
International Journal of Document Analysis (2006)
DOI 10.1007/s10032-005-0008-3

ORIGINAL PAPER

Akira Amano · Naoki Asada · Masayuki Mukunoki ·
Masahito Aoyama

Table form document analysis based on the document
structure grammar

Received: 24 July 2004 / Revised: 2 November 2005 / Accepted: 9 November 2005
c© Springer-Verlag 2005

Abstract Structure analysis of table form documents is
an important issue because a printed document and even
an electronic document do not provide logical structural
information but merely geometrical layout and lexical
information. To handle these documents automatically,
logical structure information is necessary. In this paper, we
first analyze the elements of the form documents from a
communication point of view and retrieve the grammatical
elements that appear in them. Then, we present a document
structure grammar which governs the logical structure of the
form documents. Finally, we propose a structure analysis
system of the table form documents based on the grammar.
By using grammar notation, we can easily modify and keep
it consistent, as the rules are relatively simple. Another
advantage of using grammar notation is that it can be used
for generating documents only from logical structure. In
our system, documents are assumed to be composed of
a set of boxes and they are classified as seven box types.
Then the box relations between the indication box and its
associated entry box are analyzed based on the semantic
and geometric knowledge defined in the document structure
grammar. Experimental results have shown that the system
successfully analyzed several kinds of table forms.

Keywords Form processing · Document models ·
Document analysis systems

1 Introduction

Various kinds of form documents such as research grant
application sheets are in circulation around us, and one
completes them by filling in the personal data, e.g. name and

A. Amano (B)
Graduate School of Informatics, Kyoto University, Yoshida-honmachi,
Sakyo-ku, Kyoto, Japan
E-mail: amano@i.kyoto-u.ac.jp

N. Asada · M. Mukunoki · M. Aoyama
Department of Information Sciences, Hiroshima City University,
3-4-1 Ozukahigashi, Asaminami, Hiroshima, Japan

affiliation, together with the document specific data, e.g. re-
search purpose and budget plan (Figs. 1 and 2). Many people
desire to process such a document not on paper but on a com-
puter by using a word processor that promises a high-quality
finished product and provides an easy to edit document.

Considering the life cycle of form documents, first, they
are generated by their creators, and sometimes they are mod-
ified, as the required information may change. After dis-
tributing the form, users first read the form, then fill in ap-
propriate information in each field. Finally, they are read or
analyzed by others and sometimes stored into databases. Al-
though many forms are produced electronically these days,
it is difficult to process them automatically as they do not
hold their structural information explicitly. Therefore, it is
very important to retrieve structural information from exist-
ing forms and define representation of them as well (Fig. 3).

Table form structure analysis has been studied for a long
time [1, 2]. For printed documents, detection of rules and ex-
traction of the user filled-in data were conducted [3, 4]. An-
other type of research is the form identification based on the
image features [5, 6]. In other research, identifications are
extended to use boxes or cells [7, 8]. As the form identifica-
tion method using box structure requires structure represen-
tation based on the boxes, several structure representations
based on the geometrical adjacency of boxes have been pro-
posed [9–12]. Some researches have extended the adjacency
analysis to the logical structure analysis, which incorporates
a priori knowledge. In most research, knowledge of the form
structure is represented by a set of production rules [13–15].
However, as table forms have much variety in their struc-
ture, it is difficult to adopt these systems to each document
structure as they are constructed on the production rules. To
overcome this problem, in the system proposed by Rahgozar
et al. [16], graph grammar is used for the representation of
the knowledge. In the system proposed by Cracknell et al.
[17] or the system proposed by Belaid [18], ordinary gram-
mar is used and even the Unix tool bison is used for the
parser in the former one. However, document structure con-
sidered in these systems is quite simple compared to prior
ones such as [13].

2 A. Amano et al.

Fig. 1 An example of table form document which is a part of a grant application sheet by Japanese government

NAME POSITION TITLE

TITLE OF PROJECT

EQUIPMENT TRAVEL

YEAR

1st

2nd

TOTAL

TOTAL

ITEM

Fig. 2 Another example of table form document

For the logical representation of documents, the most
famous representation is SGML [19] and XML. Both for-
mats define attributes of words or sentences and also struc-
ture of documents. However, as both formats provide only
the description of a basic structure, it is difficult to repre-
sent complex form structures by using only these. As with
other XML-based formats, we need additional formats to de-
scribe complex forms. Other industrial representations such
as Document Management Alliance (DMA) [20] and Open
Document Architecture (ODA) [21] also scope on document
handling but do not offer the capability of complex struc-
tural representation. In the research by Cracknell et al. [17],
a representation format of the logical structure for the form
was proposed. The aim of this format is quite similar to
ours; however, the format has no consideration for the two-
dimensional (2D) structure of the table part of the forms.

To cope with these problems, in this paper, we propose
a method to retrieve structural information from existing

documents based on document structure grammar and then
propose a representation of table form documents TFML.

As the forms are tools for informing what and how in-
formation is to be filled-in on paper, it can be recognized as
a language. Therefore, we can use the underlying grammar
for recognizing the structure of form documents. The target
form of this paper is table form documents. They are decom-
posed into a set of fields, and those relations are analyzed
based on the semantic and geometric knowledge defined in
the document structure grammar. One advantage of using a
grammar-based approach rather than a production system is
that a number of if-then descriptions like [13–15] is difficult
to keep consistent when the system is reconfigured. Another
advantage is that it can be used for document generation,
modification, and even for correction.

In the following section, we first analyze the table form
documents from the communication language point of
view and then present the document structure grammar. We
propose a table form document analysis system based on
the grammar and then present an XML-based representation
of table forms. Finally, experimental results of analysis are
presented.

2 Document communication model and table
form document

Documents have their own function, and from this point
of view, they can be classified into two categories: In-
formational Documents and Interactive Documents. The
Informational Documents are the ones that deliver some
fixed information to the readers, for example newspapers

Table form document analysis 3

Database

Entry data
item list

TFML document
with geometry

information

Printed or
 electronic

Form

Modification of
existing Form

New Form
Generation

Sending and
Receiving

TFML document
w/o geometry

information

User
Fill-in

TFML document
with fill-in data

Form
Analysis
System

Retrieve and
Process

Store into
database

Fig. 3 Form processing and TFML

or commercial leaflets. From the communication point of
view, these documents have complete information, and the
communication direction is one way. Therefore, we can call
them complete documents. On the other hand, the Interac-
tive Documents are the forms on which we need to fill in
appropriate information and send them to others for further
processing.

The target document of this paper is Interactive Docu-
ments. As the Interactive Documents can be considered as
some sort of sentence in a communication language using
forms, we may be able to determine the underlying grammar
of them. In this paper, we propose a grammatical descrip-
tion of the Interactive Documents and an analysis method
for them. One important aspect of this paper is to reveal
the grammar which we are using when we communicate by
such forms. By establishing such grammar, we can use it for
analyzing, modifying, reformatting, error correcting and in
many other applications.

2.1 Communication functions of each element in the
interactive documents

The Interactive Documents consist of communication ele-
ments and their structures. Here we classify communication
elements into three categories by their function.

2.1.1 Indication and explanation function

In the interactive documents, document creators prompt
readers to fill in appropriate information at certain places.
We call the function of elements which indicate the type,
place, or format of information to fill in “Indication and Ex-
planation function”. In Fig. 4a, an element with thick lines
indicates the fill-in information of the adjacent element. In
Fig. 4b, the element with thick lines indicates general expla-
nation of the form.

(a) Indication box which indicates fill-in information of adjacent box.

(b) Explnation box which has general description of the document.

Fig. 4 Elements which have indication and explanation function

2.1.2 Entry function

We call the function of the elements which indicates the fill-
in position “Entry function”. There are four sub-categories
for this function: (1) Complete fill-in: readers must write
whole information (2) String insertion: readers must insert
strings between the preprinted strings (3) Selection: readers
must select one or more strings and write, circle or mark
them (4) Paste: readers must paste pictures or images to the
element. Two types of elements which have entry function
are shown in Fig. 5. Note that the elements in Fig. 5a require
fill-in indication from other elements, in this case elements
with thin line, and the elements in Fig. 5b do not need indi-
cations.

2.1.3 Example function

In some case, there exists ambiguity in fill-in formats. For
example, format of a date can be written in Christian era or
domestic era. When the form creator wants to specify these
instructions, sometimes they prepare preprinted strings for
an example. Here we call this kind of instructing function
“Example function”.

4 A. Amano et al.

(a) Entry boxes which needs fill-in indication by other box.

(b) Entry boxes which do not need fill-in indication by other box.

Fig. 5 Elements which have entry function

Fig. 6 Elements which have example function

In Fig. 6a, elements with thick lines indicate the fill-in
format of the following elements. In Fig. 6b, elements with
thick lines provide information to the writers.

In real-form documents, many elements do not only have
one function but also two or more functions described ear-
lier. For example, the elements shown with thick lines in
Fig. 7a have several strings inside which indicates the fill-in
data. In Fig. 7b, the strings inside the elements have a fill-in
function. By filling-in the check mark or number, it indicates
the fill-in data of the adjacent element.

Note that this classification of element function in the
form document is not only restricted to the table forms, but
also to general form documents.

2.2 Structure of table form documents

The forms can be classified into two types: one is free for-
mat form documents and the other is table form documents.
The characteristic of the table form documents is that ev-
ery element in the document is a rectangular field formed
by horizontal and vertical rules. In this paper, we call these
elements “boxes”. Elements in both documents have one or
more functions as described in the previous section.

In the table form documents, fill-in information to a box
is indicated by one or more boxes which has the indication

(a) String inside the element indicates the fill-in data of itself.

(b) By filling-in the data to the element, it indicates the fill-in

data of right adjacent element.

Tel

Fig. 7 Elements which have indication and explanation function and
fill-in function

ENT
21

IND IND ENTENT
1 2 3

IND
IND

IND ENT

ENT
1

4 5

2 3

IND

IND

ENT

1

4 5

2 3

ENT

INDEXP

6

Fig. 8 Four indication structures

and explanation function. We call this structure “indication
structure”.

There is a good classification of the adjacent indication
structure in [13]. Here, we reclassify them into recursive
combinations with the following four structures.

1. Single indication (Fig. 8a). One box which has entry
function is indicated by one box which has indication
function.

2. Multiple indication (Fig. 8b). Multiple entry boxes are
indicated by one indication box.

3. Hierarchical indication (Fig. 8c). One entry box is indi-
cated by two or more indication boxes which are hierar-
chically structured. This structure can be understood as
a recursive structure of the single indication.

4. Bidirectional indication (Fig. 8d). One entry box is in-
dicated by two independent indication boxes which are
placed horizontally and vertically.

In this paper, we deal with these four types of indication
structures.

2.3 Box type

Every box has at least one function described in Sect. 2.1.
From the analysis of 81 public table form documents, we
were able to classify them into seven types which have a
single function or combinations of two functions. We call
them box types which are described as follows:

Table form document analysis 5

IND ENT IND ENT IND ENT

IND ENT

IND ENT

IND

IND IND IND IND

ENT ENT ENT ENT IND

IND IND

ENT ENT

IND ENT IND ENT

IND ENT

IND

IND

IND

IND

IND

IND

IND
IND IND IND IND IND

IND
EXP

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

1 2

3 45 6 7 8 9 10

11 12 13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28

29 30

31 32 33 34

35 36 37 38 39

40 41 42 43 44 45 46

47 48 49 50 51 52 53

54 55 56 57 58 59 60

61 62 63 64 65 66 67

68 69 70 71 72 73 74

Fig. 9 Box types of Fig. 1

Indication box (IND). This box indicates the fill-in infor-
mation of other boxes and the box needs no fill-in indi-
cation.

Explanation box (EXP). This box has general explana-
tions on the document in it. Therefore, it needs no fill-in
information and needs no indication from other boxes.

Entry box (ENT). This box is a fill-in box which needs
fill-in indication from another box, and also needs fill-in
information from its nature. However, it does not have
indication function.

Example box (EXM). This box has example fill-in strings
in it. Therefore, it needs indication information from
other boxes, but needs no fill-in information and does
not have indication function.

Indication entry box (IEN). By filling in some infor-
mation, this box indicates fill-in information of other
boxes.

Self-indication entry box (SIE). This box is an entry box
which has indication information written in. Thus it
needs no fill-in indication from other boxes, but needs
fill-in information.

Need no entry box (NNE). This box is some kind of blank
box which needs no fill-in indication information from
other boxes, and needs no fill-in information.

For example, box types of each box in Fig. 1 becomes
Fig. 9, and box types of Fig. 2 becomes Fig. 10.

From the structure analysis point of view, we can clas-
sify these box types by the aspect that the box will indicate
fill-in information of other boxes and that the box needs in-
dication from other boxes. The resulting classification into
four categories becomes as Table 1.

ENT ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

IND IND

IND

IND

IND
IND

IND

INDIND

IND
INDEXP

1 2 3 4

65

7 8 9

10 11

12 13 14 15 16

17 18 19 20

21 22 23 24

Fig. 10 Box types of Fig. 2

2.4 Unification of adjacent boxes into a compound box

If two adjacent boxes have the same height or same width,
we define that they are “unifiable”. In certain situations,
unifiable boxes can be combined into one box and treated
as a single box. We call this unified box a “compound box”.
By unifying two adjacent boxes recursively, we can analyze
the structure of table form documents. Note that there exists
horizontal and vertical (Fig. 11a, b) unifications.

Table 1 Classification of box type in the table form documents

Has indication function No indication function

Need indication
– Entry box (ENT)

Example box (EXM)
No indication is necessary

Indication box(IND) Self-indication entry box (SIE)
Indication entry box(IEN) Explanation box (EXP)

Need no entry box (NNE)

6 A. Amano et al.

Fig. 11 Two unifiable boxes and resulting compound box

By the combination of two unifiable box types, we define
two types of resulting compound boxes.

1. Indication compound box (icb)
As in the case of a compound box with an indication box
and an entry box, this compound box has an indication
function.

2. General compound box (gcb)
When two boxes which have no indication functions are
unified, the resulting box has no indication function.

3 Document structure analysis

3.1 Overview of the table form document analysis

As described in the previous section, we assume that a form
is composed of multiple boxes. The goal of this table form
document structure analysis is to obtain relations between
two boxes which have a logical relation.

For the printed documents, the analysis becomes as fol-
lows.

1. Box detection
2. Box type classification
3. Grammar-based document structure analysis

Box detection is a process which detects all the rectan-
gular fields in the document by detecting horizontal and ver-
tical rules. We first used the simple Hough transform method
to detect the longest vertical line in the document, then cor-
rected the rotation of the scanned document by using its an-
gle. Then we used projection onto the x and y axis to de-
tect vertical and horizontal rule positions. By detecting the
horizontal and vertical lines at the detected positions, we de-
tected rule lines forming each box.

Box type classification is a process which determines the
box type of each detected box. It is very difficult to obtain
complete results of box type classification. Therefore we
are currently using a semi-automatic classification tool for
this purpose. We used OCR software to determine the words
preprinted in each box. By providing a simple database, box
types are determined by matching the preprinted words with
the database. After this process, the result is shown to the
user, and the user corrects the box types if it is misclassified.

Finally, logical structure is analyzed with a grammar-
based document structure analysis algorithm which is de-
scribed in the following section.

Note that many form documents are provided in elec-
tronic files such as PDF files. For these documents, box de-
tection and OCR process is not necessary. However, the box
type classification process is still necessary and further re-
search should be done on this process.

3.2 Two-dimensional data analysis with one-dimensional
grammar

As the distribution of boxes in a table form document is two
dimensional, data structure of a document naturally becomes
2D. Therefore, we can simply use Graph Grammar Parser to
analyze each document with the grammar by extending pro-
posed grammar to the graph grammar. However, such graph
grammar notation becomes very large because each rule of
the grammar will be a combination of our one-dimensional
(1D) production rules. On the other hand, except for the bidi-
rectional indication structure, unification of adjacent boxes
can be written as 1D rules of a grammar. Bidirectional indi-
cation structure can be recognized as a combination of two
multiple indication structures which have different indica-
tion directions. Therefore, we can analyze them by applying
two different directional grammatical analyses. By using 1D
rules, we can easily understand the whole structure of the
grammar as it is much simple than graph grammar notation.

3.3 Document structure grammar

We consider three indication structures; single, multi-
ple and hierarchical. We denote the starting symbols as
<document>. Seven terminal symbols are denoted as
IND, IEN, EXP, ENT, EXM, SIE, NNE which
corresponds to the box type in Table 1. We denote two
unifiable boxes by adding symbol “•” between them. We
used the following three symbols as nonterminal symbols.

<document> is the start symbol that represents the
whole document.
<icb> denotes the indication compound box that im-
plies the indication to adjacent entry box.
<gcb> represents the general compound box that has no
indication to other boxes.

Figure 12 shows the document structure grammar de-
scribed by the extended BNF notations where “::=”, “|” and
“φ” denote derivation, selection and null element, respec-
tively.

Single indication structure can be denoted as a unifica-
tion rule of two adjacent boxes which have both indication
function and fill-in function. Multiple indication structure
can be denoted as a recursive structure of unification of ad-
jacent boxes which have both indication function and fill-
in function (Fig. 13). Hierarchical indication structure can

Table form document analysis 7

Fig. 12 Document structure grammar

<icb>::=IND ENT | <icb> ENT

IND ENT ENT ENT<icb>

• •

Fig. 13 Single and multiple indication structure

<gcb>::=<icb> | <gcb> <gcb>
<icb>::=IND ENT | IND <gcb>

IND

ENT

ENT

IND
IND <gcb>IND

• •
•

Fig. 14 Hierarchical indication structure

be denoted as a unification rule of one indication box and
one general compound box which have two or more general
compound boxes inside (Fig. 14).

For the bidirectional indication structures, we can ana-
lyze the part under the second row and the part in the right
of the second column as multiple indication structures. For
analysis of first row and column, we prepare rules which re-
duce multiple adjacent indication boxes into one <gcb>.

With this grammar, we can analyze table form docu-
ments which are constructed of four indication structures.
Note that in the analysis process, the priority of reduction to
<icb> is set higher than that of <gcb>.

3.4 Horizontal prior analysis and vertical prior analysis

The table form documents have 2D structure, while the
grammar in Fig. 12 describes the 1D box relation, hence the
production rules should be applied horizontally and verti-
cally. For this purpose, we prepare two kinds of box lists
named Hlist and Vlist that represent the horizontally

and vertically sorted box queues respectively. The Hlist
(Vlist) is made by the following procedure.

1. Sort all boxes in the ascending order of y(x) coordinates
then in that of x(y) ones.

2. Insert “•” between the pair of horizontally (vertically)
adjacent boxes that have the same height (width).

In the syntax analysis, the reduction rules in the gram-
mar are applied twice on both box lists by switching the pri-
ority between Hlist and Vlist, because both results of
the horizontal and vertical reductions are necessary to ana-
lyze correctly the bidirectional indications in table structure.
Note that the reduction of Vlist is accompanied by that of
Hlist simultaneously and vice versa to maintain the con-
sistency of box adjacency. We call the parsing, which has
higher priority in horizontal unification, “Horizontal Prior
Analysis” and vertical unification “Vertical Prior Analysis”.

The procedure for Horizontal Prior Analysis is as fol-
lows.

1. Select the last rule in Fig. 12.
2. Search the box pattern in Hlist that matches the se-

lected rule. If no pattern is found in Hlist, search for it
in Vlist. If no pattern is found anywhere, go to Step 4.

3. Replace the box pattern found in both Hlist and
Vlist with a compound box that has a new identifier.
If the box pattern consists of two boxes, replace the pre-
ceding box and delete the following one in both lists. If
the new compound box has the connectivity to adjacent
boxes in the lists, insert the adjacency symbol “•” be-
tween them. Go to Step 2.

4. Select the next rule in the preceding line in Fig. 12 and
go to Step 2. If there is no rule left, then end.

With the above algorithm we can obtain Horizontal Prior
Analysis result. By changing the priority of Hlist and
Vlist in Step 2, we can obtain Vertical Prior Analysis re-
sult.

Result of Horizontal Prior Analysis of 2 by 3 bidi-
rectional structure is shown in Fig. 15. In this example,
first, rule <icb>::=IND • ENT, which has highest pri-
ority, is applied to box 4 and 5, followed by applying
rule <icb>::=<icb> • ENT. Then, rule <gcb>::= EXP,
<gcb>::= IND and <gcb>::= <gcb> • <gcb> is applied
to box 1 and 2, and box 3 is also unified to them. At this step,
there is no applicable rule for Hlist, thus we try to apply
rules to Vlist. <icb> is reduced to <gcb>, and then ver-
tically adjacent <gcb>s are reduced to one <gcb> and the
analysis ends.

3.5 Indication relation analysis

In this section, for an example of using the result of structure
analysis, we describe how to analyze indication relations.

In the parse tree, there is always an indicating box in
the left of a node and the box which is indicated by that
box is placed in the right. Therefore, we can search all the

8 A. Amano et al.

Hlist=(1 2 3 4 5 6)

EXP IND

IND

IND

ENT ENT

1 2 3

4 5 6

step 1

step 2 EXP1 IND2 IND3

ENT6

step 3

Vlist=(1 • • •
••• •

4 2 5 3 6)

Hlist=(1 •

• •

• •
•

2 3 7 6)
Vlist=(1 7 2 3 6)

EXP1 IND2 IND3

8

Hlist=(1 2 3 8)
Vlist=(1 8 2 3)

<icb>

<icb>

step 4
IND3

Hlist=(9 •

•

•

3 8)
Vlist=(9 8 3)

<gcb>

step 5

Hlist=(10 8)
Vlist=(10 8)

<gcb>

step 6

<gcb>

step 7

Hlist=(12)
Vlist=(12)

Hlist=(10 11)
Vlist=(10 11)

7

9

8 <icb>

8 <icb>

10

<gcb>10

11

<gcb>
12

Fig. 15 Example of horizontal prior analysis

indicating boxes by searching the parse tree up and left for
each entry box.

Let Box list be the list of <gcb> elements which con-
struct the whole document. The indication analysis algo-
rithm is described as follows.

1. Get the first element from Box list and set to root.
2. Make key list empty.
3. Call index(root).
4. Delete root from Box list. If Box list is empty, algorithm

end, else go to Step 1.

The algorithm of function index(root) is as follows.

1. If the box type of root is IND, return this box.
2. If the box type of root is ENT, print key list as indication

box list of this box.
3. If the box type of root is SIE, print key list and itself as

indication box list of this box.
4. If the box type of root is icb, add return value of in-

dex(left child of root) to the last of key list. Call in-
dex(right child of root) and delete the last element of key
list.

5. If the box type of root is gcb, call index(left child of root)
then call index(right child of root) if it exists. With this
algorithm, we can obtain all the indication boxes which
indicates every entry box.

3.6 Analysis of bidirectional indication with 1D
grammatical analyzer

Each entry box in the bidirectional indication structure is
indicated by both horizontal and vertical indication boxes.
These indication structures can be analyzed individually by
Horizontal and Vertical Prior Analysis as shown in Sect. 3.4.

IND IND

IND

IND

EXP

ENT

ENT

ENT

ENT

Horizontal Prior Analysis Vertical Prior Analysis

IND IND

IND

IND

EXP

ENT ENT

ENT ENT

ENT

ENT ENT

ENT

EXP IND

IND

IND

IND

Fig. 16 Combine horizontal and vertical prior analysis results

Indication boxes which indicates each box in the bidirec-
tional structure can be generated by combining results of
both analysis (Fig. 16).

Indication box lists obtained for each entry box in
Fig. 15 by Horizontal and Vertical Prior Analysis are shown
in Table 2. By combining these results, we can obtain all the
indication box lists for each entry box in the bidirectional
structure as shown in Table 2. Entry box 5 is indicated by
indication boxes 2 and 4, and entry box 6 is indicated by
indication boxes 3 and 4.

Table 2 Result of box indication analysis of the document shown in
Fig. 16

Entry box No. 5 6

Indication box list by Vertical Prior Analysis 2 3
Indication box list by Horizontal Prior Analysis 4 4
Result of combination 2, 4 3, 4

Table form document analysis 9

4 TFML: representation of table form

To support handling of table form documents in the process
of generation, modification, fill in, and in many other pro-
cesses, we need general representation of table form doc-
uments. Here, we propose XML-based representation of a
table form which can handle geometrical information, indi-
cation structures, and also the meta-structure of table forms.
Meta-structure means logical relation between non-adjacent
boxes. One example of meta-structure is that the fill-in data
of box A should be the summation of box B and box C where
these boxes are not adjacent to each other.

DTD of TFML is shown in Fig. 17. A sample TFML
file is shown in Fig. 18 which is generated from the anal-
ysis result of the proposed method. The basic structure of
the file reflects the indication pattern of the document where
geometrical information is embedded as optional informa-
tion. Meta-information, such as arithmetical relations are
also embedded as optional information in each box.

As TFML’s representation is general, it can be used as
the resulting format of document structure analysis. Fur-
thermore, it can be used as the input definition of a table
form generation system, and entry data format of database
systems.

5 Experiments

5.1 Experimental results on real documents

The proposed method is applied to the document shown in
Fig. 2. As described in Sect. 3.1, we first applied the Hough
transformation method to detect document rotation and cor-
recting the image. Then, we detect each rule by detecting x
and y position by making projection onto the x and y axis. Fi-
nally, by tracing the lines, we detect horizontal and vertical
rules and detect every box formed by these rules.

After detecting each box, we applied OCR to detect
preprinted words if the inner area of the box is not empty. By
matching these words with the box classification database,
we get box type candidates of each box. The box type of
the box whose inner area is empty is determined as the entry
box. Finally, these results are shown to the user, and the user
corrects the box type if it is misclassified.

After obtaining the correct box type, our structure anal-
ysis is applied. Part of the parse tree generated by the Hori-
zontal Prior Analysis is shown in Fig. 19. The result includes
the analysis results of boxes 12–20 which are placed at the
lower part of the original document. In the parse tree, mul-
tiple indication structure composed by boxes 13, 14, 15 and
16, hierarchical indication structure composed by boxes 12
and 13–16 are analyzed properly. By the Horizontal Prior
Analysis, indication boxes 12 and 13 were correctly ana-
lyzed to indicate entry box 14, 15 and 16. By the Vertical
Prior Analysis, indication boxes 9 and 10 were also analyzed
correctly to indicate entry boxes 15 and 19.

Fig. 17 DTD of TFML

The method was applied to 165 sheets in the 81 docu-
ments which were provided by the public office in Japan.
By assigning the box type to each box in the documents
semi-automatically, we successfully analyzed 154 sheets
which is 93% of the documents. The main reason for the
analysis failure is the shape of the element. The shape of
some elements in the table form document are not rectangle
but hexagon or a much more complex shape. As such shapes
cannot be handled by our system, these documents could

10 A. Amano et al.

Fig. 18 TFML representation of Fig. 2 (part)

IND12

YEAR

<icb>

<gcb>

<icb>

IND13

<gcb>

<icb>

1st

ENT16

ENT14

<icb>

ENT15 <icb>

IND17

<gcb>

<icb>

2nd

ENT20

ENT18

<icb>

ENT19

<gcb>

Fig. 19 Resulting parse tree of Horizontal Prior Analysis of Fig. 2
(part)

Fig. 20 Failed document 1. The shape of the element in the center do
not form rectangle which could not be analyzed with our system

not be analyzed. The other reason for the analysis failure is
the indication structure. Two documents had a hierarchical
structure which did not form a rectangular area (Figs. 20 and
21). As the indication box of the hierarchical structure can
only indicate the rectangular compound box, such structures
can not be analyzed with our system.

There was one pattern which was successfully parsed,
but the result had ambiguity and at least one of the results
can be considered not correct. In the case of Fig. 22a, one of
the results of our structure analysis system tells that the left
most indication box has indication relation with right most
boxes although the left part and the right part have no re-
lation in this case. In another case in Fig. 22b, one of the
results tells that the left most indication box has indication
relation with two adjacent boxes at the right most position.
This happens because the indication compound box (icb)
composed of boxes at the left side of the document is re-
lated to the general compound box (gcb) composed of boxes
at the right side of the document. Actually, in this case, these
two compound boxes do not have indication relations. Syn-
tactically, these results can not be omitted without semantic
information.

The result of the structure analysis can be used in many
applications. Here we made a simple application which gen-
erates a synthesized table form document which is a filled-in
document of an existing table form document. Each filled-
in contents are prepared in the database which is tuples of
an indication string and filled-in strings. Sample result of a
synthesized document for the document shown in Fig. 1 are
shown in Fig. 23.

5.2 Discussion

We have proposed a grammar-based description of the table
form documents which can be used in the table form docu-
ment analysis system.

Generally, documents which can be analyzed by a doc-
ument analysis system based on a grammar representation,
and those which can be analyzed by a system based on the
production system are identical. This is because a parser of
grammar can be realized by a production system. However,
the grammar-based system has the extremely important
advantage that the knowledge of the document structure
is separated from the analysis system. This means that we
can easily modify the knowledge of the document struc-
ture implemented in the system, and we even can use this

Table form document analysis 11

Fig. 21 Failed document 2. The left element is an indication box which forms a hierarchical structure; however, the right part of the structure
does not form a rectangular shape

Fig. 22 Left panel shows a document whose structure was successfully analyzed but the result had error. Resulting relations are shown in the
right panel. One of the result tells that the left most indication box has relation with 12 boxes in the right part of the document (a). Also the left
most indication box has relation with 4 boxes in the right part of the document (b). This happens because the left part of the document forms an
indication compound box and the system recognizes that this icb indicates general compound box in the right part

Fig. 23 Sample synthesized document for the document Fig. 1

12 A. Amano et al.

Fig. 24 Example form document pattern which can be easily analyzed by a grammar based system, but needs search control with a production
rule based system

knowledge for different purposes, such as form modification
system, form correction system, or form generation system.

One example of the above discussion is shown in Fig. 24.
In some cases, both a production rule based system and
a grammar-based system produce incorrect results such as
Fig. 24b shows an intermediate analysis result in the analy-
sis process. Both systems should reject this result and search
for the correct one such as Fig. 24c. However, in the pro-
duction rule based system, we need to explicitly provide the
control sequence of this search. In contrast with this, in the
grammar based system, we only need to provide document
structure knowledge.

Compared with other grammar based document analy-
sis systems such as [16–18], table form documents consid-
ered in this paper have a complex structure, and the impor-
tant point is that the structure has good compatibility with
grammatical representation. The proposed grammar in this
paper is currently very simple and straightforward, derived
from the basic structure of the form document. This im-
plies that the documents which are constructed only with
the document structure considered in Sect. 2.2 are accepted
by the proposed grammar. This means that at least one of
the results produced by a parser with the grammar is cor-
rect. However, there still remains a problem that some re-
sults of a parser may not be acceptable by the user. To re-
ject such results, more discussion on the grammar itself is
necessary.

The grammar proposed in this paper is not the graph
grammar which can represent 2D data. Therefore, when we
use our grammar for the document analysis, we need to han-
dle both Hlist and Vlist data structure, and also, the grammar
is modified to accept first column and row of the bidirec-
tional structure. However, we can easily extend the gram-
mar to the graph grammar which can parse the document
more strictly. Note that the parser of graph grammar tends to
become very complex; however, there are researches on ef-
ficient grammar representation [22] and parser which can be

used in the document analysis [23]. When we think of using
the grammar for the form correction, this strict parser should
be necessary.

When using this method for analysis of real documents,
one problem is the process of box type classification. As the
document analysis is based on the box type, misclassifica-
tion can lead to a large analysis error. From our examina-
tion, we can classify most of the entry boxes (ENT) auto-
matically. This is because half of the entry boxes are empty,
i.e. they have no preprinted characters inside. The other half
of the entry boxes have preprinted characters, however. In
most case, these characters are located at the side of each
box. Therefore, we can easily distinguish whether the box is
an entry box or not. For the remainder of the boxes which
have preprinted characters inside, they are indication boxes
(IND), in most cases. Therefore, we can easily obtain a small
error rate for the box type classification. However, as the
system requires completely correct box type classification
results, our automatic box-type classification research needs
more advance for the practical use.

One possibility of the box type classification algorithm
is to incorporate POS tagging algorithm. As our system is
based on the grammar analysis, most of the natural language
processing algorithm can be applied to our system. In this
sense, box type classification and POS tagging have identi-
cal functions in the analysis system.

The other problem is that there exists form documents
which cannot be accepted by the grammar. As the grammar
accepts all the documents which can be handled by the sys-
tem proposed by Watanabe et al. [13], more than 90% of the
formal documents can be handled by our grammar. From
our examination, documents which cannot be accepted by
our grammar are very difficult to recognize even by human
recognition. Therefore, we are planning to make a system
which rejects this kind of document and recommend form
modification which follows the grammar. This may be use-
ful for the form generation system.

Table form document analysis 13

6 Conclusion

In this paper, we first described the functions of the elements
appearing in the table form from the communication point
of view, and proposed a table form description with doc-
ument structure grammar. The element of the grammar is
a box which is a rectangular field formed by the horizon-
tal and vertical rules. The grammar describes the indication
structure by the combination of the adjacent box type.

We also proposed a method to analyze the table form
documents with the grammar. As the distribution of the el-
ements in the table form document is 2D, we proposed an
analysis system which uses a two box adjacency list which
represents horizontal and vertical adjacency of the boxes.
Experimental results were described to show the effective-
ness of our method.

References

1. Lopresti, D., Nagy, G.: A tabular survey of automated table
processing. In: Proceedings of GREC, LNCS 1941, pp. 93–120
(2000)

2. Zanibbi, R., Blostein, D., Cordy, J.R.: A survey of table recogni-
tion Models, observations, transformations, and inferences. Int. J.
Document Anal. Recogn. (online) (2004)

3. Tang, Y.Y., Ma, H., Liu, J., Li, B.F., Xi, D.: Multiresolution analy-
sis in extraction of reference lines from documents with gray level
background. IEEE Trans. Pattern Anal. Mach. Intell. 19(8), 921–
925 (1997)

4. Yu, B., Jain, A.K.: A generic system for form dropout. IEEE
Trans. Pattern Anal. Mach. Intell. 18(11), 1127–1134 (1996)

5. Liu, J., Jain, A.K.: Image-based form document retrieval. In: Pro-
ceedings of ICPR, pp. 626–628 (1998)

6. Liu, J., Ding, X., Wu, Y.: Description and recognition of form and
automated form data entry. In: Proceedings of ICDAR, pp. 579–
582 (1995)

7. Shimotsuji, S., Asano, M.: Form identification based on cell struc-
ture. In: Proceedings of ICPR, pp. 793–797 (1996)

8. Hirayama, Y.: Analyzing form images by using lineshared-
adjacent cell relations. In: Proceedings of ICPR, pp. 768–772
(1996)

9. Lin, J., Lee, C., Chen, Z.: Identification of business forms using
relationships between adjacent frames. Mach.Vision Appl. 9, 56–
64 (1996)

10. Duygulu, P., Atalay, V., Dincel, E.: A heuristic algorithm for hi-
erarchicalrepresen tation of form documents. In: Proceedings of
ICPR, pp. 929–931 (1998)

11. Duygulu, P., Atalay, V.: A hierarchical representation of form doc-
uments for identification and retrieval. Int. J. Document Anal.
Recogn. 5, 17–27 (2002)

12. Ishitani, Y.: Flexible and robust model matching based on associ-
ation graph for form image understanding. Pattern Anal. Appl. 3,
104–119 (2000)

13. Watanabe, T., Luo, Q., Sugie, N.: Layout recognition of multi-
kinds of table-form documents. IEEE Trans. Pattern Anal. Mach.
Intell. 17(4), 432–445 (1995)

14. Cesarini, F., Gori, M., Marinai, S., Soda, G.: INFORMys: A flex-
ible invoice-like form-reader system. IEEE Trans. Pattern Anal.
Mach. Intell. 20(7), 730–745 (1998)

15. Bing, L., Zao, J., Hong, Z., Ostgathe, T.: New method for logical
structure extraction of form document image. SPIE Proc. 3651,
183–193 (1999)

16. Rahgozar, M., Cooperman, R.: A graph-based table recognition
system. SPIE Proc. 2660, 192–203 (1996)

17. Cracknell, C., Downton, A.C., Du, L.: An object-oriented form de-
scription language and approach to handwritten form processing.
In: Proceedings of ICDAR, pp. 180–184 (1997)

18. Belaid, A.: Recognition of table of contents for electronic library
consulting. Int. J. Document Anal. Recogn. 4, 35–45 (2001)

19. Information processing Text and office systems—Standard Gen-
eralized Markup Language (SGML). ISO 8879:1986

20. DMA The Document Management Alliance. Available at
http://www.infonuovo.com/dma/

21. Information technology Open Document Architecture (ODA) and
interchange format: Document structures. ISO/IEC, 8613-2: 1995

22. Amano, A., Asada, N.: Graph grammar based analysis system of
complex table form document. In: Proceedings of ICDAR, pp.
916–920 (2003)

23. Costagliola, G., Chang, S., Tomita, M.: Parsing 2D Languages by
a Pictorial GLR parser. In: Proceedings of the International Work-
shop on Advanced Visual Interfaces, pp. 27–29 (1992)

