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Abstract— Frank-Starling law, which describes a relation between cardiac contraction energy and end-diastolic volume, is of
importance, but the detailed mechanism is not quantitatively understood yet. In this paper, the mechanism of a linear relation
between end-diastolic volume and end-systolic pressure as a part of Frank-Starling law is analyzed by means of computer
simulation. A hemodynamics model, which is constructed by composing a vascular system model, a left ventricular dynamics
model and a myocardial cell model, reproduced a linear relation between end-diastolic volume and end-systolic pressure
successfully. In this paper, the simulation results and the detailed analysis are reported.
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1 Introduction

It is important to understand the detailed mechanisms of the
heart, which is an organ to circulate blood into the whole
body. A well known law on a cardiac function, Frank-
Starling law[1] describes that the energy of myocardial con-
traction is proportional to the end-diastolic volume within
the physiological range. The mechanism is qualitatively ex-
plained as the following[2]; 1) as the blood inflow to the
heart increases, end-diastolic volume increases and ventric-
ular wall is strongly stretched, 2) the resting myocardial
length is stretched, thus myocardial tension increases accord-
ing to length-tension relation, 3) as a result stroke volume
increases, and the cardiac stroke work increases finally.

Another important relationship on the cardiac function is
end-systolic pressure volume relation (ESPVR), which is ex-
pressed by the line connecting the point at end-systole of
pressure-volume diagram and the points of other loads. ES-
PVR of a human heart is linear in physiological conditions,
and the slope is calledEmax[3], which is an important clini-
cal index of cardiac function. Pressure-volume area (PVA) is
the area surrounded by a pressure-volume loop of a cardiac
cycle and ESPVR. PVA indicates the total energy of external
mechanical work and mechanical potential energy[4].

Although Frank-Starling law is an important empirical law
to represent the relation between the load of heart and car-
diac output, the underlying mechanism is not well under-
stood yet. ESPVR and PVA show relationship between end-
systolic pressure and cardiac energy consumption. Experi-
mental results show a linear relation between end-diastolic
volume and end-systolic pressure. This linear relation is an
important factor of Frank-Starling law. Therefore, a detailed
analysis of the linear relation between end-diastolic volume
and end-systolic pressure helps understanding the mecha-
nism of Frank-Starling law.

Computer simulation is an important technique to analyze
and understand the mechanism of biological functions. In

this study, the linear relation between end-diastolic volume
and end-systolic pressure is analyzed by a circulation dy-
namics simulation. The model employed in the simulation
is not made with a system identification approach, but com-
posed of physiologically validated models. In this paper, the
simulation results and the analysis are reported.

2 Model and Simulation Result

2.1 Hemodynamic model

In this study, a human infantile hemodynamics model pro-
posed by Nobuaki et al.[5] (Nobuaki model) was used with
some modifications. Nobuaki model, which can simulate
baroreceptor reflex against modulations of the head-up tilt
angle of the body, is composed of a vascular system model, a
left ventricular dynamic model and a myocardial cell model.
The vascular system model represents the dynamic change
of systemic blood pressure, blood flow and left ventricular
volume. The left ventricular dynamics model defines the re-
lationship between the left ventricular volume and pressure,
where the volume is related to the length of a myocardial cell
and the pressure to tension by a myocardial cell. The my-
ocardial cell model expresses and the developed tension of a
myocardial cell.

The vascular system model in Nobuaki model is based on
an adult vascular system model by Heldt et al.[6] The vascu-
lar system is expressed as an electric circuit, where a blood
pressure is represented as a voltage and a blood flow as a
current. The circuit consists of twelve compartments such as
the heart, the aorta, the peripheral circulation, the vein and
the pulmonary circulation. The each compartment is com-
posed of a resistance, a linear capacitance, and a non-linear
and time-variable capacitance. The left ventricular volume is
expressed as the difference between the total blood volume
and the blood volume of all compartments other than the left
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Figure 1: Four chemical states of Negroni-Lascano model

ventricle. Modulation of the body tilt angle varies the load
of the heart through change of the blood distribution. In the
current study, the adrenergic effect of baroreceptor reflex is
removed from original Nobuaki model.

In the left ventricular system model, the relationship be-
tween the left ventricular pressure and the tension of the my-
ocardial cell is expressed with Laplace formula:

P

h
=

F

R
, (1)

whereP is the left ventricular pressure,h is the left ventric-
ular wall thickness,F is the myocardial cell tension andR is
the left ventricular radius. The relation between the left ven-
tricular volume and the half sarcomere length of a myocardial
cell is modified from the original formulation in order to fit
experimental data and is formulated as

L = c1 · V + c2, (2)

whereL is the half sarcomere length,V is the left ventricular
volume, andc1 andc2 are constants.

Kyoto model[7] which is a comprehensive physiological
model of a myocardial cell is used as myocardial cell model.
Kyoto model precisely expresses membrane excitation and
excitation-contraction coupling as ordinary differential equa-
tions by modeling each cellular component function such as
ion channels, calcium buffering and myofibril. Kyoto model
incorporates with a cardiac muscle model reported by Ne-
groni and Lascano (Negroni-Lascano model) [8] with some
modifications for excitation-contraction coupling.

2.2 Excitation-contraction
coupling model

The excitation-contraction coupling model of Kyoto model
describes cellular contraction mechanism as a four chemical
states of troponin C as shown in Fig. 1; free troponin C (T ),
calcium ion bound troponin C (TCa), calcium ion bound tro-
ponin C with attached cross-bridges (TCa∗), and troponin
C without calcium ion but with attached cross-bridges (T∗).

The net rates of state transitions are expressed as following.

T → TCa :

Q1 = Y1 · [Ca2+] · p(T ) − Z1 · p(TCa), (3)

TCa → TCa∗ :
Q2 = Y2 · fOL(L) · p(TCa) − Z2 · p(TCa∗), (4)

TCa∗ → T∗ :

Q3 = Y3 · p(TCa∗) − Z3 · [Ca2+] · p(T∗), (5)

T∗ → T :
Q4 = Y4 · p(T∗) + Yd · fCB(dX/dt) · p(T∗), (6)

TCa∗ → T :
Q5 = Yd · fCB(dX/dt) · p(TCa∗), (7)

whereY1-Y4, Yd, Z1-Z3 are rate parameters as defined be-
low. fOL(L) is an overlap function to represent probability
of state ofTCa which can be used to form cross-bridges and
defined as

fOL(L) = exp
{
−20 (L − 1.17)2

}
. (8)

fCB(dX/dt) is defined as

fCB(dX/dt) =

{
(dX/dt)2/50 (dX/dt > 0)
(dX/dt)2 (dX/dt ≤ 0)

, (9)

d

dt
X = B · ((L − X) − hc), (10)

whereB is a proportional constant andhc the equivalent
cross-bridges elongation, andL−X represents cross-bridge
elongation anddX/dt the velocity of motion of the mobile
cross-bridge end. The rate constants depend on ATP concen-
tration factors as the following:

Y1 = 31.2 [mM/msec] (11)

Z1 = 0.06 [msec−1] (12)

Y2 = 0.0039 ·
(

0.54 · KdPIi

KdPIi + [PI]
+ 0.64

)
[msec−1] (13)

Z2 = 0.0039 · 1

1 +
(

KdATPi

[ATPtotal]

)3 [msec−1] (14)

Y3 = 0.06 [msec−1] (15)

Z3 = 1248 [mM/msec] (16)

Y4 = 0.12 · 1

1 +
(

KdATPi

[ATPtotal]

)3 [mM/msec] (17)

Yd = 8000 · 1

1 +
(

KdATPi

[ATPtotal]

)3 [msec/µm2], (18)

whereKdPIi is a dissociation constant for PI andKdATPi

is a dissociation constant for ATP. The derivatives of state
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Figure 2: The time courses of pressure and volume atα = 0◦

probabilities are expressed as

d

dt
p(T ) = −Q1 + Q4 + Q5 (19)

d

dt
p(TCa) = Q1 − Q2 (20)

d

dt
p(TCa∗) = Q2 − Q3 − Q5 (21)

d

dt
p(T∗) = Q3 − Q4. (22)

The developed tension of elongation element (Fb) is ex-
pressed as a product of cross-bridges concentration and
cross-bridge elongation:

Fb = A · [Tt] · (p(TCa∗) + p(T∗)) · (L − X), (23)

whereA is a constant and[Tt] is total troponin concentration.
The force developed by the parallel elastic element (Fp) is
expressed as

Fp =

{
Kl(0.97 − L) (L < 0.97)
Kl(0.97 − L) − Kp(L − 0.97)5 (L ≥ 0.97)

,

(24)

whereKl(= 20[mN/mm2/µm]) andKp(= 140, 000
[mN/mm2/µm5]) are the intracellular passive stiffness. Fi-
nally, the tension of myocardial cell (Fext) is expressed with
Fb andFp as

F = Fb − Fp. (25)

2.3 Simulation result

Simulations were conducted under multiple body tilt angles
(α) from 0◦ to 90◦ at every15◦. The change of tilt an-
gle alters the systemic blood pressure and cardiac work-
load. To convergent to the steady state, 40 cardiac cycles
were simulated and the final cardiac cycles were analyzed.
The simulations were performed with a simulation software
“simBio”[9].

Fig. 2 shows the time course of pressure and volume at
α = 0◦. Fig. 3 shows pressure-volume curve under differ-
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Figure 3: The pressure-volume curve and ESPVR
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Figure 4: The relationship betweenV (ted) andP (tes)

ent values ofα. ESPVR is illustrated with a solid line as the
relation between pressure and volume at end-systolic time
(tes). The obtained ESPVR is linear with the coefficient of
determinationR2 = 0.999. Fig. 4 shows a relationship be-
tween end-diastolic volumeV (ted) and end-systolic pressure
P (tes). The dots in Fig. 4 represent the result of eachα, and
the straight line is the regression line. The relation between
V (ted) andP (tes) is linear withR2 = 0.999.

3 Analysis

The details of the simulation results were analyzed to ex-
plain the linear relation between end-systolic pressure and
end-diastolic volume. The left ventricular volume has a lin-
ear relation with the half sarcomere length of the myocardial
cell as defined in Eq. 2. Although the left ventricular pres-
sure depends not only on the tension of the myocardial cell
but also on the wall thickness and the radius as defined in
Eq. 1, the wall thickness and the radius have a weak depen-
dency on the myocardial cell tension. Consequently, the re-
lation between the half sarcomere length at end-diastole and
the tension of the myocardial cell at end-systole is approxi-
mately linear (R2 = 1.000) as shown in Fig. 5.

As defined in Eq. 25, the tension of the myocardial cell
is a difference ofFb andFp. Because the non-linear term of
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Figure 5: The relationship betweenL(ted) andF (tes)
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Figure 6: The time course ofL

Eq. 24 is much smaller than the linear term in the range of the
half sarcomere length (L) in the simulation results (Fig. 6),
Fp is approximately linear withL. Therefore,Fb at end-
systole (Fb(tes)) has a linear relation with the half sarcom-
ere length at end-diastole (L(ted)). With respect to Eq. 23,
the value ofL − X at end-systole is close tohc according
to Eq. 10, soL − X can be regarded as constant. BecauseA
and[Tt] are constant,p(TCa∗)+p(T∗) attes has an approx-
imately linear relation (R2 = 0.999) with L(ted) as shown
in Fig. 7.

In the simulation results, bothp(TCa∗) andp(T∗) have
linear relations withL(ted) at any time from 0 totes. The
coefficients of determinations at several points are shown in
Table 1. This gives thatddtp(TCa∗) and d

dtp(T∗) have also
linear relations withL(ted) at any time from 0 totes. From
the model definition described in sec 2.2,

d

dt
p(TCa∗) +

d

dt
p(T∗)

= Q2 − Q4 − Q5

= Y2 · fOL(L) · p(TCa)
− Z2 · p(TCa∗) − Y4 · p(T∗)
− Yd · fCB(dX/dt) · {p(TCa∗) + p(T∗)} . (26)

In this equation, the former three terms are dominant as
shown in Fig. 8, 9. Y2, Z2 and Y4 are almost constant as
shown in Fig. 10, because[ATPtotal] and [PI] are almost
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Figure 7: The relationship betweenp(TCa∗) + p(T∗) at tes

andL(ted)

Table 1: The coefficients of determinations ofp(TCa∗) and
p(T∗)

time[msec] R2 of p(TCa∗) R2 of p(T∗)
10 0.9999 0.9999
20 0.9999 0.9999
30 0.9999 0.9999
40 0.9998 0.9998
50 0.9997 0.9997
60 0.9997 0.9997
70 0.9997 0.9997
tes 0.9997 0.9997

constant in physiological conditions in Kyoto model. In
the simulation result,p(TCa) is nearly independent ofα as
shown in Fig. 11. As a Taylor expansion of Eq. 8 around a
valueLm, fOL(L) can be expressed as

fOL(L) = fOL(Lm)
− 40(Lm − 1.17) · fOL(Lm) · (L − Lm)

+ 40
{
40(Lm − 1.17)2 − 1

}
· fOL(Lm) · (L − Lm)2

+ · · · . (27)

In the simulation results, the maximum variation ofL with
the change ofα is 0.9602-1.025 as shown in Fig. 6. In
this range ofL, the terms of second and more degrees in
Eq. 27 can be omitted by settingLm the median value of
the range, sofOL(L) is an approximately linear function of
L. Although the time courses ofL depend onα, the transi-
tion shapes are almost identical, when they are normalized as
the maximum to be 1 and the minimum to be 0 as shown in
Fig. 12. Thus, L can be approximately expressed as

Lα(t) =
{
a1L

0(t) + b1

}
·L(ted) + a2L

0(t) + b2, (28)

whereLα denotesL atα, anda1, b1, a2 andb2 are constants.
Therefore,fOL(L) has an approximately linear relation with
L(ted). Consequently, Eq. 26 is approximately linear with
L(ted).



0.0 ×10
0

2.0 ×10
-4

4.0 ×10
-4

6.0 ×10
-4

8.0 ×10
-4

 0  20  40  60  80

Q
[
m
M
/
m
s
e
c
]

time[msec]

1st term

3rd term

2nd term
4th term

Figure 8: The time course of terms of Eq. 26 atα = 0◦
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4 Conclusion

In order to understand the underlying mechanism of Frank-
Starling law, we analyzed in depth simulation results of a
constructive hemodynamic model, which successfully repro-
duced a linear ESPVR and a linear relation between end-
systolic pressure and end-diastolic volume. The analysis in-
dicates two important factors for the linear relation between
end-systolic pressure and end-diastolic volume; 1. micro-
scopical linearity of the force-length relationship of a my-
ocardial cell, 2. independency of the transitional shape of a
half sarcomere length from the cardiac load. In the present
study, the linear relation was analyzed by decomposing the
simulation results. As a future work, we plan a mathematical
proof of the linear relation between the developed tension
and the half sarcomere length on the excitation-contraction
coupling model. In addition, an analysis of the linear ES-
PVR is also a future work.
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