Determination of elliptic curves with everywhere good reduction over real quadratic fields $\mathbb{Q}(\sqrt{3 p})$ (Remix version)

Takaaki Kagawa

Abstract

This paper is a remix of author's papers [7], [8] and [9].

1 Introduction

Let $k=\mathbb{Q}(\sqrt{m})$ be a real quadratic field, where m is a square-free integer greater than 1. In our previous papers [5] and [6], we determined all elliptic curves with everywhere good reduction over k when $m=37$ and 29, respectively. There, in the course of the determination, we constructed some unramified abelian extensions by applying Serre's results (the corollary to Proposition 11 and Proposition 12 in [18]) to the field of 3division points. Unfortunately, we cannot apply them to the case $m \equiv 0(\bmod 3)$ because of their assumption. However, without them, we can construct certain abelian extensions unramified outside 3 and the infinite primes. Thus assuming certain conditions on ray class numbers, we can deduce some criteria, and using them we can treat the case $m \equiv 0$ $(\bmod 3)$.

If $1<m<100, m \equiv 0(\bmod 3)$, and the class number of k is prime to 6 , then $m=$ $3,6,21,33,57,69$ or 93 . In [6], [10], [12], the proof is given for the nonexistence of elliptic curves with everywhere good reduction over k when $m=3,21$ and the determination of such curves is done when $m=6$, while the cases $m=33,57,69$ and 93 are still open. In this paper, we determine all elliptic curves with everywhere good reduction over $\mathbb{Q}(\sqrt{33})$ and show the nonexistence of such curves over $\mathbb{Q}(\sqrt{57}), \mathbb{Q}(\sqrt{69})$ and $\mathbb{Q}(\sqrt{93})$.

We use the following notation throughout this paper. For an algebraic number field $k, \mathcal{O}_{k}, \mathcal{O}_{k}^{\times}$and h_{k} denote the ring of integers, group of units and class number of k, respectively. If \mathfrak{m} is a divisor of k (that is, a formal product of a fractional ideal of k and some infinite primes of $k), h_{k}(\mathfrak{m})$ denotes the ray class number modulo \mathfrak{m}. If k is a real quadratic field, then ε and ' denote the fundamental unit greater than 1 and the conjugation of k, respectively.

For an elliptic curve E, we denote $j(E)$ and $\Delta(E)$ by the j-invariant and the discriminant of E, respectively.

[^0]
2 Results

Let $k=\mathbb{Q}(\sqrt{33})$. The fundamental unit of k is $\varepsilon=23+4 \sqrt{33}$. In [12], the following elliptic curve with everywhere good reduction over k is given:

$$
E_{1}: y^{2}+(5+\sqrt{33}) x y+\varepsilon y=x^{3}, \quad \Delta\left(E_{1}\right)=-\varepsilon^{3}, \quad j\left(E_{1}\right)=-32768
$$

This curve contains two k-rational subgroups V_{1}, V_{2} of order 3, namely

$$
V_{1}=E_{1}(k)_{\text {tors }}=\langle(0,0)\rangle, \quad V_{2}=\left\langle\left(-6-\sqrt{33}, y_{1}\right)\right\rangle
$$

where $y_{1}=(40+7 \sqrt{33}+\sqrt{-\varepsilon}) / 2=(40+7 \sqrt{33}+2 \sqrt{-3}+\sqrt{-11}) / 2$. Let $E_{2}:=E_{1} / V_{1}$, $E_{3}:=E_{1} / V_{2}$. Using Vélu's formula [22], we obtain the following defining equations of E_{2} and E_{3} :

$$
\begin{gathered}
E_{2}: y^{2}+(5+\sqrt{33}) x y+\varepsilon y=x^{3}-(1235+215 \sqrt{33}) x-(35915+6252 \sqrt{33}) \\
\Delta\left(E_{2}\right)=-\varepsilon, \quad j\left(E_{2}\right)=-(5+\sqrt{33})^{3}(5588+972 \sqrt{33})^{3} \varepsilon^{-1} \\
E_{3}: y^{2}+(5+\sqrt{33}) x y+\varepsilon y=x^{3}+(85+15 \sqrt{33}) x+(730+127 \sqrt{33}) \\
\Delta\left(E_{3}\right)=-\varepsilon^{5}, \quad j\left(E_{3}\right)=-(5-\sqrt{33})^{3}(5588-972 \sqrt{33})^{3} \varepsilon
\end{gathered}
$$

Although $j\left(E_{1}\right)=j\left(E_{1}^{\prime}\right)$ (resp. $\left.j\left(E_{2}\right)=j\left(E_{3}^{\prime}\right)\right), E_{1}$ and E_{1}^{\prime} (resp. E_{2} and E_{3}^{\prime}) are not isomorphic over k, since $\Delta\left(E_{1}\right) / \Delta\left(E_{1}^{\prime}\right)=\Delta\left(E_{2}\right) / \Delta\left(E_{3}^{\prime}\right)=\varepsilon^{6}$ is not a 12 -th power. Hence there are at least six k-isomorphism classes of elliptic curves with everywhere good reduction over k.

By definition, E_{2} and E_{3} are 3-isogenous over k to E_{1}. Further we see that E_{1} and E_{1}^{\prime} are 11-isogenous over k, since E_{1} and E_{1}^{\prime} are quadratic twist by $-\pi_{11} / 11$ and $\pi_{11}^{\prime} / 11^{2}$ of the curves 121B1 and 121B2 in Table 1 of [2], respectively, 121B1 and 121B2 are 11-isogenous over \mathbb{Q}, and $\left(-\pi_{11} / 11\right)\left(\pi_{11}^{\prime} / 11^{2}\right)=1 / 11^{2}$. Here $\pi_{11}=11+2 \sqrt{33}$ is a prime element of k dividing 11. Below is the isogeny graph among the related elliptic curves:

Here, for a prime p and elliptic curves E and \bar{E} defined over k, the graph

$$
E \xrightarrow{p} \bar{E}
$$

means that E and \bar{E} are p-isogenous over k. Hence there is at least one k-isogeny class of elliptic curves with everywhere good reduction over k.

In this paper we prove
Theorem 1. Up to isomorphism over $k=\mathbb{Q}(\sqrt{33})$, the six curves listed above are all the elliptic curves with everywhere good reduction over k. In particular, there is exactly one k-isogeny class of such curves.

We simultaneously prove the following theorem.
Theorem 2. There are no elliptic curves with everywhere good reduction over $\mathbb{Q}(\sqrt{m})$ if $m=57,69$ or 93 .

Let d be the discriminant of a real quadratic field and χ_{d} the Dirichlet character associated to d. Let $S_{d}=S_{2}\left(\Gamma_{0}(d), \chi_{d}\right)$ be the space of cuspforms of Neben-type of weight 2 and level d. It is conjectured (cf. [16]) that any elliptic curve having everywhere good reduction over the real quadratic field $\mathbb{Q}(\sqrt{d})$ and admitting an isogeny over $\mathbb{Q}(\sqrt{d})$ to its conjugate should be isogenous over $\mathbb{Q}(\sqrt{d})$ to so-called Shimura's elliptic curve which arises from a 2 -dimensional \mathbb{Q}-simple factor of S_{d}. When $d=33,57,69,93$, it is known that S_{d} is 2-dimensional and \mathbb{Q}-simple, 4-dimensional and \mathbb{Q}-simple, 6 -dimensional and \mathbb{Q}-simple, 8 -dimensional and \mathbb{Q}-simple, respectively. Thus Theorems 1 and 2 confirm the conjecture for these four values of d.

3 Preliminaries

Later we will give criteria for every elliptic curve with everywhere good reduction over a real quadratic field k to admit a 3 -isogeny defined over k (Propositions 11 and 12 below). Thus we first study elliptic curves with 3-isogeny and some Diophantine equations arising from the investigation of such curves. Further, since a key tool to prove the criteria is the field $L=k(E[3])$ of 3-division points and $\operatorname{Gal}(L / k)$ can be viewed as a subgroup of the general linear group $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$, we will also study subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$.

3.1 Elliptic curves with 3-isogeny

Let E and \bar{E} be elliptic curves defined over a number field k which are 3-isogenous over k. We define a rational function $J(x)$ by

$$
J(x)=\frac{(x+27)(x+3)^{3}}{x}
$$

Then, by Pinch [17], the j-invariants of E and \bar{E} can be written as

$$
j(E)=J(t), j(\bar{E})=J(\bar{t}), t, \bar{t} \in k, t \bar{t}=729=3^{6}
$$

(This is nothing other than a parameterization of the modular curve $Y_{0}(3)$.) Moreover, let $c_{4}(E)$ and $c_{6}(E)$ be the usual quantities associated to E. Then the following relations hold.

$$
\begin{align*}
& j(E)=\frac{c_{4}(E)^{3}}{\Delta(E)}=\frac{(t+27)(t+3)^{3}}{t} \tag{3.1}\\
& j(E)-1728=\frac{c_{6}(E)^{2}}{\Delta(E)}=\frac{\left(t^{2}+18 t-27\right)^{2}}{t} \tag{3.2}
\end{align*}
$$

Lemma 3. Let E, \bar{E}, t and \bar{t} be as above. Then
(a) If $j(E) \neq 1728$, then $t / \Delta(E)$ is a square in k.
(b) If E and \bar{E} have everywhere good reduction over k and $j(E), j(\bar{E}) \neq 0,1728$, then the principal ideals (t) and (\bar{t}) are integral and sixth-powers.

Proof. (a) follows immediately from (3.2).
(b) It suffices to prove the assertions only for t. Equation (3.1) and the assumption that E has everywhere good reduction over k imply that t is an integer in k. By the same assumption, the principal ideal $(\Delta(E))$ is a 12 -th power, say $(\Delta(E))=\mathfrak{a}^{12}$. Since $j(E) \neq 1728$, we see from (3.2) that $(t)=\left(\left(t^{2}+18 t-27\right) / c_{6}(E)\right)^{2} \mathfrak{a}^{12}$ is a square. To show that (t) is a cube, it is enough to show that $\operatorname{ord}_{\mathfrak{p}}(t) \equiv \operatorname{ord}_{\mathfrak{p}}(27)(\bmod 3)$ for any prime ideal \mathfrak{p} dividing 3 , where $\operatorname{ord}_{\mathfrak{p}}$ is the normalized valuation corresponding to \mathfrak{p}, since $t, \bar{t} \in \mathcal{O}_{k}$ and $t \bar{t}=3^{6}$. If $\operatorname{ord}_{\mathfrak{p}}(t)=\operatorname{ord}_{\mathfrak{p}}(27)$, then there is nothing to prove. If $\operatorname{ord}_{\mathfrak{p}}(t)>\operatorname{ord}_{\mathfrak{p}}(27)$, then $\operatorname{ord}_{\mathfrak{p}}((t+27) / t)=\operatorname{ord}_{\mathfrak{p}}(27)-\operatorname{ord}_{\mathfrak{p}}(t)$. On the other hand, since $j(E) \neq 0$, we see from (3.1) that $((t+27) / t)=\left(c_{4}(E) /(t+3)\right)^{3} / \mathfrak{a}^{12}$ is a cube. Hence $\operatorname{ord}_{\mathfrak{p}}(t) \equiv \operatorname{ord}_{\mathfrak{p}}(27)$ $(\bmod 3)$.

Let k be a real quadratic field in which 3 does not split and let E be an elliptic curve having everywhere good reduction over k and admitting a 3 -isogeny defined over k with $j(E)=J(t)$. In this case, $j(E)$ is neither 0 nor 1728 (Theorem 2, (a) in [20]). Thus it follows from Lemma 3, (b) that

$$
(t)= \begin{cases}(1),(729) & \text { if } 3 \text { is inert } \\ (1),(27),(729) & \text { if } 3 \text { ramifies }\end{cases}
$$

From (3.1), we have

$$
\begin{equation*}
\left(\frac{c_{4}(E)}{t+3}\right)^{3}=\Delta(E)(1+27 u), \quad u=\frac{1}{t} \in \mathcal{O}_{k}^{\times} \tag{3.3}
\end{equation*}
$$

if $(t)=(1)$,

$$
\begin{equation*}
\left(\frac{3 c_{4}(E)}{t+3}\right)^{3}=\Delta(E)(u+27), \quad u=\frac{729}{t} \in \mathcal{O}_{k}^{\times} \tag{3.4}
\end{equation*}
$$

if $(t)=729$, and

$$
\begin{equation*}
\left(\frac{c_{4}(E)}{t+3}\right)^{3}=\Delta(E)(1+u), \quad u=\frac{27}{t} \in \mathcal{O}_{k}^{\times} \tag{3.5}
\end{equation*}
$$

if 3 is ramified and $(t)=(27)$. Note that $c_{4}(E) \neq 0$ since $j(E) \neq 0$.
Consequently, to investigate elliptic curves having everywhere good reduction over k with unit discriminant and admitting a 3-isogeny defined over k, we need to study the equations

$$
X^{3}=u+27 v, \quad X^{3}=u+v
$$

in $X \in \mathcal{O}_{k} \backslash\{0\}, u, v \in \mathcal{O}_{k}^{\times}$. We will study them in the next subsection.

3.2 Some Diophantine equations

Using the software KASH, SageMath or Magma, we obtain the following lemma.

Lemma 4. (a) The equation $27 y^{2}=x^{3}-676(x, y \in \mathbb{Z})$ has no solutions.
(b) The equation $27 y^{2}=x^{3}+784(x, y \in \mathbb{Z})$ has no solutions.
(c) The only $x, y \in \mathbb{Z}$ satisfying $27 y^{2}=x^{3}+676$ are $(x, y)=(-1, \pm 5),(26, \pm 26)$.
(d) The only $x, y \in \mathbb{Z}$ satisfying $27 y^{2}=x^{3}-784$ are $(x, y)=(19, \pm 15),(28, \pm 28)$.

Lemma 5. Let k be a real quadratic field. If there exist $u, v \in \mathcal{O}_{k}^{\times}, X \in \mathcal{O}_{k}$ such that

$$
\begin{equation*}
X^{3}=u+27 v \tag{3.6}
\end{equation*}
$$

and uv $= \pm \square_{k}\left(\square_{k}\right.$ is a square element of $\left.k\right)$, then k is equal to $\mathbb{Q}(\sqrt{29})$ and the only solutions are $(X, u, v)=\left(\pm \varepsilon^{n-1}, \mp \varepsilon^{3 n+1}, \pm \varepsilon^{3 n-1}\right),\left(\pm \varepsilon^{n+1}, \mp \varepsilon^{3 n-1}, \pm \varepsilon^{3 n+1}\right)(n \in \mathbb{Z})$, where $\varepsilon=(5+\sqrt{29}) / 2$ is the fundamental unit of $\mathbb{Q}(\sqrt{29})$.

Proof. By changing (u, v, X) to $\left(u^{4}, u^{3} v, u X\right)$ if necessary, we may assume that $N_{k / \mathbb{Q}}(u)=$ $N_{k / \mathbb{Q}}(v)=1$. Taking the norm of both sides of (3.6), we have

$$
\begin{equation*}
N_{k / \mathbb{Q}}(X)^{3}=730+27 \operatorname{Tr}_{k / \mathbb{Q}}\left(u v^{-1}\right) . \tag{3.7}
\end{equation*}
$$

Since $u v= \pm \square_{k}$ and $N_{k / \mathbb{Q}}(v)=1$, we have $u v^{-1}=u v / v^{2}= \pm w^{2}$ for some $w \in \mathcal{O}_{k}^{\times}$. Hence

$$
N_{k / \mathbb{Q}}(X)^{3}=730 \pm 27 \operatorname{Tr}_{k / \mathbb{Q}}\left(w^{2}\right)=730 \pm 27\left\{\operatorname{Tr}_{k / \mathbb{Q}}(w)^{2}-2 N_{k / \mathbb{Q}}(w)\right\} .
$$

If the sign is + , then

$$
\begin{aligned}
27 \operatorname{Tr}_{k / \mathbb{Q}}(w)^{2} & =N_{k / \mathbb{Q}}(X)^{3}-730+54 N_{k / \mathbb{Q}}(w) \\
& = \begin{cases}N_{k / \mathbb{Q}}(X)^{3}-676 & \text { if } N_{k / \mathbb{Q}}(w)=1, \\
N_{k / \mathbb{Q}}(X)^{3}-784 & \text { if } N_{k / \mathbb{Q}}(w)=-1 .\end{cases}
\end{aligned}
$$

It follows from Lemma 4 that $N_{k / \mathbb{Q}}(w)=-1$ and $\operatorname{Tr}_{k / \mathbb{Q}}(w)= \pm 15$ or ± 28, that is, $w=$ $\pm(15 \pm \sqrt{229}) / 2$ or $\pm(14 \pm \sqrt{197})$. If $w= \pm(15 \pm \sqrt{229}) / 2$, then $(u+27 v)=\left(w^{2}+27\right)=\mathfrak{p}^{3}$, where \mathfrak{p} is a prime ideal of $\mathbb{Q}(\sqrt{229})$ dividing 19. Since \mathfrak{p} is not principal, $u+27 v$ is not a cube in $\mathbb{Q}(\sqrt{229})$. (Note that the class number of $\mathbb{Q}(\sqrt{229})$ is 3.) If $w= \pm(14 \pm \sqrt{197})$, then $u+27 v$ is not a cube in $\mathbb{Q}(\sqrt{197})$, since $(u+27 v)=\left(2^{2} 7(15 \pm \sqrt{197})\right)=(2)^{3} \mathfrak{p}_{7}^{2} \mathfrak{p}_{7}^{\prime}$, where $(7)=\mathfrak{p}_{7} \mathfrak{p}_{7}^{\prime}, \mathfrak{p}_{7} \neq \mathfrak{p}_{7}^{\prime}$.

If the sign is - , then

$$
\begin{aligned}
27 \operatorname{Tr}_{k / \mathbb{Q}}(w)^{2} & =\left\{-N_{k / \mathbb{Q}}(X)\right\}^{3}+730+54 N_{k / \mathbb{Q}}(w) \\
& = \begin{cases}\left\{-N_{k / \mathbb{Q}}(X)\right\}^{3}+784 & \text { if } N_{k / \mathbb{Q}}(w)=1, \\
\left\{-N_{k / \mathbb{Q}}(X)\right\}^{3}+676 & \text { if } N_{k / \mathbb{Q}}(w)=-1 .\end{cases}
\end{aligned}
$$

It follows from Lemma 4 that $N_{k / \mathbb{Q}}(w)=-1$ and $\operatorname{Tr}_{k / \mathbb{Q}}(w)= \pm 5$ or ± 26, that is, $w=$ $\pm(13 \pm \sqrt{170})$ or $\pm(5 \pm \sqrt{29}) / 2$. If $w= \pm(13 \pm \sqrt{170})$, then $u+27 v$ is not a cube in $\mathbb{Q}(\sqrt{170})$, since $(u+27 v)=(26(12 \pm \sqrt{170}))=\mathfrak{p}_{2}^{3} \mathfrak{p}_{13}^{2} \mathfrak{p}_{13}^{\prime}$, where $(2)=\mathfrak{p}_{2}^{3},(13)=\mathfrak{p}_{13} \mathfrak{p}_{13}^{\prime}$, $\mathfrak{p}_{13} \neq \mathfrak{p}_{13}^{\prime}$. If $w= \pm(5 \pm \sqrt{29}) / 2$, then $u+27 v=v \varepsilon^{ \pm 2}(\varepsilon=(5+\sqrt{29}) / 2)$. Thus, if $X^{3}=u+27 v$, then there exists an $n \in \mathbb{Z}$ such that $v= \pm \varepsilon^{3 n-1}, X= \pm \varepsilon^{n-1}$, or $v= \pm \varepsilon^{3 n+1}, X= \pm \varepsilon^{n+1}$.

Remark. Lemma 5 is a generalization of Proposition 2.3 in [15] which states that the only $m \in \mathbb{Z}$ and $X \in \mathcal{O}_{\mathbb{Q}(\sqrt{29})}$ satisfying $X^{3}=\varepsilon^{4+12 m}-27 \varepsilon^{2}$ are $m=0$ and $X=-1$.

Using the software mentioned above, we obtain the following.
Lemma 6. (a) There are no integer solutions of $y^{2}=x^{3}-784$.
(b) The only integer solutions of $y^{2}=x^{3}+676$ are $(x, y)=(0, \pm 26)$.
(c) The only integer solutions of $y^{2}=x^{3}-676$ are $(x, y)=(10, \pm 18),(13, \pm 39)$, $(26, \pm 130),(130, \pm 1482),(338, \pm 6214)$ and $(901, \pm 27045)$.
(d) The integer solutions of $y^{2}=x^{3}+784$ are $(x, y)=(-7, \pm 21),(0, \pm 28),(8, \pm 36)$ and (56, 土420).

Proposition 7. Let p be a prime number such that $p=2$ or $p \equiv 3(\bmod 4), p>$ 3. Let $k=\mathbb{Q}(\sqrt{3 p})$. Then equation (3.6) has a solution in $X \in \mathcal{O}_{k}, u, v \in \mathcal{O}_{k}^{\times}$only when $k=\mathbb{Q}(\sqrt{6})$ or $\mathbb{Q}(\sqrt{33})$, in which cases, the only solutions are $(X, u, v)=\left(w_{1}(4 \pm\right.$ $\left.\sqrt{6}), w_{1}^{3}, w_{1}^{3}(5 \pm 2 \sqrt{6})\right),\left(-w_{2}(5 \pm \sqrt{33}), w_{2}^{3},-w_{2}^{3}(23 \pm 4 \sqrt{33})\right)$, respectively. Here w_{1} (resp. w_{2}) is any unit of $\mathbb{Q}(\sqrt{6})($ resp. $\mathbb{Q}(\sqrt{33})$). Note that $5+2 \sqrt{6}$ (resp. $23+4 \sqrt{33})$ is the fundamental unit of $\mathbb{Q}(\sqrt{6})$ (resp. $\mathbb{Q}(\sqrt{33}))$.

Proof. The case $u v= \pm \square_{k}$ are treated in Lemma 5 and shown no solutions exist. Thus we assume that $u v^{-1}= \pm \varepsilon w^{2}, w \in \mathcal{O}_{k}^{\times}$. Taking norm of (3.6), we have (3.7). There exists a $\pi \in \mathcal{O}_{k}$ such that $(\pi)^{2}=(3)$, since 3 ramifies in k and the class number of k is odd. (see [3], Theorems 39 and 41.) The facts that $\pi^{2} / 3>0$ and $k \neq \mathbb{Q}(\sqrt{3})$ imply $\sqrt{3 \varepsilon}=\pi \varepsilon^{n} \in \mathcal{O}_{k}$ (for some $n \in \mathbb{Z}$). Thus

$$
\begin{equation*}
27 \operatorname{Tr}_{k / \mathbb{Q}}\left(u v^{-1}\right)= \pm 9 \operatorname{Tr}_{k / \mathbb{Q}}\left((\sqrt{3 \varepsilon} w)^{2}\right)= \pm 9\left\{\operatorname{Tr}_{k / \mathbb{Q}}(\sqrt{3 \varepsilon} w)^{2}-2 N_{k / \mathbb{Q}}(\sqrt{3 \varepsilon})\right\} . \tag{3.8}
\end{equation*}
$$

When $N_{k / \mathbb{Q}}(\sqrt{3 \varepsilon})=-3$, equations (3.7) and (3.8) give

$$
\left\{3 \operatorname{Tr}_{k / \mathbb{Q}}(\sqrt{3 \varepsilon} w)\right\}^{2}= \begin{cases}N_{k / \mathbb{Q}}(X)^{3}-784 & \text { if } u v^{-1}=\varepsilon w^{2} \\ \left\{-N_{k / \mathbb{Q}}(X)\right\}^{3}+676 & \text { if } u v^{-1}=-\varepsilon w^{2}\end{cases}
$$

Thus there is no solution in this case.
When $N_{k / \mathbb{Q}}(\sqrt{3 \varepsilon})=3$, equations (3.7) and (3.8) give

$$
\left\{3 \operatorname{Tr}_{k / \mathbb{Q}}(\sqrt{3 \varepsilon} w)\right\}^{2}= \begin{cases}N_{k / \mathbb{Q}}(X)^{3}-676 & \text { if } u v^{-1}=\varepsilon w^{2} \\ \left\{-N_{k / \mathbb{Q}}(X)\right\}^{3}+784 & \text { if } u v^{-1}=-\varepsilon w^{2}\end{cases}
$$

In case $u v^{-1}=\varepsilon w^{2}$, Lemma 6 implies that $\operatorname{Tr}_{k / \mathbb{Q}}(\sqrt{3 \varepsilon} w)= \pm 6, \pm 13, \pm 247$ or ± 9015, and

$$
\sqrt{3 \varepsilon} w= \begin{cases}3 \pm \sqrt{6} & \text { if } \operatorname{Tr}_{k / \mathbb{Q}}(\sqrt{3 \varepsilon} w)=6 \\ -3 \pm \sqrt{6} & \text { if } \operatorname{Tr}_{k / \mathbb{Q}}(\sqrt{3 \varepsilon} w)=-6 \\ (\pm 13 \pm \sqrt{157}) / 2 & \text { if } \operatorname{Tr}_{k / \mathbb{Q}}(\sqrt{3 \varepsilon} w)= \pm 13 \\ \pm 247 \pm \sqrt{3 \cdot 503 \cdot 53857} & \text { if } \operatorname{Tr}_{k / \mathbb{Q}}(\sqrt{3 \varepsilon} w)= \pm 247 \\ \pm 9015 \pm \sqrt{2 \cdot 11 \cdot 47 \cdot 59} & \text { if } \operatorname{Tr}_{k / \mathbb{Q}}(\sqrt{3 \varepsilon} w)= \pm 9015\end{cases}
$$

Thus $k=\mathbb{Q}(\sqrt{6})$ and $\varepsilon=5+2 \sqrt{6}$. Since $\sqrt{3 \varepsilon}=3+\sqrt{6}$ and $\sqrt{3 \varepsilon} \varepsilon^{\prime}=3-\sqrt{6}$, we have

$$
u v^{-1}=\varepsilon w^{2}= \begin{cases}\varepsilon & \text { if } \sqrt{3 \varepsilon} w= \pm(3+\sqrt{6}) \\ \varepsilon^{\prime} & \text { if } \sqrt{3 \varepsilon} w= \pm(3-\sqrt{6})\end{cases}
$$

When $u v^{-1}=\varepsilon$, since $u+27 v=v(\varepsilon+27)=v \varepsilon(4-\sqrt{6})^{3}$, there exists a $w_{1} \in \mathcal{O}_{\mathbb{Q}(\sqrt{6})}^{\times}$such that $v=w_{1}^{3} \varepsilon^{\prime}, u=w_{1}^{3}$ and $X=w_{1}(4-\sqrt{6})$. When $u v^{-1}=\varepsilon^{\prime}$, since $u+27 v=v\left(\varepsilon^{\prime}+27\right)=$ $v \varepsilon^{\prime}(4+\sqrt{6})^{3}$, there exists a $w_{1} \in \mathcal{O}_{\mathbb{Q}(\sqrt{6})}^{\times}$such that $v=w_{1}^{3} \varepsilon, u=w_{1}^{3}$ and $X=w_{1}(4+\sqrt{6})$. In case $u v^{-1}=-\varepsilon w^{2}$, Lemma 6 implies that $\operatorname{Tr}_{k / \mathbb{Q}}(\sqrt{3 \varepsilon} w)= \pm 7, \pm 12$, or ± 140, and

$$
\sqrt{3 \varepsilon} w= \begin{cases}(\pm 7 \pm \sqrt{37}) / 2 & \text { if } \operatorname{Tr}_{k / \mathbb{Q}}(\sqrt{3 \varepsilon} w)= \pm 7 \\ 6 \pm \sqrt{33} & \text { if } \operatorname{Tr}_{k / \mathbb{Q}}(\sqrt{3 \varepsilon} w)=12 \\ -6 \pm \sqrt{33} & \text { if } \operatorname{Tr}_{k / \mathbb{Q}}(\sqrt{3 \varepsilon} w)=-12 \\ \pm 70 \pm \sqrt{59 \cdot 83} & \text { if } \operatorname{Tr}_{k / \mathbb{Q}}(\sqrt{3 \varepsilon} w)= \pm 140\end{cases}
$$

Thus $k=\mathbb{Q}(\sqrt{33})$ and $\varepsilon=23+4 \sqrt{33}$. Since $\sqrt{3 \varepsilon}=6+\sqrt{33}$ and $\sqrt{3 \varepsilon} \varepsilon^{\prime}=6-\sqrt{33}$, we have

$$
u v^{-1}=-\varepsilon w^{2}= \begin{cases}-\varepsilon & \text { if } \sqrt{3 \varepsilon} w= \pm(6+\sqrt{33}) \\ -\varepsilon^{\prime} & \text { if } \sqrt{3 \varepsilon} w= \pm(6-\sqrt{33})\end{cases}
$$

When $u v^{-1}=-\varepsilon$, since $u+27 v=v \varepsilon(5-\sqrt{33})^{3}$, we have $u=-w_{2}^{3}, v=w_{2}^{3} \varepsilon^{\prime}$ and $X=$ $w_{2}(5-\sqrt{33})$ for some $w_{2} \in \mathcal{O}_{\mathbb{Q}(\sqrt{33})}^{\times}$. When $u v^{-1}=-\varepsilon^{\prime}$, we have $u+27 v=v \varepsilon^{\prime}(5+\sqrt{33})^{3}$.
Hence there exists a $w_{2} \in \mathcal{O}_{\mathbb{Q}(\sqrt{33})}^{\times}$such that $u=-w_{2}^{3}, v=w_{2}^{3} \varepsilon$ and $X=w_{2}(5+\sqrt{33})$.
Proposition 8. Let k be a quadratic field. Then the only solution of the equation

$$
X^{3}=1+v, \quad X \in \mathcal{O}_{k}, \quad v \in \mathcal{O}_{k}^{\times}
$$

is $(X, v)=(0,-1)$.
Proof. Since $X^{3}-1=(X-1)\left(X^{2}+X+1\right)=v \in \mathcal{O}_{k}^{\times}, X-1=: v_{1}, X^{2}+X+1=: v_{2}$ are units of k. Eliminating X, we have $v_{1}^{2}+3 v_{1}+3=v_{2}$. Taking norm results in

$$
N_{k / \mathbb{Q}}\left(v_{2}\right)=3 \operatorname{Tr}_{k / \mathbb{Q}}\left(v_{1}\right)^{2}+3\left\{N_{k / \mathbb{Q}}\left(v_{1}\right)+3\right\} \operatorname{Tr}_{k / \mathbb{Q}}\left(v_{1}\right)+9+3 N_{k / \mathbb{Q}}\left(v_{1}\right)+1 .
$$

Reducinga modulo 3 yields $N_{k / \mathbb{Q}}\left(v_{2}\right)=1$. Therefore $\operatorname{Tr}_{k / \mathbb{Q}}\left(v_{1}\right)^{2}+\left\{N_{k / \mathbb{Q}}\left(v_{1}\right)+3\right\} \operatorname{Tr}_{k / \mathbb{Q}}\left(v_{1}\right)+$ $3+N_{k / \mathbb{Q}}\left(v_{1}\right)=0$. If $N_{k / \mathbb{Q}}\left(v_{1}\right)=-1$, then $\operatorname{Tr}_{k / \mathbb{Q}}\left(v_{1}\right)^{2}+2 \operatorname{Tr}_{k / \mathbb{Q}}\left(v_{1}\right)+2=0$, which is impossible. If $N_{k / \mathbb{Q}}\left(v_{1}\right)=1$ then $\operatorname{Tr}_{k / \mathbb{Q}}\left(v_{1}\right)^{2}+4 \operatorname{Tr}_{k / \mathbb{Q}}\left(v_{1}\right)+4=0$, from which $v_{1}=-1$, $X=0$.
Proposition 9. If the norm of the fundamental unit of a real quadratic field k is 1 and

$$
\begin{equation*}
X^{3}=u-v, \quad X \in \mathcal{O}_{k}, \quad u, v \in \mathcal{O}_{k}^{\times}, \quad u v=\square_{k} \tag{3.9}
\end{equation*}
$$

holds, then $X=0$.
Proof. By assumption, we have $u v^{\prime}=w^{2}$ for some $w \in \mathcal{O}_{k}^{\times}$. Taking the norm of both sides of (3.9) and noting $N_{k / \mathbb{Q}}(u)=N_{k / \mathbb{Q}}(v)=N_{k / \mathbb{Q}}(w)=1$, we obtain

$$
\operatorname{Tr}_{k / \mathbb{Q}}(w)^{2}=\left\{-N_{k / \mathbb{Q}}(X)\right\}^{3}+4 .
$$

It then follows that $X=0$, since the only (affine) \mathbb{Q}-rational points of the elliptic curve $y^{2}=x^{3}+4$, which is the curve 108A1 in Table 1 of [2], are $(0, \pm 2)$.

3.3 Subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ as a Galois group

Let k be an algebraic number field not containing $\sqrt{-3}$. Let E be an elliptic curve defined over k, let $E[3]=\{P \in E \mid 3 P=O\}$ be the group of 3 -division points of E, and let $L=k(E[3])$ be the field generated over k by the points of $E[3]$. We may regard $G=\operatorname{Gal}(L / k)$ as a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ by the faithful representation $G \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ induced by the action of G on $E[3]$. Here we study what group G can be. We should mention that, in his paper [14], Naito studied the same problem for elliptic curves defined over \mathbb{Q}.

Lemma 10. Let G be as above. Let $\rho=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right), \sigma=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \tau=\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right) \in$ $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$, which satisfy the relations $\rho^{2}=\sigma^{2}=\tau^{8}=1, \sigma \tau \sigma^{-1}=\tau^{3}$. Then
(a) G is conjugate in $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ to one of the following:
(i) $\langle\rho\rangle \cong \mathbb{Z} / 2 \mathbb{Z}$.
(ii) $\langle-1\rangle \times\langle\rho\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
(iii) $\left(\begin{array}{cc}1 & * \\ 0 & *\end{array}\right) \cong S_{3}$ (the symmetric group of degree 3).
(iv) $\left(\begin{array}{ll}* & * \\ 0 & 1\end{array}\right) \cong S_{3}$.
(v) $\left\langle\sigma, \tau^{2}\right\rangle \cong D_{8}$ (the dihedral group of order 8).
(vi) $\langle\tau\rangle \cong \mathbb{Z} / 8 \mathbb{Z}$.
(vii) $\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right) \cong S_{3} \times \mathbb{Z} / 2 \mathbb{Z}$.
(viii) $\langle\sigma, \tau\rangle \cong S D_{16}$ (the semi-dihedral group of order 16).
(ix) $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$.
(b) $\Delta(E)$ is a cube in k if and only if G is conjugate in $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ to one of the groups in (i), (ii), (v), (vi) or (viii). For each case, $G \cap \mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)=\operatorname{Gal}(L / k(\sqrt{-3})$) is conjugate in $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ to $\{1\},\langle-1\rangle \cong \mathbb{Z} / 2 \mathbb{Z},\left\langle\tau^{2}\right\rangle \cong \mathbb{Z} / 4 \mathbb{Z},\left\langle\tau^{2}\right\rangle \cong \mathbb{Z} / 4 \mathbb{Z},\left\langle\sigma \tau, \tau^{2}\right\rangle \cong Q_{8}$ (the quaternion group), respectively.
(c) E admits a 3-isogeny defined over k if and only if G is conjugate in $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ to one of the groups in (i), (ii), (iii), (iv) or (vii).

Proof. (a) We have $\# G \geq 2$, since $k(\sqrt{-3}) \subset L([21]$, p. 98) and $[k(\sqrt{-3}): k]=2$. The special linear group $\mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)$ does not contain G, since we have $\operatorname{Gal}(L / k(\sqrt{-3}))=$ $G \cap \mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)$ by the commutativity of the diagram

From these together with the classification of the subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ (cf. [14]), we obtain the assertion.
(b) The first part is clear from the fact that $\Delta(E)$ is a cube in k if and only if $[L: k]$ is not divisible by 3 ([18], §5.3). The second part follows from direct calculation.
(c) Since admitting a 3-isogeny defined over k is equivalent to the existence of a point P of order 3 such that $\sigma(P)= \pm P$ for any $\sigma \in G$, we may assume, by an appropriate choice of a basis of $E[3]$, that G is a subgroup of $\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$. Among the groups appeared in (a), the only groups which are subgroups of this group are the ones in (i), (ii), (iii), (iv) and (vii).

4 Some criteria

In this section, we use the following notation: For subgroups H and N of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right), H \sim N$ means that H is conjugate in $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ to N.

Proposition 11. Let k be a real quadratic field. Assume that $h_{k}\left((3) \mathfrak{p}_{\infty}^{(1)} \mathfrak{p}_{\infty}^{(2)}\right) \not \equiv 0(\bmod 4)$, where $\mathfrak{p}_{\infty}^{(1)}$ and $\mathfrak{p}_{\infty}^{(2)}$ are the real primes of k, or $h_{k(\sqrt{-3})}((\sqrt{-3})) \not \equiv 0(\bmod 4)$. Then every elliptic curve E with everywhere good reduction over k whose discriminant $\Delta(E)$ is a cube in k admits a 3-isogeny defined over k.

Proof. Let E be an elliptic curve with everywhere good reduction over k with $\Delta(E) \in$ $k^{\times 3}$. Set $L:=k(E[3]), G:=\operatorname{Gal}(L / k)$ and $H:=\operatorname{Gal}(L / k(\sqrt{-3}))=G \cap \mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)$. By Lemma 10, (b), G is conjugate in $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ to $\langle\sigma, \tau\rangle \cong S D_{16},\langle\tau\rangle \cong \mathbb{Z} / 8 \mathbb{Z},\left\langle\sigma, \tau^{2}\right\rangle \cong D_{8}$, $\langle-1\rangle \times\langle\rho\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, or $\langle\rho\rangle \cong \mathbb{Z} / 2 \mathbb{Z}$. If $G \sim\langle\tau\rangle$ or $\left\langle\sigma, \tau^{2}\right\rangle$, then it is clear that G has a normal subgroup N such that G / N is of order 4. Further, by Lemma 10, (b), $H \cong \mathbb{Z} / 4 \mathbb{Z}$ in these cases. If $G \sim\langle\sigma, \tau\rangle$, then G has a normal subgroup of N with $G / N \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Indeed, $\langle\sigma, \tau\rangle /\left\langle\tau^{2}\right\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Further $H \sim\left\langle\sigma \tau, \tau^{2}\right\rangle \cong Q_{8}$ and $\left\langle\sigma \tau, \tau^{2}\right\rangle /\left\langle\tau^{2}\right\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Thus in view of the criterion of Néron-Ogg-Shafarevich ([21], p. 184), our assumptions on ray class numbers imply that $G \sim\langle\rho\rangle$ or $\langle-1\rangle \times\langle\rho\rangle$. We therefore see from Lemma 10 , (c) that E admits a 3 -isogeny defined over k.

Proposition 12. Let k be a real quadratic field with $\left(h_{k}, 6\right)=1$. Let $\mathfrak{P}_{\infty}^{(1)}$ and $\mathfrak{P}_{\infty}^{(2)}$ be the real primes of $k(\sqrt[3]{\varepsilon})$.
(a) If $h_{k(\sqrt[3]{\varepsilon})}\left((3) \mathfrak{P}_{\infty}^{(1)} \mathfrak{P}_{\infty}^{(2)}\right) \not \equiv 0(\bmod 4)$ or $h_{k(\sqrt[3]{\varepsilon}, \sqrt{-3})}((3)) \not \equiv 0(\bmod 4)$, then every elliptic curve E with everywhere good reduction over k whose discriminant $\Delta(E)$ is not a cube in k admits a 3-isogeny defined over k.
(b) If $h_{k(\sqrt[3]{\varepsilon})}\left((3) \mathfrak{P}_{\infty}^{(1)} \mathfrak{P}_{\infty}^{(2)}\right) \not \equiv 0(\bmod 4)$ or $h_{k(\sqrt[3]{\varepsilon}, \sqrt{-3})}((3)) \not \equiv 0(\bmod 2)$, then every elliptic curve E with everywhere good reduction over k whose discriminant $\Delta(E)$ is not a cube in k has a k-rational subgroup V of order 3 , and either E or E / V has a k-rational point of order 3 .

Proof. (a) Let E be an elliptic curve with everywhere good reduction over k and let $L=k(E[3]), G=\operatorname{Gal}(L / k)$. By the corollary to Theorem 1 in [19], which states that every elliptic curve with everywhere good reduction over k has a global minimal model provided $\left(h_{k}, 6\right)=1$, and the assumption that $\Delta(E)$ is not a cube, we have $k(\sqrt[3]{\Delta(E)})=k(\sqrt[3]{\varepsilon})$. Since L contains $k(\sqrt[3]{\Delta(E)})([18]$, p. 305), we have $[L: k] \equiv 0(\bmod 3)$. Thus, by Lemma

10, (b), we have $G \sim\left(\begin{array}{cc}1 & * \\ 0 & *\end{array}\right),\left(\begin{array}{cc}* & * \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}* & * \\ 0 & *\end{array}\right)$ or $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$. Suppose that E admits no 3isogeny defined over k. Then, by Lemma 10 , (c), we have $G=\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right), \operatorname{Gal}(L / k(\sqrt[3]{\varepsilon})) \sim$ $\langle\sigma, \tau\rangle$ and $\operatorname{Gal}(L / k(\sqrt[3]{\varepsilon}, \sqrt{-3}))=\operatorname{Gal}(L / k(\sqrt[3]{\varepsilon})) \cap \mathrm{SL}_{2}\left(\mathbb{F}_{3}\right) \sim\left\langle\sigma \tau, \tau^{2}\right\rangle$. The criterion of Néron-Ogg-Shafarevich and the fact that $\langle\sigma, \tau\rangle /\left\langle\tau^{2}\right\rangle$ and $\left\langle\sigma \tau, \tau^{2}\right\rangle /\left\langle\tau^{2}\right\rangle$ are both isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ imply $h_{k(\sqrt[3]{\varepsilon})}\left((3) \mathfrak{P}_{\infty}^{(1)} \mathfrak{P}_{\infty}^{(2)}\right) \equiv 0(\bmod 4)$ and $h_{k(\sqrt[3]{\varepsilon}, \sqrt{-3})}((3)) \equiv 0$ $(\bmod 4)$.
(b) According to (a), we have $G \sim\left(\begin{array}{ll}1 & * \\ 0 & *\end{array}\right),\left(\begin{array}{cc}* & * \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$. Supposing $G \sim$ $\left(\begin{array}{cc}* & * \\ 0 & *\end{array}\right)$, the criterion of Néron-Ogg-Shafarevich implies that $L / k(\sqrt[3]{\varepsilon})$ is an abelian extension of degree 4 unramified outside $\left\{3, \mathfrak{P}_{\infty}^{(1)}, \mathfrak{P}_{\infty}^{(2)}\right\}$ and $L / k(\sqrt[3]{\varepsilon}, \sqrt{-3})$ is a quadratic extension unramified outside 3 . These contradict our assumptions.

5 Proof of Theorems 1 and 2

Let k be one of the real quadratic fields $\mathbb{Q}(\sqrt{33}), \mathbb{Q}(\sqrt{57}), \mathbb{Q}(\sqrt{69})$ and $\mathbb{Q}(\sqrt{93})$. The fundamental unit ε of k larger than 1 is

$$
\varepsilon= \begin{cases}23+4 \sqrt{33} & \text { if } k=\mathbb{Q}(\sqrt{33}), \\ 151+20 \sqrt{57} & \text { if } k=\mathbb{Q}(\sqrt{57}), \\ (25+3 \sqrt{69}) / 2 & \text { if } k=\mathbb{Q}(\sqrt{69}), \\ (29+3 \sqrt{93}) / 2 & \text { if } k=\mathbb{Q}(\sqrt{93}) .\end{cases}
$$

Note that $N_{k / \mathbb{Q}}(\varepsilon)=1$. Let E be an elliptic curve with everywhere good reduction over k.

5.1 The case where $\Delta(E)$ is a cube in k

If $\Delta(E)$ is a cube in k, then k must be $\mathbb{Q}(\sqrt{33})$ and E is isomorphic over k to E_{1} or E_{1}^{\prime}. Indeed, more generally, we have the following.

Proposition 13. Let p be a prime number such that $p=2$ or $p \neq 3, p \equiv 3(\bmod 4)$, and let $k:=\mathbb{Q}(\sqrt{3 p})$. If there is an elliptic curve E which has everywhere good reduction over k and whose discriminant $\Delta(E)$ is a cube in k, then $p=2$ or $p=11$. If $p=2$ (resp.p $=11$), then E is isomorphic over k to

$$
E_{4}: y^{2}+(4+\sqrt{6}) x y+(5+2 \sqrt{6})=x^{3}, \Delta\left(E_{4}\right)=(5+2 \sqrt{6})^{3}, j\left(E_{4}\right)=8000
$$

or E_{4}^{\prime} (resp.to E_{1} or E_{1}^{\prime}).
First, we give some lemmas.
Lemma 14. Let p and q be distinct primes such that $p \equiv q \equiv 3(\bmod 4)$ and let $k=$ $\mathbb{Q}(\sqrt{p q})$. Let \mathfrak{q} be the prime ideal of k dividing q. Then
(a) h_{k} is odd.
(b) $k(\sqrt{-\varepsilon})=\mathbb{Q}(\sqrt{-p}, \sqrt{-q})$.
(c) $\varepsilon \equiv(p / q)(\bmod \mathfrak{q})$, where (\cdot / \cdot) is the Legendre symbol. In particular, $\varepsilon \equiv p$ $(\bmod \mathfrak{q})$ if $q=3$.

Proof. (a) Theorems 39 and 41 of [3].
(b) By (a), \mathfrak{q} is principal. Let $\pi \in \mathcal{O}_{k}$ be a generator of \mathfrak{q}. Since $\varepsilon>1, k$ is real and $k \neq \mathbb{Q}(\sqrt{q})$, we have $q=\pi^{2} \varepsilon^{2 n+1}$ for some $n \in \mathbb{Z}$, whence $k(\sqrt{-q})=k(\sqrt{-\varepsilon})$.
(c) We first show that $\varepsilon \equiv \pm 1(\bmod \mathfrak{q})$, which is equivalent to $\operatorname{Tr}_{k / \mathbb{Q}}(\varepsilon)^{2} \equiv 0(\bmod q)$ since $N_{k / \mathbb{Q}}(\varepsilon \pm 1)=2 \pm \operatorname{Tr}_{k / \mathbb{Q}}(\varepsilon)$. But this readily follows by writing ε as $\varepsilon=\left(\operatorname{Tr}_{k / \mathbb{Q}}(\varepsilon)+\right.$ $b \sqrt{p q}) / 2, b \in \mathbb{Z}$.

Let $K=k(\sqrt{-\varepsilon})=\mathbb{Q}(\sqrt{-p}, \sqrt{-q})$. By Theorem 23 in [3], \mathfrak{q} splits in K if and only if there exists an $X \in \mathcal{O}_{k}$ such that $X^{2} \equiv-\varepsilon(\bmod \mathfrak{q})$, which is equivalent to $\varepsilon \equiv-1$ $(\bmod \mathfrak{q})$, since $\mathcal{O}_{K} / \mathfrak{q} \cong \mathbb{Z} / q \mathbb{Z}$ and $q \equiv 3(\bmod 4)$. On the other hand, \mathfrak{q} splits in K if and only if q splits in $\mathbb{Q}(\sqrt{-p})$, which is equivalent to $(p / q)=-1$.

Corollary 15. Let p be a prime number such that $p \equiv 3(\bmod 4)$ and $p \neq 3$. Let $k=\mathbb{Q}(\sqrt{3 p})$ and $K=k(\sqrt{-3})$. Then
(a) h_{K} is odd.
(b) The ray class number $h_{K}((\sqrt{-3}))$ is $2 h_{K}$ or h_{K} according as $p \equiv 1(\bmod 3)$ or $p \equiv 2(\bmod 3)$. In particular, $h_{K}((\sqrt{-3}))$ is not a multiple of 4 .

Proof. (a) By [3], Corollary 3 to Theorem 74, we have $h_{K}=h_{k} h_{\mathbb{Q}(\sqrt{-p})} h_{\mathbb{Q}(\sqrt{-3})}=h_{k} h_{\mathbb{Q}(\sqrt{-p})}$, which is odd by Lemma 14, (a).
(b) Let $G:=\left(\mathcal{O}_{K} / \sqrt{-3} \mathcal{O}_{K}\right)^{\times}$and $H:=\left\{x+\sqrt{-3} \mathcal{O}_{K} \mid x \in \mathcal{O}_{K}^{\times}\right\} \subset G$. From the formula for the ray class number (Theorem 1 of Chapter VI in [13]), it follows that $h_{K}((\sqrt{-3}))=h_{K}(G: H)$. Thus it is enough to show that

$$
(G: H)=\left\{\begin{array}{lll}
2 & \text { if } p \equiv 1 \quad(\bmod 3) \\
1 & \text { if } p \equiv 2 & (\bmod 3)
\end{array}\right.
$$

Let $\zeta_{6}=(1+\sqrt{-3}) / 2$ be a primitive sixth root of unity. Since $K=k(\sqrt{-\varepsilon})$ by Lemma 14, (b) and $\zeta_{6} \in K$, we have $\mathcal{O}_{K}^{\times}=\left\langle\zeta_{6}\right\rangle \times\langle\sqrt{-\varepsilon}\rangle$ (cf. [3], pp. 194, 195). Hence $H=\left\langle\sqrt{-\varepsilon}+\sqrt{-3} \mathcal{O}_{K}, \zeta_{6}+\sqrt{-3} \mathcal{O}_{K}\right\rangle$. Let \mathfrak{q} be the prime ideal of k dividing 3.

Assume that $p \equiv 1(\bmod 3)$. Then, since $(-p / 3)=-1, \mathfrak{q} \mathcal{O}_{K}=\sqrt{-3} O_{K}$ is a prime ideal of K and hence G is a cyclic group of order 8 . Lemma 14, (c) and the formula

$$
\begin{equation*}
\zeta_{6}-1=\zeta_{6}^{2}, \quad \zeta_{6}^{2}-1=\sqrt{-3} \zeta_{6} \tag{5.1}
\end{equation*}
$$

imply that $H=\left\langle\sqrt{-\varepsilon}+\sqrt{-3} \mathcal{O}_{K}\right\rangle \cong \mathbb{Z} / 4 \mathbb{Z}$. Thus $(G: H)=2$.
Assume that $p \equiv 2(\bmod 3)$. By Lemma 14, (c), we have $X^{2}+\varepsilon \equiv(X-1)(X+1)$ $(\bmod \mathfrak{q})$. Hence by letting $\mathfrak{Q}_{1}=(\mathfrak{q}, \sqrt{-\varepsilon}-1), \mathfrak{Q}_{2}=(\mathfrak{q}, \sqrt{-\varepsilon}+1)$, it follows from [3], Theorem 23 that

$$
\sqrt{-3} \mathcal{O}_{K}=\mathfrak{q} \mathcal{O}_{K}=\mathfrak{Q}_{1} \mathfrak{Q}_{2}, G \cong\left(\mathcal{O}_{K} / \mathfrak{Q}_{1}\right)^{\times} \times\left(\mathcal{O}_{K} / \mathfrak{Q}_{2}\right)^{\times} \cong(\mathbb{Z} / 3 \mathbb{Z})^{\times} \times(\mathbb{Z} / 3 \mathbb{Z})^{\times}
$$

The definition of $\mathfrak{Q}_{i}(i=1,2)$ implies that $\sqrt{-\varepsilon} \equiv 1\left(\bmod \mathfrak{Q}_{1}\right)$ and $\sqrt{-\varepsilon} \equiv-1\left(\bmod \mathfrak{Q}_{2}\right)$. Further, (5.1) means that $\zeta_{6} \equiv-1\left(\bmod \mathfrak{Q}_{i}\right)(i=1,2)$. Hence $H \cong(\mathbb{Z} / 3 \mathbb{Z})^{\times} \times(\mathbb{Z} / 3 \mathbb{Z})^{\times}$, whence $(G: H)=1$.

Lemma 16 ([11], Corollary 3.4). Let E be an elliptic curve having everywhere good reduction over a quadratic field k. Let s denote the number of ramifying rational primes in the extension k / \mathbb{Q}. Then the number of twists of E having everywhere good reduction over k is 2^{s-1}.

Proof of Proposition 13. Let E be an elliptic curve having everywhere good reduction over k and having cubic discriminant in k. Then, by Proposition 11 and Corollary $15, E$ admits a 3 -isogeny over k. Thus by the argument in section $3.1, j(E)$ is of the form $J(t)$, $t \in \mathcal{O}_{k}, t \mid 3^{6}$, and the principal ideal (t) is a sixth power. By (3.3), (3.4), and (3.5), we see that there exist an $X \in \mathcal{O}_{k} \backslash\{0\}$ and a $u \in \mathcal{O}_{k}^{\times}$such that

$$
\begin{array}{ll}
X^{3}=1+27 u & \text { if }(t)=(1) \\
X^{3}=u+27 & \text { if }(t)=(729) \\
X^{3}=1+u & \text { if }(t)=(27) \tag{5.4}
\end{array}
$$

From Propositions 7 and 8, neither of the equations (5.3) and (5.4) has solutions. From Proposition 7 , the only units u satisfying equation (5.2) are $5 \pm 2 \sqrt{6}$ and $-(23 \pm 4 \sqrt{33})$. If $u=5 \pm 2 \sqrt{6}($ resp. $u=-(23 \pm 4 \sqrt{33})$), then $j(E)=J(5 \mp 2 \sqrt{6})=8000($ resp. $j(E)=$ $J(-(23 \mp 4 \sqrt{33}))=-32768)$. We have two elliptic curves with everywhere good reduction over $\mathbb{Q}(\sqrt{6})($ resp. $\mathbb{Q}(\sqrt{33}))$ with j invariant 8000 (resp. -32768), namely E_{4} and E_{4}^{\prime} (resp. E_{1} and E_{1}^{\prime}). Lemma 16 therefore implies our assertion.

Remark. All elliptic curves with everywhere good reduction over $\mathbb{Q}(\sqrt{6})$ have been determined in [6], [10].

5.2 The case where $\Delta(E)$ is not a cube

Consider the case where $\Delta(E)$ is not a cube in k. Table 1 and Proposition 12 imply that E admits a 3-isogeny defined over k. Thus $j(E)$ is of the form $J(t),(t)=(1),(27),(729)$.

k	$h_{k(\sqrt[3]{\bar{\varepsilon}})}\left((3) \mathfrak{P}_{\infty}^{(1)} \mathfrak{P}_{\infty}^{(2)}\right)$	$h_{k(\sqrt[3]{\varepsilon}, \sqrt{-3})}((3))$
$\mathbb{Q}(\sqrt{33})$	$2 \cdot 3^{3}$	3^{5}
$\mathbb{Q}(\sqrt{57})$	$\mathbf{2}^{\mathbf{2}} \cdot \mathbf{3}$	$2 \cdot 3^{3}$
$\mathbb{Q}(\sqrt{69})$	$2 \cdot 3$	3^{2}
$\mathbb{Q}(\sqrt{93})$	$\mathbf{2}^{\mathbf{2}} \cdot \mathbf{3}$	$2 \cdot 3^{2}$

Table 1: Ray class numbers
The field $K:=k(\sqrt{\Delta(E)})$ is one of the fields $k, k(\sqrt{-1})$ or $k(\sqrt{ \pm \varepsilon})$, since we may assume that $\Delta(E)$ is a unit (see the above-cited result in [19]). The field $k(E[2])$ is a cyclic cubic extension of K, since in [1], it is shown that E has no k-rational points of order 2. This means that, in view of the criterion of Néron-Ogg-Shafarevich, $h_{K}^{(2)}:=h_{K}\left(\prod_{\mathfrak{p} \mid 2} \mathfrak{p}\right)$ is divisible by 3 . Thus Table 2 implies that $\Delta(E)=-\varepsilon^{2 n+1}$ for some $n \in \mathbb{Z}$. In view of the formulae for an admissible change of variables, we may assume that $\Delta(E)=-\varepsilon^{ \pm 1}$

k	$h_{K}^{(2)}$			
	$K=k$	$K=k(\sqrt{-1})$	$K=k(\sqrt{\varepsilon})$	$K=k(\sqrt{-\varepsilon})$
$\mathbb{Q}(\sqrt{33})$	1	2	1	$\mathbf{3}$
$\mathbb{Q}(\sqrt{57})$	1	2	1	$\mathbf{3}$
$\mathbb{Q}(\sqrt{69})$	1	4	1	$\mathbf{3}$
$\mathbb{Q}(\sqrt{93})$	1	2	1	$\mathbf{3}$

Table 2: $h_{K}^{(2)}(K=k, k(\sqrt{-1}), k(\sqrt{ \pm \varepsilon}))$
or $-\varepsilon^{ \pm 5}$. We may further assume that $\Delta(E)=-\varepsilon^{6 n+1}(n=0,-1)$ by considering the conjugate of E.

Suppose first that $(t)=(1)$. By (3.3), we obtain

$$
X^{3}=\varepsilon+27 u, \quad X=\frac{-c_{4}(E)}{(t+3) \varepsilon^{2 n}} \in \mathcal{O}_{k}, \quad u=\frac{\varepsilon}{t} \in \mathcal{O}_{k}^{\times}
$$

which is impossible by Proposition 7.
Suppose next that $(t)=(27)$. Then, by (3.5), we obtain

$$
X^{3}=\varepsilon+\varepsilon u, \quad X=\frac{-c_{4}(E)}{(t+3) \varepsilon^{2 n}} \in \mathcal{O}_{k} \backslash\{0\}, \quad u=\frac{27}{t} \in \mathcal{O}_{k}^{\times}
$$

Let

$$
\pi= \begin{cases}6+\sqrt{33} & \text { if } k=\mathbb{Q}(\sqrt{33}), \\ 15+2 \sqrt{57} & \text { if } k=\mathbb{Q}(\sqrt{57}), \\ (9+\sqrt{69}) / 2 & \text { if } k=\mathbb{Q}(\sqrt{69}), \\ (9+\sqrt{93}) / 2 & \text { if } k=\mathbb{Q}(\sqrt{93})\end{cases}
$$

be a prime element of k dividing 3. Lemma 3, (a) and the fact $\pi^{2}=3 \varepsilon$ imply $u=-\varepsilon^{2 m}$ for some $m \in \mathbb{Z}$, whence

$$
X^{3}=\varepsilon-\varepsilon^{2 m+1}, \quad X \neq 0
$$

which is impossible by Proposition 9.
Finally, suppose that $(t)=(729)$. Since $t / \Delta(E)=-t / \varepsilon^{6 n+1}$ is a square by Lemma 3 , (a), we have $u=729 / t=-\varepsilon^{2 m-1}$ for some $m \in \mathbb{Z}$, and hence by (3.4) we have

$$
X^{3}=\varepsilon^{2 m}-27 \varepsilon, \quad X=\frac{3 c_{4}(E)}{(t+3) \varepsilon^{2 n}}
$$

By Proposition 7, this is possible only if $k=\mathbb{Q}(\sqrt{33})$ and $m=0$, whence $j(E)=$ $J(-729 \varepsilon)=-(5+\sqrt{33})^{3}(5588+972 \sqrt{33})^{3} \varepsilon^{-1}$, which equals to $j\left(E_{2}\right)$ and $j\left(E_{3}^{\prime}\right)$. Lemma 16 therefore implies that E is isomorphic over $\mathbb{Q}(\sqrt{33})$ to E_{2} or E_{3}^{\prime} according as $\Delta(E)=-\varepsilon$ or $\Delta(E)=-\varepsilon^{-5}$.

The proof of Theorems 1 and 2 is now complete.

6 Appendix

In section 5, we gave a characterization of elliptic curves having everywhere good reduction over a real quadratic field k, admitting a 3 -isogeny defined over k, and having cubic discriminant (Proposition 13). Here we give a similar characterization of the curves whose discriminant is equal to $\pm \square_{k}$. More precisely, we prove

Proposition 17. Let k be a real quadratic field. If there exists an elliptic curve E with everywhere good reduction over k given by a global minimal model with $j(E)=J(t)$ $\left(t \in \mathcal{O}_{k},(t)=(1)\right.$ or $\left.(729)\right)$ and $\Delta(E)= \pm \square_{k}$, then $k=\mathbb{Q}(\sqrt{29})$ and E is isomorphic over k to

$$
\begin{gathered}
E_{5}: y^{2}+x y+\varepsilon^{2} y=x^{3}, \Delta\left(E_{5}\right)=-\varepsilon^{10}, j\left(E_{5}\right)=\left(\varepsilon^{2}-3\right)^{3} / \varepsilon^{4}, \\
E_{6}: y^{2}+x y+\varepsilon^{2} y=x^{3}-5 \varepsilon^{2} x-\left(\varepsilon^{2}+7 \varepsilon^{4}\right), \\
\quad \Delta\left(E_{6}\right)=-\varepsilon^{14}, j\left(E_{6}\right)=-\left(1+216 \varepsilon^{2}\right)^{3} / \varepsilon^{14},
\end{gathered}
$$

or to their conjugates $E_{5}^{\prime}, E_{6}^{\prime}$. Here $\varepsilon=(5+\sqrt{29}) / 2$ is the fundamental unit of $\mathbb{Q}(\sqrt{29})$ and $J(t)$ is the one given in section 3.1.

Proof. Suppose that there exists an elliptic curve E with properties stated in the proposition. We take $\Delta(E) \in \mathcal{O}_{k}^{\times}$. Letting

$$
(X, u, v)= \begin{cases}\left(c_{4}(E) /(t+3), \Delta(E), \Delta(E) / t\right) & \text { if }(t)=(1) \\ \left(3 c_{4}(E) /(t+3), 729 \Delta(E) / t, \Delta(E)\right) & \text { if }(t)=(729)\end{cases}
$$

we have $X^{3}=u+27 v, X \in \mathcal{O}_{k}, u, v \in \mathcal{O}_{k}^{\times}, u v= \pm \square_{k}$ by (3.3), (3.4) and Lemma 3, (a). Hence, by Lemma 5, we have $k=\mathbb{Q}(\sqrt{29}), u / v=-\varepsilon^{2},-\varepsilon^{\prime 2}$, where $\varepsilon=(5+\sqrt{29}) / 2$ is the fundamental unit of $\mathbb{Q}(\sqrt{29})$.

If $(t)=(1)$, then $t=u / v=-\varepsilon^{2},-\varepsilon^{\prime 2}$, and $j(E)$ is equal to $J\left(-\varepsilon^{2}\right)=\left(\varepsilon^{2}-3\right)^{3} / \varepsilon^{4}$ or $J\left(-\varepsilon^{\prime 2}\right)=\left(\varepsilon^{\prime 2}-2\right)^{3} \varepsilon^{4}$. If $(t)=(729)$, then $t=729 v / u=-729 \varepsilon^{2},-729 \varepsilon^{\prime 2}$, and $j(E)$ is equal to $J\left(-729 \varepsilon^{2}\right)=-\left(1+216 \varepsilon^{\prime 2}\right)^{3} \varepsilon^{14}$ or $J\left(-729 \varepsilon^{\prime 2}\right)=-\left(1+216 \varepsilon^{2}\right)^{3} \varepsilon^{\prime 14}$. Since the values of j-invariant obtained above are equal to $j\left(E_{5}\right), j\left(E_{5}^{\prime}\right), j\left(E_{6}^{\prime}\right)$ and $j\left(E_{6}\right)$ respectively, Lemma 16 implies our assertion.

Using Propositions 11, 12 and 17 , we can give another proof of the following theorem which is the main theorem of [6]:

Theorem 18. Up to isomorphism over $k=\mathbb{Q}(\sqrt{29})$, the only elliptic curves with everywhere good reduction over k are $E_{5}, E_{5}^{\prime}, E_{6}$ and E_{6}^{\prime}

Proof. Let E be an elliptic curve with everywhere good reduction over $k=\mathbb{Q}(\sqrt{29})$ and let $\Delta(E) \in \mathcal{O}_{k}^{\times}$. Since $h_{k}^{(2)}=h_{k(\sqrt{ \pm \varepsilon})}^{(2)}=1, h_{k(\sqrt{-1})}^{(2)}=3$, and E has no k-rational point of order 2 (see [1], [4]), we have $\Delta(E)=-\varepsilon^{2 n}=-\square_{k}$. Since $h_{k}\left((3) \mathfrak{p}_{\infty}^{(1)} \mathfrak{p}_{\infty}^{(2)}\right)=2$, $h_{k(\sqrt[3]{\varepsilon})}\left((3) \mathfrak{P}_{\infty}^{(1)} \mathfrak{P}_{\infty}^{(2)}\right)=2$, and the prime number 3 is inert in k, we have by Propositions 11 and 12 that $j(E)$ is of the form $J(t),(t)=(1)$ or (729). Proposition 17 therefore implies that E is isomorphic over k to $E_{5}, E_{5}^{\prime}, E_{6}$ or E_{6}^{\prime}, as claimed.

References

[1] S. Comalada, Elliptic curves with trivial conductor over quadratic fields, Pacific J. Math. 144 (1990), 233-258.
[2] J. E. Cremona, Algorithms for modular elliptic curves (2nd ed.), Cambridge University Press, 1997.
[3] A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge studies in advanced mathematics 27, Cambridge University Press, Cambridge, 1991.
[4] H. Ishii, The non-existence of elliptic curves with everywhere good reduction over certain quadratic fields, Japan. J. Math. 12 (1986), 45-52.
[5] T. Kagawa, Determination of elliptic curves with everywhere good reduction over $\mathbb{Q}(\sqrt{37})$, Acta Arith. 83 (1998), 253-269.
[6] T. Kagawa, Determination of elliptic curves with everywhere good reduction over real quadratic fields, Arch. Math., 73 (1999), 25-32.
[7] T. Kagawa, Nonexistence of elliptic curves having everywhere good reduction and cubic discriminant, Proc. Japan Acad., Ser. A 76 (2000), 141-142.
[8] T. Kagawa, Determination of elliptic curves with everywhere good reduction over real quadratic fields $\mathbb{Q}(\sqrt{3 p})$, Acta Arith. 96 (2001), 231-245
[9] T. Kagawa, The Diophantine equation $X^{3}=u+27 v$ over real quadratic fields, Tokyo J. Math. 33 (2010), 159-163.
[10] M. Kida, Reduction of elliptic curves over certain real quadratic number fields, Math. Comp. 68 (1999), 1679-1685.
[11] M. Kida, Computing elliptic curves having good reduction everywhere over quadratic fields, Tokyo J. Math. 24 (2009), 545-558.
[12] M. Kida and T. Kagawa, Nonexistence of elliptic curves with good reduction everywhere over real quadratic fields, J. Number Theory 66 (1997), 201-210.
[13] S. Lang, Algebraic Number Theory (2nd ed.), Grad. Texts in Math. 110, Springer, 1994.
[14] H. Naito, On the Galois groups of the algebraic number fields generated by the 3-division points of elliptic curves, Mem. Fac. Educ. Kagawa Univ., II 36 (1986), 35-40.
[15] T. Nakamura, On Shimura's elliptic curve over $\mathbb{Q}(\sqrt{29})$, J. Math. Soc. Japan 36 (1984), 701-707.
[16] R. G. E. Pinch, Elliptic curves over number fields, Ph. D. thesis, Oxford, 1982.
[17] R. G. E. Pinch, Elliptic curves with good reduction away from 3, Math. Proc. Camb. Phil. Soc. 101 (1987), 451-459.
[18] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331.
[19] B. Setzer, Elliptic curves over complex quadratic fields, Pacific J. Math. 74 (1978), 235-250.
[20] B. Setzer, Elliptic curves with good reduction everywhere over quadratic fields and having rational j-invariant, Illinois J. Math. 25 (1981), 233-245.
[21] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, 1986.
[22] J. Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sc. Paris 273 (1971), 238-241.
Department of Mathematical sciences
College of Science and Engineering
Ritsumeikan University
Kusatsu, Shiga 525-8577, Japan
E-mail: kagawa@se.ritsumei.ac.jp

[^0]: 2010 Mathematics Subject Classification: 11G05.

