The Diophantine equation $X^3 = u + v$ over real quadratic fields

加川貴章 (Takaaki KAGAWA) 立命館大学(Ritsumeikan Univ.)

k : real quadratic field, \mathcal{O}_k : ring of integers, \mathcal{O}_k^{\times} : group of units

We consider the Diophantine equation

$$X^{3} = u + v, \qquad (1)$$
$$X \in \mathcal{O}_{k} - \{0\}, \ u, v \in \mathcal{O}_{k}^{\times}.$$

Motivation

 $E_1, E_2/\mathcal{O}_k$: elliptic curves with unit discriminants.

Suppose

 $\exists f: E_1 \longrightarrow E_2$ isogeny of deg. 3 /k. Then the *j*-invariants $j(E_1), j(E_2)$ are of the form

$$j(E_1) = J(t_1), \quad j(E_2) = J(t_2),$$

 $t_1, t_2 \in k, \quad t_1 t_2 = 3^6,$

(where $J(X) = (X + 27)(X + 3)^3/X$).

Since $j(E_1), j(E_2) \in \mathcal{O}_k$, we have $t_1, t_2 \in \mathcal{O}_k$.

 $c_4(E_1), c_6(E_1)$: as usual $\Delta(E_1) \in \mathcal{O}_k^{\times}$: discriminant of $E_1 \Longrightarrow$

$$j(E_1) = \frac{c_4(E_1)^3}{\Delta(E_1)}$$
(2)
$$= \frac{(t_1 + 27)(t_1 + 3)^3}{t_1},$$

$$j(E_1) - 1728 = \frac{c_6(E_1)^2}{\Delta(E_1)}$$
(3)
$$= \frac{(t_1^2 + 18t_1 - 27)^2}{t_1}.$$

Since $(\Delta(E_1)) = (1)$ and $j(E_1) \neq 0, 1728$, by (2) and (3), the principal ideal (t_1) is 6-th power. Thus

 $(t_1) = \begin{cases} (1), \ (3^6) & (3 \text{ is inert in } k), \\ (1), \ (3^3), \ (3^6) & (3 \text{ is ramified in } k), \\ (1), \ \mathfrak{p}^6, \ \mathfrak{p'}^6, \ (3^6) & ((3) = \mathfrak{p}\mathfrak{p'}, \ \mathfrak{p} \neq \mathfrak{p'}). \end{cases}$

$$\begin{split} (t_1) &= (1) \\ \Longrightarrow \left(\frac{c_4(E_1)}{t_1 + 3}\right)^3 = \varDelta(E_1)(1 + 27w), \\ w &= \frac{1}{t_1} \in \mathcal{O}_k^{\times} \\ \Longrightarrow X^3 = u + 27v, \\ (t_1) &= (3^6) \\ \Longrightarrow \left(\frac{3c_4(E_1)}{t_1 + 3}\right)^3 = \varDelta(E_1)(w + 27), \\ w &= \frac{3^6}{t_1} \in \mathcal{O}_k^{\times}. \\ \Longrightarrow X^3 = u + 27v \\ (t_1) &= (3^3) \\ \Longrightarrow \left(\frac{c_4(E_1)}{t_1 + 3}\right)^3 = \varDelta(E_1)(1 + w), \\ w &= \frac{3^3}{t_1} \in \mathcal{O}_k^{\times}. \\ \Longrightarrow X^3 = u + v \end{split}$$

Theorem 1 (to appear in TJM).
Let
$$k = \mathbb{Q}(\sqrt{3p}), p : prime, \neq 3, \equiv 3 \pmod{4}$$
.
Then $X^3 = u + 27v$ has a solution
in $X \in \mathcal{O}_k - \{0\}, u, v \in \mathcal{O}_k^{\times}$
 \iff
 $k = \mathbb{Q}(\sqrt{33}).$

Thus, we pay attention to (1).

Throughout, let k be as in Theorem 1 $(\Longrightarrow N(w) = 1, \forall w \in \mathcal{O}_k^{\times} (N := N_{k/\mathbb{Q}})$ and the class number h_k of k is odd) We may suppose u = 1or $u = \varepsilon (> 1 :$ the fundamental unit of k); i.e. we must solve

$$X^{3} = 1 + v, \qquad (4)$$
$$X \in \mathcal{O}_{k} - \{0\}, \ v \in \mathcal{O}_{k}^{\times}$$

and

$$X^{3} = \varepsilon + v, \qquad (5)$$
$$X \in \mathcal{O}_{k} - \{0\}, \ v \in \mathcal{O}_{k}^{\times}.$$

Propositon 2. Equation (4) has no solutions.

Proof. Since $(X-1)(X^2+X+1) = v \in \mathcal{O}_k^{\times}$, $X-1 =: v_1 \in \mathcal{O}_k^{\times}$, $X^2 + X + 1 =: v_2 \in \mathcal{O}_k^{\times}$. $\therefore v_1^2 + 3v_1 + 3 = v_2$. Taking norm we have $T(v_1)^2 + 4T(v_1) + 4 = 0$ ($T = \operatorname{Tr}_{k/\mathbb{Q}}$). $\therefore v_1 = -1$, X = 0 ··· impossible. ■

Therefore, we treat equation (5)

Lemma 3. εv is a cube

Proof. Let ' be the conjugation of k/\mathbb{Q} . Then

$$\left(\frac{X}{X'}\right)^3 = \frac{\varepsilon + v}{\varepsilon' + v'}$$
$$= \frac{\varepsilon v(\varepsilon + v)}{\varepsilon v(\varepsilon' + v')}$$
$$= \varepsilon v \frac{\varepsilon + v}{\varepsilon \varepsilon' v + \varepsilon v v'}$$
$$= \varepsilon v \frac{\varepsilon + v}{v + \varepsilon}$$
$$= \varepsilon v$$

v =	εv is			
$\pm \varepsilon^{6n+1}$	not a cube	X		
$\pm \varepsilon^{6n+2}$	a cube, $\neq \pm \Box_k$?		
$\pm \varepsilon^{6n+4}$	not a cube			
$\pm \varepsilon^{6n+5}$	a cube, $\pm \Box_k$?		
$(\Box_k = a \text{ square in } k)$				

Lemma 4. $\varepsilon v \neq -\Box_k$.

Proof. Suppose the contrary. Then

$$N(X)^{3} = N(\varepsilon + v)$$

= $(\varepsilon + v)(\varepsilon' + v')$
= $\varepsilon \varepsilon' + (\varepsilon v' + \varepsilon' v) + vv'$
= $2 - (w^{2} + w'^{2})$ (where $w^{2} = -\varepsilon' v$)
= $2 - (w + w')^{2} + 2$
= $4 - T(w)^{2}$.

 $\therefore T(w)^2 = \{-N(X)\}^3 + 4$ Since the only (affine) Q-rational points of $y^2 = x^3 + 4$ are $(0, \pm 2), X$ must be $0 \cdots$ impossible.

Remaining: $v = \varepsilon^{6n+5}, \pm \varepsilon^{6n+2}$

When
$$v = \varepsilon^{6n+5}$$
, then $\varepsilon v = \Box_k$. Thus

$$N(X)^3 = N(\varepsilon + v)$$

$$= (\varepsilon + v)(\varepsilon' + v')$$

$$= \varepsilon \varepsilon' + (\varepsilon v' + \varepsilon' v) + vv'$$

$$= 2 + (w^2 + w'^2) \qquad \text{(where } w^2 = \varepsilon' v)$$

$$= 2 + (w + w')^2 - 2$$

$$= T(w)^2$$

 \cdots not an elliptic curve!

But we have T(w) = a cube.

Proposition 5. Let p be a prime, $\neq 3$ (not necessarily $p \equiv 3 \pmod{4}$ and let K := $\mathbb{Q}(\sqrt{3p}).$ If $\operatorname{Tr}_{K/\mathbb{O}}(w) = a^3$ for some $a \in \mathbb{Z}$ and $w \in$ \mathcal{O}_K^{\times} , then p = 5 and $w = \pm 4 \pm \sqrt{15}$ **Proof**. Let $w = (a^3 + b\sqrt{3p})/2, b \in \mathbb{Z}$. Then $N(w) = (a^6 - 3pb^2)/4 = 1.$ $\therefore 3pb^2 = (a^3 - 2)(a^3 + 2).$ (I) $a : \text{even} \Longrightarrow (a^3 - 2, a^3 + 2) = 2 \Longrightarrow$ (a) $a^3 - 2 = 2\Box$, $a^3 + 2 = 6p\Box$ (\Box = a square in \mathbb{Z}) or (b) $a^3 - 2 = -2\Box$, $a^3 + 2 = -6p\Box$ or (c) $a^3 - 2 = 6p\Box$, $a^3 + 2 = 2\Box$ or (d) $a^3 - 2 = -6p\Box$, $a^3 + 2 = -2\Box$ or (e) $a^3 - 2 = 6\Box$, $a^3 + 2 = 2p\Box$ or

(f)
$$a^3 - 2 = -6\Box$$
, $a^3 + 2 = -2p\Box$
or
(g) $a^3 - 2 = 2p\Box$, $a^3 + 2 = 6\Box$
or
(h) $a^3 - 2 = -2p\Box$, $a^3 + 2 = -6\Box$

Lemma 6.

(a) $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 2y^2 = x^3 - 2\} = \emptyset.$ (b) $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 2y^2 = x^3 + 2\} = \{(0, \pm 1)\}.$ (c) $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 6y^2 = x^3 - 2\} = \{(2, \pm 1)\}.$ (d) $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 6y^2 = x^3 + 2\} = \emptyset.$ $\therefore a = \pm 2, 2p\Box = \pm 10. \therefore u = \pm 4 \pm \sqrt{15}.$

(II) a : odd \cdots similar.

v =	εv is	
$\pm \varepsilon^{6n+1}$	not a cube	Х
$\pm \varepsilon^{6n+2}$	a cube, $\neq \pm \Box_k$?
$\pm \varepsilon^{6n+4}$	not a cube	X
$\pm \varepsilon^{6n+5}$	a cube, $\pm \Box_k$	X

Thus, if (5) has a solution, then $\exists n \in \mathbb{Z}$, s.t. $v = \pm \varepsilon^{6n+2}$.

p	$p \mod 3$	v	X	N(X)
23	2	ε^2	$\frac{9+\sqrt{69}}{2}$	3
31	1	$-\varepsilon^2$	$\frac{-9-\sqrt{93}}{2}$	-3
431	2	ε^2	$72 + 2\sqrt{1293}$	$12 = 3 \times 2^2$
439	1	$-\varepsilon^2$	$\frac{-5625 - 155\sqrt{1317}}{2}$	$-75 = -3 \times 5^2$

Lemma 7.
$$k := \mathbb{Q}(\sqrt{3p}), \varepsilon : as above,$$

 $w = \varepsilon^{odd}$
(1) $p \equiv 1 \pmod{3}$
 $\implies T(w) + 2 = p\Box, T(w) - 2 = 3\Box$
(2) $p \equiv 2 \pmod{3}$
 $\implies T(w) + 2 = 3\Box, T(w) - 2 = p\Box$
Proof. Suppose $w = (a+b\sqrt{3p})/2, a, b : \text{odd.}$
Since $N(\varepsilon) = (a^2 - 3pb^2)/4 = 1$, we have
 $3pb^2 = a^2 - 4 = (a+2)(a-2).$
 $(a+2, a-2) = 1 \text{ implies}$
 $\{a+2, a-2\} = \{\Box, 3p\Box\} \text{ or } \{p\Box, 3\Box\}.$
Assuming $\{a+2, a-2\} = \{3p\Box, \Box\} = \{3py^2, x^2\},$
we get $(a + b\sqrt{3p})/2 = \{(x + y\sqrt{3p})/2\}^2 \cdots$
contradiction.
 $: \{a+2, a-2\} = \{p\Box, 3p\Box\}$

$$\therefore \{a+2, a-2\} = \{p\Box, 3p\Box\}.$$

$$a+2 = p\Box, a-2 = 3\Box \implies p\Box - 4 = 3\Box$$

$$\implies p \equiv 2 \pmod{3}$$

$$a+2 = 3\Box, a-2 = -\Box \implies p \equiv 1 \pmod{3}.$$

$$w = a + b\sqrt{3p}, a, b \in \mathbb{Z} \cdots \text{ similar.} \blacksquare$$

Lemma 8. $K = \mathbb{Q}(\sqrt{m})$: real quadratic field $(m : square-free), \varepsilon (> 1)$: the fundamental unit of K(a) $\operatorname{Tr}_{K/\mathbb{Q}}(\varepsilon)$: $odd \Longrightarrow m \equiv 5 \pmod{8}$. (b) $[\exists w \in \mathcal{O}_K^{\times} \ s.t. \ \operatorname{Tr}_{K/\mathbb{Q}}(w) : odd]$ $\iff [\operatorname{Tr}_{K/\mathbb{Q}}(\varepsilon) \ is \ odd]$ (c) Suppose that $\operatorname{Tr}_{K/\mathbb{Q}}(\varepsilon) \ is \ odd$. Then $\operatorname{Tr}_{K/\mathbb{Q}}(\varepsilon^n) : even \iff 3 \mid n$.

Theorem 9. X, v : a solution of (5).(a) $p \equiv 1 \pmod{3} \Longrightarrow$ • $\exists n \in \mathbb{Z} \ s.t. \ v = -\varepsilon^{6n+2}$, • Letting $\varepsilon^{6n+1} = (a+b\sqrt{3p})/2, c = N(X),$ we have $c^3 = 2 - a = -3\Box$: odd, $(\Longrightarrow T(\varepsilon^{6n+1}) : odd \Longrightarrow p \equiv 7 \pmod{8}),$ $3pb^2 = c^6 - 4c^3 = a^2 - 4, \ c^3 - 4 = -p\Box.$ (b) $p \equiv 2 \pmod{3} \Longrightarrow$ • $\exists n \in \mathbb{Z} \ s.t. \ v = \varepsilon^{6n+2}.$ • Letting $\varepsilon^{6n+1} = (a+b\sqrt{3p})/2, c = N(X),$ we have $c^3 = a + 2 = 3\Box$. $3pb^2 = c^6 - 4c^3 = a^2 - 4, \ c^3 - 4 = p\Box$. $p \equiv 7 \pmod{8}$. **Proof**. (a) Suppose that $v = \varepsilon^{6n+2}$.

Taking norm of $X^3 = \varepsilon + \varepsilon^{6n+2}$, we have

$$c^{3} = N(X)^{3}$$

= $(\varepsilon + \varepsilon^{6n+2})(\varepsilon^{-1} + \varepsilon^{-6n-2})$

= 2 + T(
$$\varepsilon^{6n+1}$$
) = 2 + a.
. $a = c^3 - 2$.

Since $a^2 - 3pb^2 = 4$, we have $3pb^2 = c^6 - 4c^3$. From Lemma7, we have $c^3 - 4 = a - 2 = 3\Box$. But $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 3y^2 = x^3 - 4\} = \emptyset$. Thus $v = -\varepsilon^{6n+2}$, $c^3 = 2 - a \stackrel{\text{Lemma7}}{=} -3\Box$, $c^3 - 4 = -2 - a \stackrel{\text{Lemma7}}{=} -p\Box$

Suppose that c is even. Then $a = 2 - c^3$: even. From $c^3 = -3\Box$, we have $c = -3\Box$. $\therefore -p\Box = c^3 - 4 \equiv -4 \pmod{64}$. $\therefore -p\frac{\Box}{4} = \frac{c^3}{4} - 1 \equiv 3 \pmod{4}$. $\therefore p \equiv 1 \pmod{4} \cdots$ impossible. Thus c is odd

(b) Similar arguments yields $v = \varepsilon^{6n+2}$, $a = c^3 - 2$, $c^3 = 3\Box$, $c^3 - 4 = p\Box$, where a, b, c as in Theorem.

If c is odd, then, a is odd. Hence Lemma 8 implies $p \equiv 7 \pmod{8}$. If c is even, then, from $c^3 = 3\Box$, we have $c = 3\Box$.

$$\therefore p \square = c^3 - 4 \equiv -4 \pmod{64}.$$
$$\therefore p \frac{\square}{4} = \frac{c^3}{4} - 1 \equiv 7 \pmod{8}.$$
$$\therefore p \equiv 7 \pmod{8}.$$

Corollary 10. $p \equiv 3 \pmod{8} \implies (1)$ has no solutions.

Theorem 9 tells us how to solve equation (5).

Example. $p = 23 \ (\equiv 2 \pmod{3})$ Consider $X^3 = \varepsilon + \varepsilon^{6n+2}$. By Theorem 9, we have

$$c^{3} = a + 2 = 3\Box,$$

 $69b^{2} = c^{6} - 4c^{3} = a^{2} - 4,$
 $c^{3} - 4 = 23\Box.$

 $\{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid 23y^2 = x^3 - 4\} = \{(3,\pm 1)\}.$

$$\therefore c = 3, a = c^3 - 2 = 25, b^2 = \frac{25^2 - 4}{69} = 3^2.$$

$$\therefore \varepsilon^{6n+1} = (25 + 3\sqrt{69})/2 = \varepsilon.$$

$$\therefore n = 0, X^3 = \varepsilon + \varepsilon^2 = ((9 + \sqrt{69})/2)^3.$$

Hence, the only solution is
$$(X, v) = ((9 + \sqrt{69})/2, \varepsilon^2)$$

 $p \equiv 7 \pmod{8}, 7 \leq p \leq 500$ (a) (5) has solutions $\iff p = 23, 31, 431, 439.$ (b) For the above p, the number of solutions is 1.

p	$p \mod 3$	v	X
23	2	ε^2	$\frac{9+\sqrt{69}}{2}$
31	1	$-\varepsilon^2$	$\frac{-9-\sqrt{93}}{2}$
431	2	ε^2	$72 + 2\sqrt{1293}$
439	1	$-\varepsilon^2$	$\frac{-5625 - 155\sqrt{1317}}{2}$

Theorem 11. p : prime number, $p \equiv 3$ (mod 8), $p \neq 3, 11, k := \mathbb{Q}(\sqrt{3p})$. $\varepsilon \ (> 1)$: the fundamental unit of k $\mathfrak{P}_{\infty}^{(1)}, \mathfrak{P}_{\infty}^{(2)}$: the real primes of $k(\sqrt[3]{\varepsilon})$ If the following 2 conditions are satisfied, then there are no elliptic curves with everywhere good reduction over k.

 $(a) \ 3 \nmid h_k,$

(b) $4 \nmid h_{k(\sqrt[3]{\varepsilon})}((3)\mathfrak{P}_{\infty}^{(1)}\mathfrak{P}_{\infty}^{(2)})$ or $4 \nmid h_{k(\sqrt[3]{\varepsilon},\sqrt{-3})}((3))$ (For a number field K and a divisor \mathfrak{m} of K, let $h_{K}(\mathfrak{m})$ be the ray class number of K modulo \mathfrak{m} .)

Corollary 12. If m = 129, 177, 201 or 249, then there are no ellptic curves with everywhere good reduction over $\mathbb{Q}(\sqrt{m})$.