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Abstract— Model-based predictive approaches have been
receiving increasing attention as a valuable tool to reduce
cost in drug development. In this work, a model-fitting-based
approach for solving drug actions using cardiac action potential
recordings is investigated. Contribution of major ion currents
in cardiac membrane excitation has been intensively studied.
Cardiac cell models nowadays reproduce APs very precisely.
Giving a test AP, the activities of involved ion channels can
be determined by fitting the cell model to reproduce the
test AP. Using experimental APs recordings both before and
after drug dose, drug actions can be estimated by changes
in channel activity. Due to the high computational cost in
calculating cardiac models, a fast approach using only pre-
calculated sample set is proposed. The searching strategy in the
sampled space is divided into two steps: in the first step, the
sample of best similarity comparing with the test AP is selected;
then response surface approximation using the neighboring
samples is followed and the estimation value is obtained by
the approximated surface. This approach showed quite good
estimation accuracy for a large number of simulation tests.
Experiments using animal AP recordings from drug dose trials
were also exemplified in which case the ICaL inhibition effect
of nifedipine [10] was correctly discovered.

Index Terms— in silico drug action solving, cardiac cell
modeling, optimization in sampled parameter space

I. INTRODUCTION

To make quick decision on new drug development and

reduce the increasing cost, it is important to evaluate risk

factors of new drugs as early as possible. Model-based

predictive approaches have been receiving increasing atten-

tion [1], [2]. While the cardiac electrograms are widely used

in late phase of drug development for effect verification,

Action potentials (AP) are used in relatively early stage

to inspect risk factors such as QT prolongation. Different

phases of cardiac AP are mainly contributed by different ion

currents. Drugs acting on different ion channels cause differ-

ent changes on the shape of AP. Therefore an experienced

inspector is able to make qualitative judgments of the drug’s

effect/risk based on such shape changes. On the other hand,

AP reconstruction has been a basic research target for cardiac

cell modeling from the beginning [3]. Recently developed

cardiac cell models [4], [5], [6] are capable of reproducing

AP waves precisely with respect to dynamics of involving

ion channels. Giving a test AP, it is now possible for a

simulation-based approach to inversely estimate the activities

of involving ion channels using model fitting optimization

techniques. Using experimental APs recordings both before

and after drug dose, drug actions can be estimated by changes

in channel activity. This approach is useful for early stage

drug decision making not only because it provides a more

quantitative answer for drug action and risk evaluation but

also in the great potential hiding in the obtained cell model.

Using the estimated models, conditions of cells after drug

dose can be completely simulated in silico. It is also possible

even to evaluate the heart function by applying the cell model

to a whole heart contraction model like in [7].

General optimization approaches rely heavily on local

gradients to gradually search for the best answer. As a result,

a large number of model calculation is always necessary.

However the computational cost of a comprehensive cell

models is generally too high for a gradient-based approach to

perform efficiently. In this work, a fast method which utilize

only a pre-calculated sample set of the parameter space is

investigated. The searching strategy in the sampled space is

divided into two steps: in the first step, the sample of highest

similarity with test one among the training set is selected;

then a curved surface is fitted in the neighbors of the matched

sample and the optimized answer is calculated according

to the expression of surface. The efficiency of this sample

based approach depends heavily on the selected sample set.

An iterative boosting algorithm for adaptive sampling which

appends failed test samples to the sample set is presented.

II. METHOD

In this section, the proposed fast optimization approach

utilizes only pre-calculated training samples is addressed. A

brief description for cardiac cell model and the properties

of cardiac APs is given first. Then the optimization strategy

and boosting algorithm are discussed.

A. Cardiac Cell Model and its APs

Cardiac action potentials are known to be effected by

many interactions between involved ion currents during the

membrane excitation process. When a cardiac cell is induced

by a stimulus current over certain level, the opening of

voltage-gated ion channels causes the positively charged ions

to move out of the cell, i.e. the cell shifts from the resting
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Fig. 1. Effects of the three ion channels on action potential of KM: A.
ICaL, B. IK1 , and C. IKr.

state to depolarization stage. The opening of voltage-gated

calcium channels in the depolarization stage induces release

of Ca2+ from the t-tubules. The influx of Ca2+ further causes

calcium-induces calcium release from the sarcoplasmic retic-

ulum, and such free Ca2+ causes muscle to contract. After

a certain period of delay, potassium channel reopens and the

resulting flow of K+ out of the cell (repolarization) finally

causes the cell to return to its resting state.

The contribution of major ion currents such as the cal-

cium channel and potassium channel in cardiac membrane

excitation has been intensively studied. Cardiac cell mod-

els developed recently are capable of integrating all major

channels and reproducing APs very precisely. In this work,

Kyoto Model (KM) [6], [8] becomes our choice because of

its accuracy as well as its ability to simulate mechanical

contraction. KM is a comprehensive ventricular cell model

for guinea pig and its major currents affecting cellular

repolarization stage are the L-type calcium channel (ICaL),

the inward rectifier current (IK1), and the rapidly activating

potassium channel (IKr). In Fig. 1 and 2 the deformation of

AP (Vm) and its differential tranjectory (dVmdt) with respect
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Fig. 2. Effects of the three ion channels on dVmdt of KM: A. ICaL, B.
IK1 , and C. IKr.

to different channel activities are illustrated. The ranges of

channel activity parameter are from 0 to 200 percent of

the initial steady state value of KM. Note that changes in

shape of dVmdt are more distinguishable than shape of

AP for different channels. For the complete mathematical

expressions and other model details of KM, refer to the

original paper.

The computational cost of a comprehensive cardiac cell

model is general too high for an ordinary gradient-based

optimization approach to accomplish efficiently. In case of

KM, simulation of the cellular state after drug dose over 5

minutes takes roughly 3 and half minutes on an PentiumIV

3.0GHz intel machine with 2.0G bytes of memory. Optimiza-

tion approaches that need thousands calculation of model will

take weeks. We discuss a quite simple but fast optimization

strategy using only a sample set of the parameter space.

B. Optimization Strategy in A Sampled Parameter Space

The problem of model fitting for AP can be defined as:

giving an unknown test AP ui and a cardiac model M , find

the best ion channel parameters of (ICaL, IK1, IKr) for
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Fig. 3. Optimization strategy in a sampled parameter space.

M that bestly reproduces ui. The optimization strategy using

a set of samples si(i = 1, . . . , N) and a similarity evaluation

function Sim(p1, p2) is as below:

1) Find sample si in the sample set that of highest

similarity with the test AP ui.

2) For samples in the neighbor of si, take three channel

parameters as input and the similarity Sim(si, ui) as

output and approximate this relation using a surface of

second order. The optimized answer can be calculated

using the appoximated surface.

Step 2 is actually the response surface method (RSM) [9]

for finding local extreme. which can be used here totally

without new model calculation if only neighbouring samples

are used.

The similarity evaluation function is a weighted sum of

the normalized correlation of AP and dVmdt waves

Sim(p1, p2) = wvmCorr(p1, p2) + wdvmCorr(d1, d2),

where di is the corresponding dVmdt wave of pi,

Corr(p1, p2) is the normalized correlation of p1, p2, and the

value of weight coefficients are wvm = 0.25, wdvm = 0.75.

C. Adaptive Sampling by Boosting

Since the proposed optimization approach using only pre-

calculated sample set, its efficiency depends heavily on

the sample set used. Generally the local property of the

considering parameter space has to be thoroughly studied

to perform an adaptive sampling, which is of formidable

computational load. A noval idea from statistical learning

theory is to use an iterative boosting technique for adaptive

sampling. The iterative boosting process is as follows:

1) Collect the initial training sample set using equally

spaced samples for each parameter.

2) Using the training sample set to solve a random test

AP. If the error of estimated parameters is over a

threshold then the test random sample is appended to

the training sample set.

3) Test resultant sample set using an independent random

test set. Terminate the boosting process if the result

accuracy is good enough or if a number of iterative

steps are reached. Otherwise go back to step 2 and

continue.

III. RESULTS

A. Sample Set and Similarity Distribution

Ranges for activity value of channel ICaL,IK1 and IKr

are from 0 to 200 percent of its initial steady state value

IKr

IK1

ICaL

Fig. 4. Cross-section view of distribution of similarity of each sample in
train set with the steady state AP of KM: The lower flat plane indicates
the position of the cross section, and the height/color of the upper surface
stand for similarity values. (Graph axes: ICaL is from back to front, IK1
from left to right, and IKr from bottom to top)

of KM. The initial sample set equally divides the ranger of

each parameter into 32 regions. As a result a sample set

of number 33 × 33 × 33 = 35937 is created. AP cycle is

400ms for gunie pig and the range of dVmdt signal is from

-100mV to 60mV. Dimension of AP and dVmdt signals are

400 and 160 respectively. It takes nearly 60 hours to create

the sample set on a IBM P690 machine with 30 CPUs. In

the boosting process, 100000 number of random samples

are used, and tests result in total estimation error of three

channel parameters over 0.05 are appended. This boosting

process ends up with nearly 5000 samples being added to

the initial sample set.

The efficiency of a sub-sampling approach depends largely

on basic properties of the parameter space. Using the steady

state parameter of KM (the middle point in the figure) as a

reference, the distribution of similarity between the reference

and sample set is illustrated in Fig. 4. The lower flat plane

indicates the position of the cross section. The height/color

of the upper surface stands for similarity of the cross section.

Though only one cross-section view with fixed IKr is shown,

the trend of the distribution is similar across the whole range.

The cardiac APs are observed to deform slowly in the most

region(region of red) which is desirable for a sub-sampling

optimization approach. Problem exists in small region with

IK1<15% (region of blue) where the shape of AP changes

rapidly. Actually these are the region of KM where abnormal

automaticity occurs. Since such parameters are obvious not

acceptable in practical drug development, they are simply

discard.

B. Results for Random Simulation Tests

The efficiency of the proposed optimization approach is

tested firstly using simulated APs. 36000 APs with random

channel values are prepared and tested. Besides the time

spend in preparing the sample set, the processing time for

one test is about 1 seconds, and it takes almost 10 hours to

finished the total test.

Shown in Tab. I is the result estimation error, which

is the difference between real channel activity parameters
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TABLE I

RESULT FOR RANDOM SIMULATION TESTS

Mean Error Worst Error Error≥ 0.05

ICaL 0.013 0.07 0.55%

IK1 0.009 0.03 0%

IKr 0.017 0.08 0.61%
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Fig. 5. Estimated drug action of nifedipine: (A) action potentials, (B) ICaL
inhibition effect was correctly discovered.

and estimated ones, and the fraction of error distribution.

The error values in the table are normalized with respect

to the whole 0-200% range being 1. The result is general

good (below 0.02) in terms of mean error. As for the three

channels, the IK1 channel is much better behaved and the

best accuracy was obtained. For ICaL and IKr, though the

fraction is very low, i.e. nearly 0.5% for error greater than

0.05, some difficult tests remain with estimation error up to

0.08. It is also observed that such sample of failure distributes

mainly in the areas with both very high ICal and IKr activity

near 200%, where the AP is much less sensitive to the

change of activity of channels. Comparing the result without

boosting process, the mean errors almost remain unchanged

but the worst error for ICaL and IKr increased up to 0.11.

C. Results for Drug Dose Experimental AP Recordings

In this experiment, AP recordings of guinea pig before

and after dose of a known ICaL inhibitor, nifedipine [10],

are tested. The AP assays are originally used for inspection

of drug-induced QT interval prolongation [11]. Generally

the papillary muscles are firstly prepared in a tyrode so-

lution, then during the perfusion of a test drug compond

the stimulation frequency is kept at the base level of 1.0Hz

for 30 minutes, finally the stimulation frequency is inceased

to 2.5Hz and APs are recorded after the stabilizing period.

Dependening on the recording devices used, the original AP

recordings can be quite noisy and of different sampling rates

with simulation APs. Preprocesses like denoising and resam-

pling are neccesary for such signals. As shown in Fig. 5,

the ICaL inhibition effect was discovered as 66%,43%,21%

for three levels of dose (0.3µM, 3µM, 30µM ) respectively,

while parameter of unaffected channels remain almost un-

changed at 1.0. These values are near the experemental data

from guinea pig ventricular myocytes in [10] where the

concentration for 50% inhibition (IC50) is 0.3µM .

IV. CONCLUSION

In this work, a model-based fast optimization approach

using only a pre-calculated sample set is proposed to estimate

drug actions from cardiac AP recordings. Using only pre-

calculated sample set, this approach was very fast and

achieved quite good estimation accuracy generally. The lim-

itation was at the area with very high channel activity near

200% of ICaL and IKr where estimation error increased.

This is relatively not a critical issue because drugs increase

both ICaL and IKr activity by times are very unusual.

Estimation result using experiment APs of Nifedipine dose

showed a 10%-15% difference with that from reference

literature. Variance in detailed experimental protocol and

measurement devices may contribute in the result of the

estimation. For purpose of early stage drug action estimation,

such result should still be quite useful in practice. Also some

attempts have been done on using the models to evaluate

proarrhythmic effect of drugs [12]. Potential future efforts

include a thorough verification using a large number of

drug tests and then some new ideas for pharmacological

applications will be investigated.
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