). O

Let k£ be a real quadratic field in which 3 does not split and let E be an elliptic curve
having everywhere good reduction over k£ and admitting a 3-isogeny defined over k£ with
J(E) = J(t). In this case, j(FE) is neither 0 nor 1728 (Theorem 2, (a) in [20]). Thus it
follows from Lemma 3, (b) that

() = (1), (729) if 3 is inert,
(1), (27), (729) if 3 ramifies.

From (3.1), we have

< ?f;) > = A(E)(1+27u), u= % € O (3.3)
if (1) = (1),

(3;3‘35]? ) = A(B)(u+27), u= 73—9 €O (3.4)
if (t) = (729), and

( i“iE; ) = AB)1+u), u= 277 € O (3.5)

if 3 is ramified and (t) = (27). Note that c4(E) # 0 since j(FE) # 0.
Consequently, to investigate elliptic curves having everywhere good reduction over k
with unit discriminant and admitting a 3-isogeny defined over k, we need to study the

equations
X3 =u+27v, X®=u+v

in X € O\ {0}, u,v € 0. We will study them in the next subsection.

3.2 Some Diophantine equations

Using the software KASH, SageMath or Magma, we obtain the following lemma.



Lemma 4. (a) The equation 27y? = z* — 676 (x,y € Z) has no solutions.
(b) The equation 27y* = x® 4+ 784 (z,y € Z) has no solutions.
(c) The only x,y € Z satisfying 27y* = z* + 676 are (z,y) = (—1,+5), (26, +26).
(d) The only x,y € Z satisfying 27y* = x> — 784 are (z,y) = (19, £15), (28, £28).

Lemma 5. Let k be a real quadratic field. If there exist u,v € O;, X € Oy, such that
X3 =u+27v (3.6)

and wv = £0; (O is a square element of k), then k is equal to Q(v/29) and the only
solutions are (X, u,v) = (£e" 1, Fe¥ntl Le3n71) (et 331 ££30H) (n € Z), where

e = (54 +/29)/2 is the fundamental unit of Q(1/29).

Proof. By changing (u, v, X) to (u?, u*v, uX) if necessary, we may assume that Ny q(u) =
Nijg(v) = 1. Taking the norm of both sides of (3.6), we have

Nijo(X)? = 730 + 27 Try g (uv ™). (3.7)

1

Since uv = £0; and N g(v) = 1, we have uv™" = uv/v? = £w? for some w € O} . Hence

Nijo(X)? = 730 £ 27 Try g (w?) = 730 £ 27{ Tt} /0(w)* — 2Ny /g(w)}.
If the sign is +, then
27 Try,j0(w)? = Nijo(X)® — 730 4 54Ny g (w)

[ Nio(X)? =676 if Nyjg
Nijo(X)? — 784 if Nyjg

(w) =1,

(w) = —1.

It follows from Lemma 4 that Njg(w) = —1 and Tryg(w) = 15 or £28, that is, w =
+(154+/229) /2 or +(14++/197). If w = +(154+/229)/2, then (u+27v) = (w?+27) = p°,
where p is a prime ideal of Q(1/229) dividing 19. Since p is not principal, u + 27 is not a
cube in Q(v/229). (Note that the class number of Q(v/229) is 3.) If w = +(14 + \/197),
then u 4 27v is not a cube in Q(v/197), since (u + 27v) = (227(15 £ v/197)) = (2)*p2p.,

where (7) = prp7, p7 # p7.
If the sign is —, then

27 Try,j0(w)® = {—Nisg(X)} + 730 4+ 54Ny g (w)

_ {{—Nk/@<X>}3 + 784 if Nisgl
( (

w) =1,
{—Nijo(X)}?+ 676 if Nyjg(w) = —1.

w)

It follows from Lemma 4 that Ny g(w) = —1 and Tryg(w) = +5 or £26, that is, w =
+(13 + 1/170) or £(5 +1/29)/2. If w = +(13 £ /170), then u + 27v is not a cube in
Q(V170), since (u + 27v) = (26(12 £ V170)) = pipispls, where (2) = p3, (13) = pyap}s,
p1s # ply. If w = £(5 £+/29)/2, then u + 270 = ve*? (¢ = (5 + v/29)/2). Thus,
if X3 = u + 27v, then there exists an n € Z such that v = £ 1, X = £e"! or
v =43t X = et O



Remark. Lemma 5 is a generalization of Proposition 2.3 in [15] which states that the
only m € Z and X € O, gg) satistying X° = e**1?™ — 27 are m = 0 and X = —1,

Using the software mentioned above, we obtain the following.

Lemma 6. (a) There are no integer solutions of y? = x3 — 784.

(b) The only integer solutions of y* = x + 676 are (x,y) = (0, +26).

(c) The only integer solutions of y* = x3 — 676 are (z,y) = (10,£18), (13,439),
(26,+130), (130, +1482), (338, £6214) and (901, £27045).

(d) The integer solutions of y* = x* + 784 are (z,y) = (—7,421), (0,£28), (8,+36)
and (56, +420).

Proposition 7. Let p be a prime number such that p = 2 or p = 3 (mod 4), p >
3. Let k = Q(v/3p). Then equation (3.6) has a solution in X € Oy, u,v € OF only
when k = Q(v/6) or Q(v/33), in which cases, the only solutions are (X,u,v) = (wy(4 £
V6), wi wi(5+£2v6)), (—wo(5+£+/33), wd, —wd(234+4+/33)), respectively. Here w, (resp.
wsy) is any unit of Q(v6) (resp. Q(v/33)). Note that 5+ 2v/6 (resp.23 + 4v/33) is the
fundamental unit of Q(v/6) (resp. Q(v/33)).

Proof. The case uv = +0; are treated in Lemma 5 and shown no solutions exist. Thus
we assume that uv™! = +ew?, w € O}F. Taking norm of (3.6), we have (3.7). There exists
am € Ok such that (m)? = (3), since 3 ramifies in k and the class number of & is odd. (see
3], Theorems 39 and 41.) The facts that 72/3 > 0 and k # Q(v/3) imply v/3e = 7" € Oy
(for some n € Z). Thus

27 Try g (uv ™) = £9 Try o (V3e w)?) = £9{ Try 0 (V3e w)? — 2Ny 0(V3e) ). (3.8)
When Ny,/q(v/3¢) = —3, equations (3.7) and (3.8) give

Nyjo(X)? — 784 if uv™! = ew?,

{3Trk/<@<\/§w)} - {{—Nk/Q(X)}3 +676 if uv! = —ew?

Thus there is no solution in this case.
When Ny,/o(v/3¢) = 3, equations (3.7) and (3.8) give

Nyijo(X)? — 676 if uv™! = ew?,
{~Nya(X)} +784 if uv™ = —ew?.

(3 Tro(V3ew)} = {

In case uv™! = ew?, Lemma 6 implies that Try/g(v/3e w) = %6, £13, 247 or £9015, and

(3+6 if Tryq(v/3ew) =
-3+6 if Try,0(V3ew) = 6,
V3ew = { (£13 £ V/157)/2 if Tryq(v/3e w) = +13,
+247 £ /3503 - 53857 if Try/q(v/3e w) = £247,
| £9015 + v/2-11-47-59  if Tryq(v/3c w) = £9015.



Thusk:(@(\/é) and € = 5 + 2v/6. Since v3¢ = 3+ v/6 and v3ce' = 3 — V6, we have

wot — e 18 EVBEW=£B+ V),
g if V3ew = £(3 — V6).

When uv™! = ¢, since u + 27v = v(e +27) = ve(4 — v/6)?, there exists a w; € O(S(\/é) such
that v = wie’, u = w? and X = w;(4—+/6). When uv™! = &', since u+27v = v(¢' +27) =

ve' (44 +/6)3, there exists a w; € 06(\/5) such that v = wie, u = w? and X = w, (4 + V6).
In case uv™! = —ew?, Lemma 6 implies that Tryq(v/3sw) = £7,£12, or £140, and

(£7+V37)/2  if Tryo(V3ew) = +7,
VIR w — 64+ /33 if Try/o(V3ew) = 12,
) -6+v33 if Try,q(v/3e w) = —12,

+70 £ /5983 if Tryo(v/3e w) = £140.
Thus & :Q(\/ﬁ) and ¢ = 23 4+ 4v/33. Since v/3e = 6 + v/33 and V3ee' = 6 — /33, we

have
) if v3ew = (6 + v/33),
w ™ = —ew? =
—&' if V3ew = +(6 — V/33).
When uv™' = —¢, since u + 27v = ve(5 — v/33)?, we have u = —wj, v = wic’ and X =

wsy(5 — +/33) for some wy € (’)6(\/@. When uv™! = —¢’, we have u + 27v = ve'(5+ v/33)3.

Hence there exists a wq € O(S(\/?E) such that v = —w3, v = wie and X = wy(5++/33). O
Proposition 8. Let k be a quadratic field. Then the only solution of the equation
XP=1+v, X€O, veOf
is (X,v) = (0,-1).
Proof. Since X? —1=(X —1)(X?4+ X +1)=0ve 0, X —1=1v, X+ X +1=: v,
are units of k. Eliminating X, we have v} + 3v; + 3 = v,. Taking norm results in
Nijg(va) = 3 Try/q(v1)? + 3{Nijo(v1) + 3} Trr/o(v1) + 9 + 3Nk g (v1) + 1.

Reducing modulo 3 yields Ny q(v2) = 1. Therefore Try, g (v1)*+{ Ni/q(v1)+3} Tryq(v1) +
3+ Nk/Q(Ul) =0. If Nk/@(vl) = —1, then Trk/@(vl)2 + 2Trk/Q<U1) + 2 = 0, which is
impossible. If Ny g(v1) = 1 then Tryg(v1)? + 4 Try(v1) + 4 = 0, from which vy = —1,

X =0. O
Proposition 9. If the norm of the fundamental unit of a real quadratic field k is 1 and
XP=u—v, X€O, uveO;, w=0, (3.9)

holds, then X = 0.

Proof. By assumption, we have uv’ = w? for some w € O,. Taking the norm of both
sides of (3.9) and noting Ny g(u) = Ni/o(v) = Nijo(w) = 1, we obtain

Tryg(w)? = {=Nijo(X)} + 4.
It then follows that X = 0, since the only (affine) Q-rational points of the elliptic curve
y*> = 2® + 4, which is the curve 108A1 in Table 1 of [2], are (0, +2). O
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3.3 Subgroups of GL,(FF3) as a Galois group

Let k be an algebraic number field not containing /—3. Let E be an elliptic curve
defined over k, let E[3] = {P € E | 3P = O} be the group of 3-division points of E,
and let L = k(E[3]) be the field generated over k by the points of E[3]. We may regard
G = Gal(L/k) as a subgroup of GLy(F3) by the faithful representation G — GLy(F3)
induced by the action of G on E[3]. Here we study what group G can be. We should
mention that, in his paper [14], Naito studied the same problem for elliptic curves defined

over Q.

Lemma 10. Let G be as above. Let p=(§_9), o = (94), 7= (1 71) € GLa(F3), which
satisfy the relations p* = 0?> =18 =1, oro™! = 73. Then
(a) G is conjugate in GLy(F3) to one of the following:
p) 2 7/)27.
—1) x (p) 2 Z/)2Z x L] 2.

)
)
(iii) ({r) = S;s (the symmetric group of degree 3).
(iv) (57) =55
(v) {(o,72) = Dg (the dihedral group of order 8).
(vi) (1) = Z/8Z.
(Vi) (§7%) 2 Sy x Z/2Z.
(viii) (o, 7) = SDsg (the semi-dihedral group of order 16).

(ix) GLo(Fy).

(b) A(E) is a cube in k if and only if G is conjugate in GLy(F3) to one of the groups
in (i), (i), (v), (vi) or (viii). For each case, GNSLy(F3) = Gal(L/k(+/=3)) is conjugate in
GLo(F3) to {1}, (—1) X Z/27Z, (t?) X ZJAZ, (%) 2 Z/AZ, {oT,T?) = Qs (the quaternion
group), respectively.

(¢) E admits a 3-isogeny defined over k if and only if G is conjugate in GLy(F3) to
one of the groups in (i), (ii), (iii), (iv) or (vii).

Proof. (a) We have #G > 2, since k(v/—3) C L ([21], p.98) and [k(v/—3) : k] = 2.
The special linear group SLy(F3) does not contain G, since we have Gal(L/k(v/—3)) =
G N SLy(FF3) by the commutativity of the diagram

T GLo(F3)
Gal(k(v/=3)/k) ——T3

From these together with the classification of the subgroups of GLy(F3) (cf. [14]), we

obtain the assertion.
(b) The first part is clear from the fact that A(F) is a cube in k if and only if [L : k]
is not divisible by 3 ([18], §5.3). The second part follows from direct calculation.



(c) Since admitting a 3-isogeny defined over k is equivalent to the existence of a point
P of order 3 such that o(P) = £P for any ¢ € GG, we may assume, by an appropriate
choice of a basis of E[3], that G is a subgroup of (§%). Among the groups appeared in
(a), the only groups which are subgroups of this group are the ones in (i), (ii), (iii), (iv)
and (vii). O

4 Some criteria

In this section, we use the following notation: For subgroups H and N of GLy(F3), H ~ N
means that H is conjugate in GLy(F3) to N.

Proposition 11. Let k be a real quadratic field. Assume that hk((S)pg})pg}) # 0 (mod 4),
where p&Y and p$ are the real primes of k, or hiy=3)((V/=3)) Z 0 (mod 4). Then every
elliptic curve E with everywhere good reduction over k whose discriminant A(E) is a cube
in k admits a 3-isogeny defined over k.

Proof. Let E be an elliptic curve with everywhere good reduction over k with A(E) €
k3. Set L := k(E[3]), G := Gal(L/k) and H := Gal(L/k(v/=3)) = G N SLy(F3). By
Lemma 10, (b), G is conjugate in GLy(F3) to (0, 7) = SDsg, (1) 2 Z/87Z, {0, 7%) = D,
(=1) x (p) X ZJ2Z X |27, or {p) = Z/27. If G ~ (1) or (o,7?), then it is clear that
G has a normal subgroup N such that G/N is of order 4. Further, by Lemma 10, (b),
H = Z/4Z in these cases. If G ~ (o,7), then G has a normal subgroup of N with
G/N 2 7/27 x 7./27. Indeed, (o, 7)/{T?) = 7/27 x Z/27. Further H ~ {o7,7%) = Qg
and (o1, 72) /(1% = 7 /27 x Z./27.. Thus in view of the criterion of Néron—Ogg—Shafarevich
([21], p. 184), our assumptions on ray class numbers imply that G ~ (p) or (—1) x (p).
We therefore see from Lemma 10, (c¢) that F admits a 3-isogeny defined over k. ]

Proposition 12. Let k be a real quadratic field with (hy,6) = 1. Let ‘,Bg)) and apﬁf) be
the real primes of k(3/z).

(a) If hk(%)((?))mé? @) £ 0 (mod 4) or hivzv=3)((3)) Z 0 (mod 4), then every
elliptic curve E with everywhere good reduction over k whose discriminant A(E) is not a
cube in k admits a 3-isogeny defined over k.

(b) If hk(%)((?))*m?mé?) Z 0 (mod 4) or hy sz /=3((3)) # 0 (mod 2), then every
elliptic curve E with everywhere good reduction over k whose discriminant A(E) is not a
cube in k has a k-rational subgroup V' of order 3, and either E or E/V has a k-rational
point of order 3.

Proof. (a) Let E be an elliptic curve with everywhere good reduction over k and let
L =k(FE[3]), G = Gal(L/k). By the corollary to Theorem 1 in [19], which states that every
elliptic curve with everywhere good reduction over & has a global minimal model provided
(hy,6) = 1, and the assumption that A(FE) is not a cube, we have k(VA(E)) = k(/e).
Since L contains k(v A(F)) ([18], p. 305), we have [L : k] =0 (mod 3). Thus, by Lemma
10, (b), we have G ~ (%), (§1), (%) or GLg(F3). Suppose that E admits no 3-isogeny
defined over k. Then, by Lemma 10, (c), we have G = GLy(F3), Gal(L/k(/€)) ~ (o, 7)
and Gal(L/k(/e,v/=3)) = Gal(L/k(/2)) N SLy(F3) ~ (o7,7%). The criterion of Néron—
Ogg-Shafarevich and the fact that (o, 7)/(r%) and (o7,72)/(r?) are both isomorphic to
Z/2Z x Z/2Z imply by gz ((3)BLPL) = 0 (mod 4) and hy gz /=5 ((3)) = 0 (mod 4).
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(b) According to (a), we have G ~ (32), (§1) or (%). Supposing G ~ (§1),
the criterion of Néron-Ogg—Shafarevich implies that L/k({/¢) is an abelian extension of
degree 4 unramified outside {3,‘]383,‘13533)} and L/k(¥/e,4/—3) is a quadratic extension

unramified outside 3. These contradict our assumptions. Il

5 Proof of Theorems 1 and 2
Let k be one of the real quadratic fields Q(v/33), Q(v/57), Q(v/69) and Q(v/93). The

fundamental unit € of k larger than 1 is

23 4 44/33 if k =Q(v/33),
151 4 20v/57  if k = Q(V/57),
(V69)
(V93).

| W

(25 +3v69)/2 if k = Q(v/69),
(29 +3v93)/2 if k = Q(v/93

wW| ©

Note that Nj/g(e) = 1. Let £ be an elliptic curve with everywhere good reduction over
k.

5.1 The case where A(F) is a cube in k

If A(E) is a cube in k, then & must be Q(v/33) and E is isomorphic over & to F; or Ef.
Indeed, more generally, we have the following.

Proposition 13. Let p be a prime number such that p = 2 or p # 3, p = 3 (mod 4),
and let k := Q(\/3p). If there is an elliptic curve E which has everywhere good reduction
over k and whose discriminant A(E) is a cube in k, then p =2 or p = 11. If p = 2
(resp.p = 11), then E is isomorphic over k to

Ei:y+ (4 +V6)zy + (5+2V6) = 2°, A(E) = (54 2v6)%, j(Ey) = 8000
or E (resp.to Ey or EY).
First, we give some lemmas.

Lemma 14. Let p and q be distinct primes such that p = q¢ = 3 (mod 4) and let k =
Q(\/pq). Let q be the prime ideal of k dividing q. Then
(a) hy is odd.

()) (\/_) QV=p:vV=9)-

(¢) e = (p/q) (mod q), where (-/-) is the Legendre symbol. In particular, ¢ = p
(mod q) if ¢ = 3.

Proof. (a) Theorems 39 and 41 of [3].
(b) By (a), q is principal. Let m € Oy be a generator of q. Since € > 1, k is real and

k # Q(y/q), we have ¢ = w?*"*! for some n € Z, whence k(y/—q) = k(v/—¢).
(c) We first show that ¢ = £1 (mod q), which is equivalent to Tryg(e)* =0 (mod g)

since Ny/g(e £1) =24 Tryg(e). But this readily follows by writing € as € = (Tryq(e) +

b\/pq)/2, b € Z.
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Let K = k(v/—¢) = Q(v/=p,/—¢q). By Theorem 23 in [3], q splits in K if and only
if there exists an X € Oy such that X? = —¢ (mod q), which is equivalent to ¢ = —1
(mod q), since Ok /q = Z/qZ and g = 3 (mod 4). On the other hand, q splits in K if and
only if ¢ splits in Q(y/—p), which is equivalent to (p/q) = —1. O

Corollary 15. Let p be a prime number such that p = 3 (mod 4) and p # 3. Let
k=Q(\/3p) and K = k(v/=3). Then

(a) hi is odd.

(b) The ray class number hy((v/=3)) is 2hx or hx according as p = 1 (mod 3) or
p=2 (mod 3). In particular, hx((v/=3)) is not a multiple of 4.

Proof. (a) By [3], Corollary 3 to Theorem 74, we have hx = hxhg(/=5hov=3) = Prho/=p),
which is odd by Lemma 14, (a).

(b) Let G := (Ok/vV=30k)* and H = {z +/-30k | z € O} C G. From
the formula for the ray class number (Theorem 1 of Chapter VI in [13]), it follows that
hi((v/=3)) = hx(G : H). Thus it is enough to show that

G H) = {2 %fpzl (mod 3),
1 ifp=2 (mod 3).
Let (s = (1 +1/=3)/2 be a primitive sixth root of unity. Since K = k(y/—¢) by Lemma
14, (b) and (s € K, we have OF = () x (v/—¢) (cf. [3], pp. 194, 195). Hence
H = {(/—¢ +v=30k, (s + V—30k). Let q be the prime ideal of k dividing 3.
Assume that p = 1 (mod 3). Then, since (—p/3) = —1, qOx = v/—30k is a prime
ideal of K and hence G is a cyclic group of order 8. Lemma 14, (c¢) and the formula

G—1=¢, G—1=v=3G (5.1)

imply that H = (y/—¢ + v/—30k) & Z/4Z. Thus (G : H) = 2.

Assume that p = 2 (mod 3). By Lemma 14, (c), we have X? +¢ = (X — 1)(X + 1)
(mod q). Hence by letting Q; = (q,v/—¢ — 1), Qo = (q,v/—¢ + 1), it follows from [3],
Theorem 23 that

V30K = q0x = 9,9, G = (0x/Q)* x (O /Qo)* = (Z/3Z)* x (Z/3Z).

The definition of Q; (i = 1, 2) implies that /—¢ =1 (mod ;) and /—¢ = —1 (mod Qy).
Further, (5.1) means that (¢ = —1 (mod ;) (i = 1,2). Hence H = (Z/3Z)* x (Z/37Z)*,
whence (G : H) = 1. O

Lemma 16 ([11], Corollary 3.4). Let E be an elliptic curve having everywhere good re-
duction over a quadratic field k. Let s denote the number of ramifying rational primes
in the extension k/Q. Then the number of twists of E having everywhere good reduction
over k is 2571,

Proof of Proposition 13. Let E be an elliptic curve having everywhere good reduction
over k and having cubic discriminant in k. Then, by Proposition 11 and Corollary 15, E
admits a 3-isogeny over k. Thus by the argument in section 3.1, j(F) is of the form J(¢),
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t € O, t| 3% and the principal ideal (t) is a sixth power. By (3.3), (3.4), and (3.5), we
see that there exist an X € Oy \ {0} and a u € O} such that

X3 =1+27u if (t) = (1), (5.2)
X3 =wu+27 if (t) = (729), :
X3=14u if (t) = (27). (5.4)

From Propositions 7 and 8, neither of the equations (5.3) and (5.4) has solutions. From
Proposition 7, the only units u satisfying equation (5.2) are 5 4 2v/6 and —(23 + 41/33).
If u =526 (resp.u = —(23 4 44/33)), then j(E) = J(5 F 2/6) = 8000 (resp. j(E) =
J(—(23 F 4v/33)) = —32768). We have two elliptic curves with everywhere good reduc-
tion over Q(v/6) (resp. Q(+/33)) with j invariant 8000 (resp. —32768), namely E, and E

(resp. By and E}). Lemma 16 therefore implies our assertion. O
Remark. All elliptic curves with everywhere good reduction over Q(v/6) have been de-
termined in [6], [10].

5.2 The case where A(F) is not a cube

Consider the case where A(F) is not a cube in k. Table 1 and Proposition 12 imply that
E admits a 3-isogeny defined over k. Thus j(F) is of the form J(t), (¢) = (1), (27),(729).

b OBEPD) b v (3)) |
Q(v/33) 2.3° 3
Q(+/57) 22.3 233
Q(+v/69) 2.3 3
Q(+/93) 22.3 2.3

Table 1: Ray class numbers

The field K := k(VA(E)) is one of the fields k, k(v/—1) or k(v/£e), since we may
assume that A(E) is a unit (see the above-cited result in [19]). The field k(E[2]) is a cyclic
cubic extension of K, since in [1], it is shown that E has no k-rational points of order 2.

This means that, in view of the criterion of Néron-Ogg—Shafarevich, hg) = hg (pr p>
is divisible by 3. Thus Table 2 implies that A(E) = —?"*! for some n € Z. In view of
the formulae for an admissible change of variables, we may assume that A(E) = —e*!
or —e*5. We may further assume that A(E) = —&%"*! (n = 0, —1) by considering the
conjugate of E.

Suppose first that (¢) = (1). By (3.3), we obtain

—cy(F)

X3 = u, X =—""_
&t 2l (t + 3)e2n /

which is impossible by Proposition 7.

12
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Table 2: BY (K = k, k(v/=1), k(vEz))

Suppose next that (¢) = (27). Then, by (3.5), we obtain

—cy(F) 27

X3:5+€u, X = (t—|—3)€2n GOk\{O}, UZTGO;

Let

),
),
)

Y

6+ /33 iftk=0Q
15+2v57  ifk=Q
(9+169)/2 ifk=Q
(9+v93)/2 if k= Q(+/93)

be a prime element of k dividing 3. Lemma 3, (a) and the fact 72 = 3¢ imply u = —&?™
for some m € Z, whence

(
(
(

X3=g -t X £0,

which is impossible by Proposition 9.
Finally, suppose that (¢) = (729). Since t/A(E) = —t/%"*! is a square by Lemma 3,
(a), we have u = 729/t = —?™~! for some m € Z, and hence by (3.4) we have

X3 =g —27e, X = 364—(E>.
(t+3)e2n
By Proposition 7, this is possible only if & = Q(v/33) and m = 0, whence j(E) =
J(=729¢) = —(5 + v/33)3(5588 + 972v/33)3c !, which equals to j(E;) and j(Ej). Lemma
16 therefore implies that E is isomorphic over Q(v/33) to F, or Ej according as A(E) = —¢
or A(E) = —&75.

The proof of Theorems 1 and 2 is now complete.

6 Appendix
In section 5, we gave a characterization of elliptic curves having everywhere good reduction
over a real quadratic field £k, admitting a 3-isogeny defined over k, and having cubic

discriminant (Proposition 13). Here we give a similar characterization of the curves whose
discriminant is equal to +0,. More precisely, we prove

13



Proposition 17. Let k be a real quadratic field. If there exists an elliptic curve E with
everywhere good reduction over k given by a global minimal model with j(E) = J(t)
(t € O, (t) = (1) or (729)) and A(E) = £0;, then k = Q(v/29) and E is isomorphic
over k to

Es:y’ +ay+e’y=a°, A(Es) =—e", j(Bs) = (2 = 3)%/e",
Ee: y* 4+ wy + e’y = 23 — 5e%x — (2 + 7<),
A(Eg) = =", j(Es) = —(1 +216%)° /e,

or to their conjugates EL, Ef. Here e = (5 + v/29)/2 is the fundamental unit of Q(1/29)
and J(t) is the one given in section 3.1.

Proof. Suppose that there exists an elliptic curve F with properties stated in the propo-
sition. We take A(E) € O;'. Letting

(ca(E)/(t+3), A(E), A(E)/t) if (¢)
(Bea(E)/(t+3), T29A(E) /t, A(E)) if (¢)

(1),

(X,u,v):{

we have X3 = u+ 27v, X € O, u,v € O, uv = £0;, by (3.3), (3.4) and Lemma 3, (a).
Hence, by Lemma 5, we have k = Q(+v/29), u/v = —&2, —¢’?, where ¢ = (5 + 1/29)/2 is
the fundamental unit of Q(1/29).

If (t) = (1), then t = u/v = —%,—", and j(E) is equal to J(—¢?) = (¢ — 3)3/e* or
J(—e?) = (72 — 2)3% If () = (729), then t = T29v/u = —T729%, —729¢", and j(E) is
equal to J(—729¢?) = —(1+216e%)3c' or J(—729¢"?) = —(1+216%)3¢"™*. Since the values
of j-invariant obtained above are equal to j(Es), j(EL), j(E§) and j(Eg) respectively,
Lemma 16 implies our assertion. [

Using Propositions 11, 12 and 17, we can give another proof of the following theorem
which is the main theorem of [6]:

Theorem 18. Up to isomorphism over k = Q(v/29), the only elliptic curves with every-
where good reduction over k are Ey, EY, Eg and Ej

Proof. Let E be an elliptic curve with everywhere good reduction over k = Q(v/29)
and let A(E) € O;. Since hl(f) = hg()\/g) =1, hl(f()\/—il)
point of order 2 (see [1], [4]), we have A(F) = —¢? = —0O,. Since hk((?))p&)pg})) =2,
i) ((3)‘13&) Ei)) = 2, and the prime number 3 is inert in k, we have by Propositions 11
and 12 that j(E) is of the form J(¢), (¢) = (1) or (729). Proposition 17 therefore implies
that E is isomorphic over k to Ej, EX, Eg or Ej, as claimed. O

= 3, and E has no k-rational
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