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Abstract— Frank-Starling law, which describes a relation between cardiac contraction energy and end-diastolic volume, is of

importance, but the detailed mechanism is not quantitatively understood yet. In this paper, the mechanism of a linear relatior
between end-diastolic volume and end-systolic pressure as a part of Frank-Starling law is analyzed by means of compute
simulation. A hemodynamics model, which is constructed by composing a vascular system model, a left ventricular dynamics
model and a myocardial cell model, reproduced a linear relation between end-diastolic volume and end-systolic pressurt

successfully. In this paper, the simulation results and the detailed analysis are reported.
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1 Introduction this study, the linear relation between end-diastolic volume
and end-systolic pressure is analyzed by a circulation dy-

It is important to understand the detailed mechanisms of theamics simulation. The model employed in the simulation

heart, which is an organ to circulate blood into the wholés not made with a system identification approach, but com-

body. A well known law on a cardiac function, Frank-posed of physiologically validated models. In this paper, the

Starling law[1] describes that the energy of myocardial corsimulation results and the analysis are reported.

traction is proportional to the end-diastolic volume within

the physiological range. The mechanism is qualitatively ex-

plained as the following[2]; 1) as the blood inflow to the2 Model and Simulation Result
heart increases, end-diastolic volume increases and ventric-

ular WQ|| is strongly stretched, _2) the _res_ting myocardiah 1 Hemodynamic model
length is stretched, thus myocardial tension increases accord-
ing to length-tension relation, 3) as a result stroke volummn this study, a human infantile hemodynamics model pro-
increases, and the cardiac stroke work increases finally. posed by Nobuaki et al.[5] (Nobuaki model) was used with
Another important relationship on the cardiac function isome modifications. Nobuaki model, which can simulate
end-systolic pressure volume relation (ESPVR), which is eXsaroreceptor reflex against modulations of the head-up tilt
pressed by the line connecting the point at end-systole ahgle of the body, is composed of a vascular system model, a
pressure-volume diagram and the points of other loads. ERft ventricular dynamic model and a myocardial cell model.
PVR of a human heart is linear in physiological conditionsThe vascular system model represents the dynamic change
and the slope is calleB,,.«[3], which is an important clini- of systemic blood pressure, blood flow and left ventricular
cal index of cardiac function. Pressure-volume area (PVA) iolume. The left ventricular dynamics model defines the re-
the area surrounded by a pressure-volume loop of a cardiationship between the left ventricular volume and pressure,
cycle and ESPVR. PVA indicates the total energy of externathere the volume is related to the length of a myocardial cell
mechanical work and mechanical potential energy|[4]. and the pressure to tension by a myocardial cell. The my-
Although Frank-Starling law is an important empirical lawocardial cell model expresses and the developed tension of a
to represent the relation between the load of heart and canyocardial cell.
diac output, the underlying mechanism is not well under- The vascular system model in Nobuaki model is based on
stood yet. ESPVR and PVA show relationship between endn adult vascular system model by Heldt et al.[6] The vascu-
systolic pressure and cardiac energy consumption. Expekir system is expressed as an electric circuit, where a blood
mental results show a linear relation between end-diastolgressure is represented as a voltage and a blood flow as a
volume and end-systolic pressure. This linear relation is azurrent. The circuit consists of twelve compartments such as
important factor of Frank-Starling law. Therefore, a detailethe heart, the aorta, the peripheral circulation, the vein and
analysis of the linear relation between end-diastolic volum#he pulmonary circulation. The each compartment is com-
and end-systolic pressure helps understanding the meclpased of a resistance, a linear capacitance, and a non-linear
nism of Frank-Starling law. and time-variable capacitance. The left ventricular volume is
Computer simulation is an important technique to analyzexpressed as the difference between the total blood volume
and understand the mechanism of biological functions. land the blood volume of all compartments other than the left
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whereY:-Y,, Yy, Z1-Z5 are rate parameters as defined be-
Figure 1: Four chemical states of Negroni-Lascano modelow. for (L) is an overlap function to represent probability
of state of"C'a which can be used to form cross-bridges and

defined as
ventricle. Modulation of the body tilt angle varies the load

of the heart through change of the blood distribution. In the 9
current study, the adrenergic effect of baroreceptor reflex is for(L) = exp {_20 (L —1.17) } : ®)
removed from original Nobuaki model.

In the left ventricular system model, the relationship be-, . .
tween the left ventricular pressure and the tension of the mxpr(dX/dt) Is defined as
ocardial cell is expressed with Laplace formula:

(dX/dt)2/50 (dX/dt > 0)
P F AX/dt) = o
Pz - JesldX/d {(dX/dt)? (axjar<o) @
d
whereP is the left ventricular pressurg,is the left ventric- X =B ((L-X)-he), (10)

ular wall thicknessF' is the myocardial cell tension arRlis
the left ventricular radius. The relation between the left ven-

tricular volume and the half sarcomere length ofamyocardiéﬁheref.és a plroporttl_onal ;ggs;?nt ank: trt]e equwzlggt
cell is modified from the original formulation in order to fit cross-bridges elongation, a represents cross-bricge

experimental data and is formulated as elongatlgn andlX/dt the velocity of motion of the mobile
cross-bridge end. The rate constants depend on ATP concen-
L=c -V + e, @) tration factors as the following:

whereL is the half sarcomere lengt, is the left ventricular Vi =31.2 [mM/msec] (11)
volume, and:; andc, are constants.

_ —1
Kyoto model[7] which is a comprehensive physiological ~ 41 = 0-06 [msec™] (12)

model of a myocardial cell is used as myocardial cell model. _ K4PI;
Kyoto model precisely expresses membrane excitation and ¥z = 0.0039- (0'54' KqPI; + [PI] * 0'64)
excitation-contraction coupling as ordinary differential equa- [msec™!] (13)
tions by modeling each cellular component function such as 1
ion channels, calcium buffering and myofibril. Kyoto model Z5 = 0.0039 - = [msec™] (14)
incorporates with a cardiac muscle model reported by Ne- 1+ ([ﬁ;‘,ﬁ)
groni and Lascano (Negroni-Lascano model) [8] with some 3
modifications for excitation-contraction coupling. Y3 =0.06 [msec™] (15)

Z5 =1248 [mM/msec] (16)
2.2 Excitation-contraction Yy =0.12- ! 5 [mM/msec]  (17)

coupling model 1+ ([ff;ﬁiﬂ’l])
1

The excitation-contraction coupling model of Kyoto model  y, — gpq0 - 5
describes cellular contraction mechanism as a four chemical 1+ ( K4ATP; )
states of troponin C as shown in Fig. 1; free troponiri(Q, ( (AT Protai]
calcium ion bound troponin CZ{Ca), calcium ion bound tro-

ponin C with attached cross-bridgeBE({ax), and troponin whereK PI; is a dissociation constant for Pl ad; AT P;

C without calcium ion but with attached cross-bridg@&s). is a dissociation constant for ATP. The derivatives of state

[msec/pm?], (18)
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The developed tension of elongation elemenhg)(is ex- 16 18 20 22 24 26
pressed as a product of cross-bridges concentration and V(tog)ml]

cross-bridge elongation:

Fy= A-[T}] - (p(TCax) + p(T%)) - (L — X),  (23) Figure 4: The relationship betwe&f(t.;) and P(t.s)

whereA is a constant an{d}] is total troponin concentration.
The force developed by the parallel elastic elemémy (s
expressed as

ent values ofv. ESPVR is illustrated with a solid line as the
relation between pressure and volume at end-systolic time
(tes)- The obtained ESPVR is linear with the coefficient of
determinationk?? = 0.999. Fig.4 shows a relationship be-
tween end-diastolic volumg(¢.,) and end-systolic pressure
K;(0.97 - L) — K,(L—0.97)°> (L>0.97)" P(t.). The dots in Fig. 4 represent the result of eagland

(24) the straight line is the regression line. The relation between
V (teq) and P(t.) is linear with R = 0.999.

p =

B {Kl(0.97 ~I) (L < 0.97)

whereK; (= 20[mN/mm?/um]) and K, (= 140,000
[mN/mm?/um?]) are the intracellular passive stiffness. Fi- .
nally, the tension of myocardial celFY,,) is expressed with 3 AnalySIS

F, andF, as ] } .
The details of the simulation results were analyzed to ex-
F =F,—F,. (25) plain the linear relation between end-systolic pressure and
end-diastolic volume. The left ventricular volume has a lin-
2.3 Simulation result ear relation with the half sarcomere length of the myocardial

cell as defined in Eq. 2. Although the left ventricular pres-

Simulations were conducted under multiple body tilt anglesure depends not only on the tension of the myocardial cell
(o) from 0° to 90° at every15°. The change of tilt an- but also on the wall thickness and the radius as defined in
gle alters the systemic blood pressure and cardiac workq. 1, the wall thickness and the radius have a weak depen-
load. To convergent to the steady state, 40 cardiac cycldency on the myocardial cell tension. Consequently, the re-
were simulated and the final cardiac cycles were analyzddtion between the half sarcomere length at end-diastole and
The simulations were performed with a simulation softwaréhe tension of the myocardial cell at end-systole is approxi-
“simBio”[9]. mately linear 2 = 1.000) as shown in Fig. 5.

Fig. 2 shows the time course of pressure and volume atAs defined in Eq. 25, the tension of the myocardial cell
a = 0°. Fig.3 shows pressure-volume curve under differis a difference o}, andF,. Because the non-linear term of
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Table 1: The coefficients of determinationspdf'Cax) and
p(T*)

= timefmsec] R? of p(TCax) R? of p(T%)
= 0.96 F 10 0.9999 0.9999
— 20 0.9999 0.9999
0.92 | 30 0.9999 0.9999
' 40 0.9998 0.9998
50 0.9997 0.9997
0 88 ‘ ‘ 60 0.9997 0.9997
0 20 40 60 80 70 0.9997 0.9997
time [msec] tos 0.9997 0.9997

Figure 6: The time course df

_ _ . constant in physiological conditions in Kyoto model. In
Eq. 24 is much smaller than the linear term in the range of thfie simulation resulty(7'Ca) is nearly independent of as

half sarcomere lengthZ{) in the simulation results (Fig.6), shown in Fig.11. As a Taylor expansion of Eq. 8 around a
F), is approximately linear withL. Therefore,F; at end- valueL,,, fo. (L) can be expressed as

systole ¢ (t.s)) has a linear relation with the half sarcom-
ere length at end-diastold (t.4)). With respect to Eq. 23,

the value ofL — X at end-systole is close t. according for(L) = for(Lm)

to Eq. 10, sal — X can be regarded as constant. Becalise —40(Lyy — 1.17) - for(Lm) - (L — L)

and[T;] are constaniy(T'Cax)+p(Tx) atte, has an approx- +40 {40(Ly, — 117)2 =1} - for(Lm) - (L — L)
imately linear relation 2 = 0.999) with L(t.4) as shown e @)
in Fig. 7.

In the simulation results, boti(T'Cax) andp(T«) have _ . _ o _
linear relations withZ (#.4) at any time from O ta.,. The In the simulation results, the maximum variation lofwith
coefficients of determinations at several points are shown A€ change ofx is 0.9602-1.025 as shown in Fig.6. In
Table 1. This gives thaf: p(TCax) and & p(T) have also this range ofL, thg terms of s_econd and more degrees in
linear relations withl,(t.4) at any time from 0 ta.,. From EQ.27 can be omitted by setting,, the median value of

the model definition described in sec 2.2, the range, s¢for, (L) is an approximately linear function of
L. Although the time courses df depend onv, the transi-
ip(TCa*) + ip(T*) tion shapes are almost identical, when they are normalized as
dt t the maximum to be 1 and the minimum to be 0 as shown in
=Q2— Q1 — Qs Fig. 12. Thus, L can be approximately expressed as
= Y2 . fOL(L) p(TCa)
— Zy - p(TCax) — Yy - p(Tx) Lo(t) = {alLO(t) + bl} - L(tea) + agL°(t) + ba, (28)

-Y,- X . TCax Tx)}. 2
2+ Jop(dX/dt) - {p(TCax) +p(T*)} (26) whereL® denoted. ata, anda, b, as andb, are constants.
In this equation, the former three terms are dominant akherefore,fo (L) has an approximately linear relation with
shown in Fig.8,9. Y3, Z; andY, are almost constant as L(t.q). Consequently, Eqg. 26 is approximately linear with
shown in Fig. 10, becaudelT P;,:;] and [PI] are almost L(teq).
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4 Conclusion [2] Toshinori Hongo and Tsutomu Hiroshigeélyojunseiri-

gaku 5th edition Igakushoin, 2000.

In order to understand the underlying mechanism of Fran 3]
Starling law, we analyzed in depth simulation results of
constructive hemodynamic model, which successfully repro-
duced a linear ESPVR and a linear relation between end-
systolic pressure and end-diastolic volume. The analysis in-
dicates two important factors for the linear relation between
end-systolic pressure and end-diastolic volume; 1. micrg4] Hiroyuki Suga, Miyako Takaki, Yoichi Goto, and Kenji
scopical linearity of the force-length relationship of a my-  SunagawaShinzourikigaku to enajethikusoronasha,
ocardial cell, 2. independency of the transitional shape of a 2000.

half sarcomere length from the cardiac load. In the present ) ) ) )
study, the linear relation was analyzed by decomposing thel Yutaka Nobuaki, Akira Amano, Takao Shimayoshi,
simulation results. As a future work, we plan a mathematical Jianyin Lu, Eun B. Shim, and Tetsuya Matsuda. Infant
proof of the linear relation between the developed tension circulation model based on the electrophysiological cell
and the half sarcomere length on the excitation-contraction mModel.|[EEE EMBS 2007.

coupling model. In addition, an analysis of the linear ES[G]
PVR is also a future work.
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