The Diophantine equation $X^{3}=u+v$ over real quadratic fields

加川貴章（Takaaki KAGAWA）
 立命館大学（Ritsumeikan Univ．）

k : real quadratic field, \mathcal{O}_{k} : ring of integers, \mathcal{O}_{k}^{\times}: group of units

We consider the Diophantine equation

$$
\begin{align*}
& X^{3}=u+v \tag{1}\\
& X \in \mathcal{O}_{k}-\{0\}, u, v \in \mathcal{O}_{k}^{\times}
\end{align*}
$$

Motivation
$E_{1}, E_{2} / \mathcal{O}_{k}$: elliptic curves with unit discriminants.
Suppose
$\exists f: E_{1} \longrightarrow E_{2} \quad$ isogeny of deg. $3 / k$.
Then the j-invariants $j\left(E_{1}\right), j\left(E_{2}\right)$ are of the form

$$
\begin{gathered}
j\left(E_{1}\right)=J\left(t_{1}\right), \quad j\left(E_{2}\right)=J\left(t_{2}\right), \\
t_{1}, t_{2} \in k, \quad t_{1} t_{2}=3^{6}, \\
\text { (where } \left.J(X)=(X+27)(X+3)^{3} / X\right) . \\
\text { Since } j\left(E_{1}\right), j\left(E_{2}\right) \in \mathcal{O}_{k} \text {, we have } t_{1}, t_{2} \in \mathcal{O}_{k} .
\end{gathered}
$$

$c_{4}\left(E_{1}\right), c_{6}\left(E_{1}\right)$: as usual
$\Delta\left(E_{1}\right) \in \mathcal{O}_{k}^{\times}:$discriminant of E_{1}
\Longrightarrow

$$
\begin{align*}
j\left(E_{1}\right) & =\frac{c_{4}\left(E_{1}\right)^{3}}{\Delta\left(E_{1}\right)} \tag{2}\\
& =\frac{\left(t_{1}+27\right)\left(t_{1}+3\right)^{3}}{t_{1}} \\
j\left(E_{1}\right)-1728 & =\frac{c_{6}\left(E_{1}\right)^{2}}{\Delta\left(E_{1}\right)} \tag{3}\\
& =\frac{\left(t_{1}^{2}+18 t_{1}-27\right)^{2}}{t_{1}}
\end{align*}
$$

Since $\left(\Delta\left(E_{1}\right)\right)=(1)$ and $j\left(E_{1}\right) \neq 0,1728$, by (2) and (3), the principal ideal $\left(t_{1}\right)$ is 6 -th power. Thus
$\left(t_{1}\right)= \begin{cases}(1),\left(3^{6}\right) & (3 \text { is inert in } k), \\ (1),\left(3^{3}\right),\left(3^{6}\right) & (3 \text { is ramified in } k), \\ (1), \mathfrak{p}^{6}, \mathfrak{p}^{6},\left(3^{6}\right) & \left((3)=\mathfrak{p p}^{\prime}, \mathfrak{p} \neq \mathfrak{p}^{\prime}\right) .\end{cases}$

$$
\begin{aligned}
& \left(t_{1}\right)=(1) \\
& \Longrightarrow\left(\frac{c_{4}\left(E_{1}\right)}{t_{1}+3}\right)^{3}=\Delta\left(E_{1}\right)(1+27 w), \\
& w=\frac{1}{t_{1}} \in \mathcal{O}_{k}^{\times} \\
& \Longrightarrow X^{3}=u+27 v, \\
& \left(t_{1}\right)=\left(3^{6}\right) \\
& \Longrightarrow\left(\frac{3 c_{4}\left(E_{1}\right)}{t_{1}+3}\right)^{3}=\Delta\left(E_{1}\right)(w+27), \\
& \\
& w=\frac{3^{6}}{t_{1}} \in \mathcal{O}_{k}^{\times} . \\
& \Longrightarrow X^{3}=u+27 v \\
& \left(t_{1}\right)=\left(3^{3}\right) \\
& \Longrightarrow\left(\frac{c_{4}\left(E_{1}\right)}{t_{1}+3}\right)^{3}=\Delta\left(E_{1}\right)(1+w), \\
& \\
& w=\frac{3^{3}}{t_{1}} \in \mathcal{O}_{k}^{\times} . \\
& \Longrightarrow X^{3}=u+v
\end{aligned}
$$

Theorem 1 (to appear in TJM). Let $k=\mathbb{Q}(\sqrt{3 p}), p:$ prime $, \neq 3, \equiv 3(\bmod 4)$. Then $X^{3}=u+27 v$ has a solution
in $X \in \mathcal{O}_{k}-\{0\}, u, v \in \mathcal{O}_{k}^{\times}$

$k=\mathbb{Q}(\sqrt{33})$.

Thus, we pay attention to (1).
Throughout, let k be as in Theorem 1 $\left(\Longrightarrow N(w)=1, \forall w \in \mathcal{O}_{k}^{\times}\left(N:=N_{k / \mathbb{Q}}\right)\right.$ and the class number h_{k} of k is odd)

We may suppose $u=1$
or $u=\varepsilon(>1$: the fundamental unit of $k)$;
i.e. we must solve

$$
\begin{align*}
& X^{3}=1+v \tag{4}\\
& X \in \mathcal{O}_{k}-\{0\}, v \in \mathcal{O}_{k}^{\times}
\end{align*}
$$

and

$$
\begin{align*}
& X^{3}=\varepsilon+v \tag{5}\\
& X \in \mathcal{O}_{k}-\{0\}, v \in \mathcal{O}_{k}^{\times}
\end{align*}
$$

Proposition 2. Equation (4) has no solutions.

Proof. Since $(X-1)\left(X^{2}+X+1\right)=v \in \mathcal{O}_{k}^{\times}$, $X-1=: v_{1} \in \mathcal{O}_{k}^{\times}, X^{2}+X+1=: v_{2} \in \mathcal{O}_{k}^{\times}$.
$\therefore v_{1}^{2}+3 v_{1}+3=v_{2}$.
Taking norm we have

$$
T\left(v_{1}\right)^{2}+4 T\left(v_{1}\right)+4=0\left(T=\operatorname{Tr}_{k / \mathbb{Q}}\right)
$$

$\therefore v_{1}=-1, X=0 \quad \cdots \quad$ impossible.
Therefore, we treat equation (5)

Lemma 3. εv is a cube
Proof. Let ' be the conjugation of k / \mathbb{Q}. Then

$$
\begin{aligned}
\left(\frac{X}{X^{\prime}}\right)^{3} & =\frac{\varepsilon+v}{\varepsilon^{\prime}+v^{\prime}} \\
& =\frac{\varepsilon v(\varepsilon+v)}{\varepsilon v\left(\varepsilon^{\prime}+v^{\prime}\right)} \\
& =\varepsilon v \frac{\varepsilon+v}{\varepsilon \varepsilon^{\prime} v+\varepsilon v v^{\prime}} \\
& =\varepsilon v \frac{\varepsilon+v}{v+\varepsilon} \\
& =\varepsilon v
\end{aligned}
$$

$v=$	εv is	
$\pm \varepsilon^{6 n+1}$	not a cube	\times
$\pm \varepsilon^{6 n+2}$	a cube, $\neq \pm \square_{k}$	$?$
$\pm \varepsilon^{6 n+4}$	not a cube	\times
$\pm \varepsilon^{6 n+5}$	a cube, $\pm \square_{k}$	$?$
$\left(\square_{k}=\right.$ a square in $\left.k\right)$		

Lemma 4. $\varepsilon v \neq-\square_{k}$.
Proof. Suppose the contrary. Then

$$
\begin{aligned}
N(X)^{3} & =N(\varepsilon+v) \\
& =(\varepsilon+v)\left(\varepsilon^{\prime}+v^{\prime}\right) \\
& =\varepsilon \varepsilon^{\prime}+\left(\varepsilon v^{\prime}+\varepsilon^{\prime} v\right)+v v^{\prime} \\
& =2-\left(w^{2}+w^{\prime 2}\right) \quad\left(\text { where } w^{2}=-\varepsilon^{\prime} v\right) \\
& =2-\left(w+w^{\prime}\right)^{2}+2 \\
& =4-T(w)^{2}
\end{aligned}
$$

$\therefore T(w)^{2}=\{-N(X)\}^{3}+4$
Since the only (affine) \mathbb{Q}-rational points of $y^{2}=$ $x^{3}+4$ are $(0, \pm 2), X$ must be $0 \cdots$ impossible.

Remaining: $v=\varepsilon^{6 n+5}, \pm \varepsilon^{6 n+2}$

When $v=\varepsilon^{6 n+5}$, then $\varepsilon v=\square_{k}$. Thus
$N(X)^{3}=N(\varepsilon+v)$

$$
=(\varepsilon+v)\left(\varepsilon^{\prime}+v^{\prime}\right)
$$

$$
=\varepsilon \varepsilon^{\prime}+\left(\varepsilon v^{\prime}+\varepsilon^{\prime} v\right)+v v^{\prime}
$$

$$
=2+\left(w^{2}+w^{\prime 2}\right) \quad\left(\text { where } w^{2}=\varepsilon^{\prime} v\right)
$$

$$
=2+\left(w+w^{\prime}\right)^{2}-2
$$

$$
=T(w)^{2}
$$

... not an elliptic curve!
But we have $T(w)=$ a cube.

Propositon 5. Let p be a prime, $\neq 3$ (not necessarily $p \equiv 3(\bmod 4))$ and let $K:=$ $\mathbb{Q}(\sqrt{3 p})$.
If $\operatorname{Tr}_{K / \mathbb{Q}}(w)=a^{3}$ for some $a \in \mathbb{Z}$ and $w \in$
\mathcal{O}_{K}^{\times}, then $p=5$ and $w= \pm 4 \pm \sqrt{15}$
Proof. Let $w=\left(a^{3}+b \sqrt{3 p}\right) / 2, b \in \mathbb{Z}$. Then $N(w)=\left(a^{6}-3 p b^{2}\right) / 4=1$.
$\therefore 3 p b^{2}=\left(a^{3}-2\right)\left(a^{3}+2\right)$.
(I) a : even $\Longrightarrow\left(a^{3}-2, a^{3}+2\right)=2 \Longrightarrow$
(a) $a^{3}-2=2 \square, a^{3}+2=6 p \square(\square=$ a square in $\mathbb{Z})$
or
(b) $a^{3}-2=-2 \square, a^{3}+2=-6 p \square$
or
(c) $a^{3}-2=6 p \square, a^{3}+2=2 \square$
or
(d) $a^{3}-2=-6 p \square, a^{3}+2=-2 \square$
or
(e) $a^{3}-2=6 \square, a^{3}+2=2 p \square$
or
(f) $a^{3}-2=-6 \square, a^{3}+2=-2 p \square$
or
(g) $a^{3}-2=2 p \square, a^{3}+2=6 \square$
or
(h) $a^{3}-2=-2 p \square, a^{3}+2=-6 \square$

Lemma 6.

(a) $\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 2 y^{2}=x^{3}-2\right\}=\emptyset$.
(b) $\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 2 y^{2}=x^{3}+2\right\}=$ $\{(0, \pm 1)\}$.
(c) $\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 6 y^{2}=x^{3}-2\right\}=$ $\{(2, \pm 1)\}$.
(d) $\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 6 y^{2}=x^{3}+2\right\}=\emptyset$.
$\therefore a= \pm 2,2 p \square= \pm 10 . \therefore u= \pm 4 \pm \sqrt{15}$.
(II) a : odd \cdots similar.

$v=$	εv is	
$\pm \varepsilon^{6 n+1}$	not a cube	\times
$\pm \varepsilon^{6 n+2}$	a cube, $\neq \pm \square_{k}$	$?$
$\pm \varepsilon^{6 n+4}$	not a cube	\times
$\pm \varepsilon^{6 n+5}$	a cube, $\pm \square_{k}$	\times

Thus, if (5) has a solution, then $\exists n \in \mathbb{Z}$, s.t. $v= \pm \varepsilon^{6 n+2}$.

p	$p \bmod 3$	v	X	$N(X)$
23	2	ε^{2}	$\frac{9+\sqrt{69}}{2}$	3
31	1	$-\varepsilon^{2}$	$\frac{-9-\sqrt{93}}{2}$	-3
431	2	ε^{2}	$72+2 \sqrt{1293}$	$12=3 \times 2^{2}$
439	1	$-\varepsilon^{2}$	$\frac{-5625-155 \sqrt{1317}}{2}$	$-75=-3 \times 5^{2}$

Lemma 7. $k:=\mathbb{Q}(\sqrt{3 p}), \varepsilon:$ as above, $w=\varepsilon^{\text {odd }}$
(1) $p \equiv 1(\bmod 3)$
$\Longrightarrow T(w)+2=p \square, T(w)-2=3 \square$
(2) $p \equiv 2(\bmod 3)$
$\Longrightarrow T(w)+2=3 \square, T(w)-2=p \square$
Proof. Suppose $w=(a+b \sqrt{3 p}) / 2, a, b$: odd.
Since $N(\varepsilon)=\left(a^{2}-3 p b^{2}\right) / 4=1$, we have
$3 p b^{2}=a^{2}-4=(a+2)(a-2)$.
$(a+2, a-2)=1$ implies
$\{a+2, a-2\}=\{\square, 3 p \square\}$ or $\{p \square, 3 \square\}$.
Assuming $\{a+2, a-2\}=\{3 p \square, \square\}=\left\{3 p y^{2}, x^{2}\right\}$, we get $(a+b \sqrt{3 p}) / 2=\{(x+y \sqrt{3 p}) / 2\}^{2} \cdots$ contradiction.
$\therefore\{a+2, a-2\}=\{p \square, 3 p \square\}$.
$a+2=p \square, a-2=3 \square \Longrightarrow p \square-4=3 \square$
$\Longrightarrow p \equiv 2(\bmod 3)$
$a+2=3 \square, a-2=-\square \Longrightarrow p \equiv 1(\bmod 3)$.
$w=a+b \sqrt{3 p}, a, b \in \mathbb{Z} \cdots$ similar.

Lemma 8. $K=\mathbb{Q}(\sqrt{m})$: real quadratic field (m : square-free), $\varepsilon(>1)$: the fundmental unit of K
(a) $\operatorname{Tr}_{K / \mathbb{Q}}(\varepsilon):$ odd $\Longrightarrow m \equiv 5(\bmod 8)$.
(b) $\left[\exists w \in \mathcal{O}_{K}^{\times}\right.$s.t. $\operatorname{Tr}_{K / \mathbb{Q}}(w):$ odd $]$ $\Longleftrightarrow\left[\operatorname{Tr}_{K / \mathbb{Q}}(\varepsilon)\right.$ is odd $]$
(c) Suppose that $\operatorname{Tr}_{K / \mathbb{Q}}(\varepsilon)$ is odd.

Then $\operatorname{Tr}_{K / \mathbb{Q}}\left(\varepsilon^{n}\right)$: even $\Longleftrightarrow 3 \mid n$.

Theorem 9. $X, v:$ a solution of (5).
(a) $p \equiv 1(\bmod 3) \Longrightarrow$

- $\exists n \in \mathbb{Z}$ s.t. $v=-\varepsilon^{6 n+2}$,
- Letting $\varepsilon^{6 n+1}=(a+b \sqrt{3 p}) / 2, c=N(X)$, we have $c^{3}=2-a=-3 \square$: odd, $\left(\Longrightarrow T\left(\varepsilon^{6 n+1}\right): o d d \Longrightarrow p \equiv 7(\bmod 8)\right)$, $3 p b^{2}=c^{6}-4 c^{3}=a^{2}-4, c^{3}-4=-p \square$.
(b) $p \equiv 2(\bmod 3) \Longrightarrow$
- $\exists n \in \mathbb{Z}$ s.t. $v=\varepsilon^{6 n+2}$,
- Letting $\varepsilon^{6 n+1}=(a+b \sqrt{3 p}) / 2, c=N(X)$, we have $c^{3}=a+2=3 \square$,

$$
\begin{aligned}
& 3 p b^{2}=c^{6}-4 c^{3}=a^{2}-4, c^{3}-4=p \square \\
& p \equiv 7(\bmod 8)
\end{aligned}
$$

Proof. (a) Suppose that $v=\varepsilon^{6 n+2}$.
Taking norm of $X^{3}=\varepsilon+\varepsilon^{6 n+2}$, we have

$$
\begin{aligned}
c^{3} & =N(X)^{3} \\
& =\left(\varepsilon+\varepsilon^{6 n+2}\right)\left(\varepsilon^{-1}+\varepsilon^{-6 n-2}\right)
\end{aligned}
$$

$$
=2+T\left(\varepsilon^{6 n+1}\right)=2+a
$$

$$
\therefore a=c^{3}-2
$$

Since $a^{2}-3 p b^{2}=4$, we have $3 p b^{2}=c^{6}-4 c^{3}$.
From Lemma, we have $c^{3}-4=a-2=3 \square$.
But $\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 3 y^{2}=x^{3}-4\right\}=\emptyset$.
Thus $v=-\varepsilon^{6 n+2}$,
$c^{3}=2-a \stackrel{\text { Lemma 7 }}{=}-3 \square$,
$c^{3}-4=-2-a \stackrel{\text { Lemma }}{=}-p \square$
Suppose that c is even.
Then $a=2-c^{3}$: even.
From $c^{3}=-3 \square$, we have $c=-3 \square$.
$\therefore-p \square=c^{3}-4 \equiv-4(\bmod 64)$.
$\therefore-p \frac{\square}{4}=\frac{c^{3}}{4}-1 \equiv 3(\bmod 4)$.
$\therefore p \equiv 1(\bmod 4) \cdots$ impossible.
Thus c is odd
(b) Similar arguments yields $v=\varepsilon^{6 n+2}, a=$ $c^{3}-2, c^{3}=3 \square, c^{3}-4=p \square$, where a, b, c as in Theorem.

If c is odd, then, a is odd. Hence Lemma 8 implies $p \equiv 7(\bmod 8)$.
If c is even, then, from $c^{3}=3 \square$, we have $c=$ $3 \square$.
$\therefore p \square=c^{3}-4 \equiv-4(\bmod 64)$.
$\therefore p \frac{\square}{4}=\frac{c^{3}}{4}-1 \equiv 7(\bmod 8)$.
$\therefore p \equiv 7(\bmod 8)$.

Corollary 10. $p \equiv 3(\bmod 8) \Longrightarrow(1)$ has no solutions.

Theorem 9 tells us how to solve equation (5).
Example. $p=23(\equiv 2(\bmod 3))$
Consider $X^{3}=\varepsilon+\varepsilon^{6 n+2}$. By Theorem 9, we have

$$
\begin{aligned}
c^{3} & =a+2=3 \square \\
69 b^{2} & =c^{6}-4 c^{3}=a^{2}-4, \\
c^{3}-4 & =23 \square
\end{aligned}
$$

is $\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 23 y^{2}=x^{3}-4\right\}=$ $\{(3, \pm 1)\}$.
$\therefore c=3, a=c^{3}-2=25, b^{2}=\frac{25^{2}-4}{69}=3^{2}$.
$\therefore \varepsilon^{6 n+1}=(25+3 \sqrt{69}) / 2=\varepsilon$.
$\therefore n=0, X^{3}=\varepsilon+\varepsilon^{2}=((9+\sqrt{69}) / 2)^{3}$.
Hence, the only solution is
$(X, v)=\left((9+\sqrt{69}) / 2, \varepsilon^{2}\right)$
$p \equiv 7(\bmod 8), 7 \leq p \leq 500$
(a) (5) has solutions $\Longleftrightarrow p=23,31,431,439$.
(b) For the above p, the number of solutions is 1 .

p	$p \bmod 3$	v	X
23	2	ε^{2}	$\frac{9+\sqrt{69}}{2}$
31	1	$-\varepsilon^{2}$	$\frac{-9-\sqrt{93}}{2}$
431	2	ε^{2}	$72+2 \sqrt{1293}$
439	1	$-\varepsilon^{2}$	$\frac{-5625-155 \sqrt{1317}}{2}$

Theorem 11. p : prime number, $p \equiv 3$ $(\bmod 8), p \neq 3,11, k:=\mathbb{Q}(\sqrt{3 p})$.
$\varepsilon(>1)$: the fundamental unit of k $\mathfrak{P}_{\infty}^{(1)}, \mathfrak{P}_{\infty}^{(2)}$: the real primes of $k(\sqrt[3]{\varepsilon})$
If the following 2 conditions are satisfied, then there are no elliptic curves with everywhere good reduction over k.
(a) $3 \nmid h_{k}$,
(b) $4 \nmid h_{k(\sqrt[3]{\varepsilon})}\left((3) \mathfrak{P}_{\infty}^{(1)} \mathfrak{P}_{\infty}^{(2)}\right)$ or $4 \nmid h_{k(\sqrt[3]{\varepsilon}, \sqrt{-3})}((3))$
(For a number field K and a divisor \mathfrak{m} of K, let $h_{K}(\mathfrak{m})$ be the ray class number of K modulo \mathfrak{m}.)

Corollary 12. If $m=129,177,201$ or 249 , then there are no elliptic curves with everywhere good reduction over $\mathbb{Q}(\sqrt{m})$.

