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Abstract: The force-velocity (F-V) relationship of filament slid-
ing is traditionally used to define the inotropic condition of striat-
ed muscles. A simple circulation model combined with the
Laplace heart was developed to get a deeper insight into the re-
lationship between the F-V characteristics and the cardiac ven-
tricular inotropy. The circulation model consists of a preload and
an afterload compartments. The linear F-V relationship for fila-
ment sliding in the NL model (Negroni and Lascano 1996) was
replaced by the exponential F-V relation observed by Piazzesi et
al. (2002). We also modified the NL model to a hybrid model to
benefit from the Ca?* cooperativity described by the Robinson
model (Robinson et al. 2002). The model was validated by deter-
mining the diastolic ventricular pressure-volume relationship of

the Laplace heart and the F-V relation of the new hybrid model.
The computed parameters of the cardiac cycle agreed well with
the physiological data. Computational results showed that the
cross-bridge elongation (h in the NL model) temporally under-
shot the equilibrium h, during the ejection period and overshot it
during the rapid refilling phase. Thereby the time course of ejec-
tion and refilling was retarded. In a simulation where the velocity
of the mobile myosin head (dX/dt) was varied, the systolic peak
pressure of the ventricle varied from a minimum value at dX/dt =
0 to a saturating value obtained with a constant h, providing in
silico evidence for a functional impact of the cross-bridge sliding
rate on the ventricular inotropy.
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The velocity of myofilament sliding is maximum in the
absence of external load and decreases exponentially with
increasing external load [1]. This force-velocity (F-V) re-
lationship, together with the sarcomere length-force (L-F)
relationship, is a classic measure in the evaluation of mus-
cle inotropy. The velocity of muscle shortening is influ-
enced by positive inotropic agents such as B-adrenergic
agonists, external Ca?" concentration ([Ca?*] ), and the
initial muscle length. Despite substantial progress in un-
derstanding the mechanisms that control heart inotropy,
the dynamic relationship between the F-V relation of my-
ofilaments and the blood-pumping of the ventricle is still
not fully understood. This is because physiological cardi-
ac contraction is neither isometric nor isotonic. Arguably,
computer modeling of cardiac myocyte contraction can
provide a tool to predict how the cardiac pump function is
affected by modifying the F-V relation. In 1999, Negroni
and Lascano examined the contribution of the cross-
bridge dynamics to the pressure development in the ven-

tricle by calculating the time course of the cross-bridge
elongation during a flow-clamped condition at a constant
concentration of the extracellular Ca?* [Ca?'], [2]. They
found that the average cross-bridge elongation (%) de-
creased during the descending volume ramp, and thus the
force of contraction during the ejection period was direct-
ly reduced by the decrease in 4. However, one of the main
limitations of the NL model [3] is that the F-V relation for
the filament sliding is assumed to be linear. This assump-
tion is unrealistic, since the experiment by Piazzesi et al.
revealed that it varies exponentially in the skeletal muscle
[1]. We have therefore introduced an exponential F-V re-
lation based on the experimental observation. Moreover,
no positive cooperativity is represented by the NL model
in the [Ca2*]-force relationship, which is critical in deter-
mining the time course of contraction. Thus it was neces-
sary to develop a new contraction model by combing the
NL model and the Robinson model [4] to reproduce the
apparent cooperativity in the Ca?* activation. The hybrid
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contraction model was then coupled with the cellular exci-
tation model of human cardiac myocytes [5]. Eventually,
the Laplace heart driven by cell contraction [6] was imple-
mented to simulate the interaction between the F-V rela-
tionship and the cardiac pumping activity. The model
demonstrates that the magnitude of 4 varies during the
ventricular ejection or refilling period, as suggested by
Negroni and Lascano [3], and that the peak ventricular
pressure and the time course of ventricular contraction
change according to the variation of the sliding rate of the
myosin head along the actin filament.

METHODS

Ordinary differential equations were integrated using the
Euler method with a time step of 0.025 ms.

The biological Laplace heart combined with preload and
afterload. We developed an integrative mathematical
model of blood circulation, including the Laplace heart, a
simple preload, and an afterload, as shown in Fig. 1. The
preload was characterized by a constant pulmonary
venous pressure (va) and the pressure of the left atrium
(Py,). The afterload was characterized by the aortic pres-
sure (P,,), the arterial pressure (P,), and a constant sys-
temic venous pressure (P,). The volume (¥) change over
time ¢ can be described by Eq. 1 for each compartment of
the left atrium, left ventricle, aorta, and arteries.

a_
a - Qin Qout’ (1)

where Q, is the inflow of blood into the compartment,
and Q_  is the outflow. The flow (Q,,) between compart-
ments a and b is given by

O = (P,— PRy, (2
and P=V/C, 3)

where R, is the resistance between compartments a and
b, and C denotes the compliance of the compartment. The

functions of the mitral and aortic valves were represented
by the two “diodes” positioned next to the atrium and ven-
tricle, respectively. The magnitudes of parameters were
slightly modified from the original values in the literature,
as shown in Table 1.

For the left ventricle, the Laplace heart pressure (P;,)
was computed as

PIV = E’ (4)

Ty

where T is the wall tension generated by the contracting
units and r the radius of the Laplace heart. T is determined

Afterload
AV R, P R, p R

Preload

Wall tension : T

Atrial (P, ) or
Ventricular (P,, )
pressures

Fig. 1. Schema of the integrated model of the cell-cardiovas-
cular system. R denotes the blood flow resistance (resis-
tance) and C the vessel compliance (capacitance). The sub-
scripts lo, ao, a, v, and pv indicate the left ventricle outlet,
aorta, arteries, veins, and pulmonary veins, respectively. The
cardiac valves ensuring the unidirectional blood flow are de-
noted by diodes (black triangles). Atrium and ventricle are
represented using the thin-walled spherical model. The ven-
tricular pressure and the wall tension generated by the myo-
cytes are correlated by Laplace’s law. For the atrium, the
same approach was applied.

Table 1. Summary of the constants for the cardiovascular system model.

Present model Reference
R,, =0.0025 PRU (=mmHg-s/ml) Heldt et al. [18] 0.0025 PRU
R,, =0.006 PRU Heldt et al. [18] 0.006 PRU
R, = 0.004 PRU Heldt et al. [18] 0.004 PRU
R,,=0.03 PRU Ursino [19] 0.03 PRU
C,o = 0. 3 m/mmHg Ursino [19] 0.03 ml/mmHg
R,=1.0PRU Heldt et al. [18] 1.0 PRU
C, = 1.7 mi/mmHg Heldt et al. [18] 0.03 mI/mmHg
P, =4 mmHg Heldt et al. [18] 4 mmHg
P, =12 mmHg Heldt et al. [18] 8 mmHg
Unstressed volume of ventricle = 100 ml Heldt et al. [18] 90-100 ml
Unstressed volume of atrium = 25 ml Heldt et al. [18] 25 ml

The unstressed volume in the present model was defined by £, = 0 and L = L,,.
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Table 2. Comparison of the simulated results with a set of standard measurements in the literature [18].

Variables Normal range Average Present simulation

LV pressure

Systole 90-140 mm Hg 121 mm Hg 120.5 mm Hg

End-diastole 4-12 mm Hg 9 mm Hg 13.5 mm Hg
Arterial pressure

Systole 90-140 mm Hg 118 mm Hg 100 mm Hg

Diastole 60-90 mm Hg 80 mm Hg 71 mm Hg
Cardiac output 4,700-7,100 ml/min 4,800 ml/min 4,891 ml/min
Stroke volume 51-110 ml 69 ml 68 ml (EF = 0.54)

by multiplying F across a unit area of muscle cut end with
a constant muscle thickness at rest (8 mm for LV based on
published data [7]. The ventricular volume obtained from
Eq. 1 was converted to r,. The half-sarcomere length (L)
of the myocyte in the cell model was then computed by 2
7y, /N, where N is the total number of half-sarcomere
along the circumference of the Laplace ventricle. The
force of the contracting unit was calculated using this new
value of L in the next time step of integration. For the atri-
um, the same approach as for the left ventricle was ap-
plied to compute the half-sarcomere length and the pres-
sure in the thin-walled left atrium with the Laplace heart
shape. All parameters related to the systemic circulation
model are presented in Table 2, as measured when the cy-
clic changes in the ventricular pressure reached a steady
state.

The wall tension of the Laplace heart was calculated by
assuming a “numerous number” of the contraction units
(NL model) uniformly distributed on the surface of the
shell. Tt is assumed that the contraction units are distribut-
ed homogeneously in all directions on the shell of the

Laplace heart, allowing the wall tension over the entire
wall of the sphere to be uniform. All contracting units
were driven synchronously by a common Ca?* transient,
which was computed using the electrophysiological mod-
el of the human atrial and ventricular myocytes proposed
by Nygren et al. (Nygren model) [8] and tenTusscher ez al.
(TNNP model) [5], respectively. The parameters of the
TNNP model were modified to obtain a more realistic
Ca?* transient; the parameter arel (=16.464 mM/s) was de-
creased to 4.0 mM/s, and crel (= 8.232 mM/s) was de-
creased to 0.8232 mM/s to reduce the peak amplitude; the
parameter 7, (= 2.0 ms) was increased to 30.0 ms to delay
the peak time, and the parameter V, ... (= 0.000425 mM/
ms) was increased to 0.0007 mM/ms to obtain a faster de-
cay of the Ca?* transient. To simplify the analysis, the
elastic element in the series with the muscle unit was not
included except in the examination of the F-V relation in
Figs. 3 and 4, even though it transiently influences the
cross-bridge elongation during the rising phase of the con-
traction (Fig. 7 in Negroni and Lascano [2]). In the present
study, we call this hypothetical heart the “biological
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Laplace heart” to distinguish it from the conventional ven-
tricular compartment driven by time-varying capacitance.

The development of the hybrid contraction model by
combining the NL model, corrected for the F-V relation-
ship [1] with the Robinson model, is described in the
APPENDIX.

RESULTS

Reconstruction of the volume-pressure
relationship using the proposed model

The analysis of cross-bridge dynamics during the ven-
tricular contraction is critically dependent on the validity
of the cross-bridge model. We tested the hybrid contrac-
tion model for its mechanical characteristics by construct-
ing the volume-pressure relationship and the F-V relation-
ship. In a simulation of the Frank [9] experiment (see also
Ref. [10]), the diastolic volume (¥,) of the biological
Laplace ventricle was fixed after its disconnection from
the preload and afterload, and the time course of the de-
veloped tension was recorded under the condition of iso-
volumic contraction. With increasing V, the diastolic
pressure increased exponentially as shown in Fig. 2, A
and B, reflecting mainly the L-F relationship of the paral-
lel elastic component (Fp) of the NL model. The contract-
ing units on the shell of the biological Laplace ventricle
were activated by the Ca?* transient generated by the ven-
tricular cell model, which was stimulated at 50 ms on the
time scale in Fig. 2A. The isovolumic systolic pressure
peaked at approximately 200 ms. In the volume-pressure
relation in Fig. 2B, the systolic pressure peaked at a vol-
ume of 160 ml and then declined with a further increase in
volume until the steep increase in diastolic pressure
caused an additional rising limb of the relationship. These
relationships are similar to the classic experiment of Frank
[9] in frog hearts. In the present model, the diastolic pres-
sure is determined by the F -L relationship of the parallel
elastic component (Eq. A19 APPENDIX), and the peak
systolic pressure is determined by the force F,-L relation-
ship of the cross-bridge (Eq. A18) shown in Fig. 2C. We
conclude that the findings in Fig. 2, A and B, validate the
mechanical characteristics of the hybrid model.

The F-V relationship of the hybrid model. We examined
the hybrid model in the isotonic contraction for its re-
sponse to step changes in the load by deriving the analyti-
cal solution of the hybrid model, which is described in the
APPENDIX. [Ca?']; was assumed to be constant. The force
equilibrium condition of the hybrid model can be written
as follows:

Ky (L=X) + K, f, (D) =F, ®)

where L and X represent the half-sarcomere length and the
inextensible length of the half-sarcomere, respectively. K,
denotes the active force coefficient and is given in the NL
model (see Scheme A1 in the APPENDIX) as,

K,=4 - ([TCa"] +[T*]) (©6)

K, represents passive force coefficients (Kpp and Kp,; in
Eq. A19), and f (L) represents the dependency of FonL.
The velocity of half-sarcomere shortening, dL/dt, 1s given
as

Kbd—X— (L- X)de

dr _
™)
T x j:iiL)

Thus the measurement of dL/df can give the value dX/
dz when the conditions of dK,/d7 =0 and K, = 0 are met.
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Fig. 3. Effects of Q4, F,, and S function on the measurement
of dL/dt in the force clamp experiment. A steady-state condi-
tion of the hybrid model was established with an initial set of
parameters: [Ca?*] = 2 pM, the half-sarcomere length L =
0.983 pm, and the length of the series elastic component L,
=0.067 um. F,,, was 368.5 mN/cm? in the steady state, then
decreased by 30% at time 20 ms as shown in the graph on
the top. The simulation was conducted under four conditions:
(1) The values of Q,, F,, and S function were all fixed to the
values obtained at the end of the conditioning period and kept
constant during the test period while 0.7 F_,, was being ap-
plied; (2) Time-dependent changes in F, were included; (3)
time-dependent changes in Q, and F, were included; and (4)
time-dependent changes in Qys Fp, and S function were in-
cluded. The simulation (1) yielded a linear change of L, and
([TCa*] + [T*]) and h both remained constant (black curves in
A, B, and C). The addition of the time-dependent change of
Q, in simulation (3) induced the marked changes in all three
parameters, but the effects of Fp and S function in simulation
(2) and (4) were much smaller.
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In experiments, the parallel elastic component K, could
be minimized by using a single fiber of the skeletal mus-
cle, which is free from the extracellular connective tissue,
as in the experiment of Piazzesi et a/. [1]. It is difficult to
satisfy the condition of dX/dr = 0, however, because the
sum ([TCa*] + [T"]) in Eq. 6 changes with time through
the flux (Q,) of the original NL model (Scheme 1A,
APPENDIX).

Q= Y, " (dX/d)? - [TCa"]

* 9
0= ¥y - (@XIde2 - [T'] ©)

Therefore time-dependent changes in dK;/dt, or, in oth-
er words, time-dependent changes in the number of cross-
bridges (proportional to [TCa"] +[T*]), cannot be neglect-
ed even in the single fiber experiments of the skeletal
muscle. We assume that the property obtained in the skel-
etal muscle is applicable to the cardiac muscle, where a
systematic measurement of developed tension in isolated
myocytes is difficult.

We examined the influence of dK;/df on the measure-
ments of the force-velocity relation by simulating the F-V
experiment using the presented hybrid model (Fig. 3). A
steady-state condition was established under isometric
contraction (L = 0.983 pm, [Ca?*] =2 uM), and F__, was

ext

defined as F, (= 368.5 mN/mm?). At 20 ms, F_ was de-
creased to 70% as shown on the top of the graph in Fig. 3.
As a reference, a simple condition was calculated by ex-
cluding the time-dependent changes in ([TCa’] + [T"]).
That means the values of O, F,, and the § function (Eq.
A15) were fixed during the test step to the respective val-
ues obtained at the end of the conditioning period. After
the step change in F,,, the half-sarcomere length L de-
creased linearly with a constant dZ./d¢, which was equal to
dX/dr defined by Eq. A17 (black line in Fig. 3A). Under
this condition, both the magnitude of ([TCa'] + [T*])
(black line in B) and the cross-bridge elongation / (black
line in C) remained constant. When the time-dependent
change in F_ was included, the linear time course of the
half-sarcomere shortening was only slightly modified, as
shown by the green curve in Fig. 3A. A marked modifica-
tion of the time course was observed when Q, flux was ac-
tivated. The dL/df progressively decreased to a new steady
value as shown in Fig. 3A (blue curve). Finally, when the
time-dependent change in the S function on top of the O,
flux was added, a further delay was observed in dL/df (the
red curve in A). It is obvious that the deceleration in dL/d¢
is caused by an increase of load applied to individual cross
bridges, as indicated by the time-dependent decreases in
([TCa™] + [T*]) (red curve in B), which indicates the de-
crease in the number of cross bridges, and accordingly 4
increased with time after the step change in £, (upward
deflection in the red curve in Fig. 3C).

In experimental studies, the initial slope dL/d¢ immedi-
ately after the F_ jump is usually measured as an index of
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Fig. 4. The dL/df measured immediately after the jump in F,,,
in the simulation described in Fig. 3. The red points corre-
spond to the measurements of dL/dt under condition (1) and
are equal to dX/df (blue curve) given by Eg. A17. The biue
points are those obtained under condition (4). The straight
black line depicts dX/dt given by the original NL model (Eq.
A16). On the abscissa, F, is F,,, at the end of the conditioning
period.

dX/dr. In the present simulation, the dZ/df was measured
over a time window of 1 msec in duration and starting 0.1
ms after the force jump by varying F_ /F, over the range
from 0.1 to 0.9 as indicated on the abscissa. The measure-
ments for the simplest and the full cases are shown in Fig.
4. The value of dL/d¢ (red circles) was equal to the theoret-
ical dX7dz (blue curve) when the values of O, F, and the
S function were fixed to the values obtained at tge end of
the conditioning period. When the time-dependent chang-
es in all of O, I, and the § function were reintroduced,
the initial slope (dL/df, blue circles) was clearly de-
creased. These simulation results in the isotonic shorten-
ing experiment indicate that the rate dZ/d¢ approximates
dX/dt only at the onset of applying a new F,,, even though
the values are underestimated. This behavior of the hybrid
model is in good agreement with the assumption used in
the experimental studies that the dX/ds can be approximat-
ed by the initial dL/dr. We conclude that the present hybrid
model of contraction is well validated.

From single cell excitation—-contraction to blood pres-
sure in the circulation model. In Fig. 5, the activities of the
biological Laplace heart with corresponding changes in
the systemic parameters are demonstrated for different
construction levels, from the single cell to the whole heart.
The heart was stimulated in an interval of 833 ms with a
delay of 120 ms between the atrial and ventricular stimu-
lations. The action potential of a TNNP model showed the
characteristic shape described in human ventricular cells
close to the endothelium with a resting potential of —85.9
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Fig. 5. Computed results for the sequential events in the cell-
system model. (A) Action potentials, (B) Ca2* transients, (C)
developed force, (D) half-sarcomere length, (E) volume of the
ventricle and atrium, (F) LV (continuous line), LA (dashed
line), and aortic pressure (dotted line).

mV, whereas a sharp spike followed by a linear repolariza-
tion phase is typical for the atrial action potential (Fig.
5A). The Ca?* transient (Fig. 5B), which was triggered by
the action potential, developed a wall tension (7), as
shown in Fig. 5C. The time course of T'is largely modified
by the blood flow if compared with the pressure profile in
the isovolumic contraction of the ventricle shown in Fig.
2A. The force of the contraction in the atrium is approxi-
mately a fifth of the ventricle. As in the normal heart, the
contraction of the atrium caused only a minor increase in
the ventricular volume ¥|,. The half-sarcomere length in
Fig. 2D decreased up to ~0.8 um during systolic period,
which indicates that the L-F relationship shown in Fig. 2C
is the major determinant for limiting the L shortening. The
contour of both, ¥}, (Fig. 5E) and the blood pressure in the
afterload (Fig. 5F), is determined by the balance between
the inflow and the outflow for each compartment. The
ejection fraction in the present model is 0.54. The param-
eters of the circulation listed in Table 2 are in good agree-
ment with the standard values.

Dynamic changes of the cross-bridge elongation during
the heart cycle. Figure 6 demonstrates the time-varying
probability of the cross bridge attached to the thin fila-
ment ([TCa"] + [T*]), A, L, and F, for one cardiac cycle.
Surprisingly, the value of # was not constant during the
cardiac cycle; the value / decreased temporarily during

280
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Fig. 6. Effects of changing the sliding rate B, on the relative
number of the attached cross bridges (A); the cross-bridge
elongation h, (B); the shortening of the half-sarcomere length,
L, (C); and cross-bridge force, F,, (D). The cross-bridge slid-
ing rate of the dotted line was determined with B,; = —0.944;
the continuous line with B,z = —1.887; and the dashed line
with B, = -3.77 um/ms.

the ejection period and increased during the refilling peri-
od. This means that during shortening, relative motion be-
tween the thin and thick filaments (dL/df) reduced the av-
erage cross-bridge elongation (k). Simultaneously, the
myosin head moves to restore the equilibrium length (h, =
0.005 pm) of the cross bridge. Clearly, the velocity dL/d¢
is faster than dX/ds during the initial half of the fast ejec-
tion period and caused the decrease in 4. This relationship
is even more clearly demonstrated when simulating the
same protocol after varying the sliding rate dX/d¢, which is

given by Eq. A17,
ho—h
0.00225

dX/dt (um'ms1) =B 4 (e -1

where B is a magnitude factor. With smaller B
(=—-0.944 um/s), the depth of sag below h, is larger than
with the standard B, (= —1.887 um/s), and the larger B g
(=-3.77 um/s) caused a shallow sag. Since F, is propor-
tional to 4 (Eq. A18),

Fy=A-S-([TCa*] +[T*]) -

the temporal shortening of h by 38%, 52%, and 65% of h,
in Fig. 6B depressed the force development and pro-
longed the ejection period. During the refilling period, %
was temporarily elongated and thus slightly delayed the
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refilling time course. However, the extent of / elongation
is disputable because it is merely suggested by extrapolat-
ing the dX/dr—h relationship (in Fig. 4) to the range of / >
h,, which has not been tested in experiments. It should be
noted that the restriction of peak F, in Fig. 6 is also caused
by the progressive decrease in F, with a shortening of L
according to the L-F curve (Fig. 2C).

In Fig. 7, the value of B, was systematically changed,
and the peak P, was plotted against B, It is evident that
peak P, is depressed to a larger extent with a decreasing
sliding rate. The number of cross bridges (proportional to
[TCa") +[T*]) decreased with increasing sliding rate (Fig.
6A), and thereby the decrease of F, was partially compen-
sated. The asymptotic value of P, toward the larger (more
negative) B i is obtained when 4 remains constant (=h,).
It is interesting that the standard value of B is within the
dynamic range of the relationship, thereby enabling an ad-
justment of the muscle inotropic condition through vari-
ous kinds of physiological regulations of the myosin
ATPase.

DISCUSSION

In the present study a new contraction model was devel-
oped that satisfactorily reconstructed the high cooperativ-
ity in the Ca®*-activation of contraction, the exponential
F-V relationship, and the L-F relationship. Using the new
contraction model, we confirmed the model prediction of
Negroni and Lascano [2] that the average cross-bridge
elongation is transiently decreased during the ejection pe-
riod in the canine left ventricle, whereby the developed
pressure is decreased by 20-30% if compared with the is-
ovolumic contraction. Thus the ejecting pressure of the
ventricle depends not only on the sarcomere length, but
also on the cross-bridge elongation. We found that the
same mechanism could be observed when the biological
Laplace heart based on the human atrial and ventricular
cell models was combined with a simple preload and af-
terload to simulate the physiological ejection pattern as
well as the aortic pressure changes. This simulational
condition is much more realistic if compared with that in
the NL study [2], where a volume ramp was imposed on
the ventricular model, which was triggered by a hypothet-
ical Ca®* transient or tetanized with a constant Ca2* and
isolated from the pre- and afterloads. In this study the re-
lationship between the sliding rate and the peak systolic
pressure was newly examined systematically, calculating
the ventricular pressure by varying the sliding rate in Figs.
6and 7.

Physiological relevance

The dynamics of the cross bridge consist of a cycle of
four sequential conformations [11]; a detached cross
bridge, an attached cross bridge, an attached cross bridge
storing developed force in the elastic component, and a

140 - Bcﬂ" ='1.887

%B

&

z

%

By

=

o .

g‘:’ 20|— J

R S
Berr (Lm/msec)

Fig. 7. Dependence of the peak LV pressure on the cross-
bridge sliding rate B,;. The B,; of —1.887 um/ms is the stan-
dard value in the hybrid model.

cross bridge rotated and translated so the filaments slide in
relation to one another. Although this individual cycle
might produce a stepwise movement of the myosin head
along the thin filament, the average of asynchronous
movements of a numerous number of cross-bridges within
one myocyte can be described by a continuous function
defined by both B 4 and average cross-bridge elongation
h, as described in the NL model [3]. In the present study,
we investigated the effects of varying sliding rate B, of
the myosin head on heart mechanics, using a new cell sys-
tem model to encompass cells and the pre- and afterloads.
It is indicated that the peak systolic pressure in the ventri-
cle is influenced in a dynamic manner when varying the
value of B, in the hybrid model (Fig. 7). The delayed
movement supported by smaller B, of the cross bridge on
the thin filament is able to sustain force or pressure for a
longer period of contraction at the expense of the peak
tension. This maintenance of compromised pressure for
longer periods with a given time course development of
F,, in myocytes is favorable for pumping viscous blood
from the heart to the compliant afterload. At the end systo-
le, the value of /# shows a rebound over the equilibrium
elongation 4 _ in the same way as partly indicated in Fig.
11B of Negroni and Lascano [2].

Relevance of the biological Laplace heart system

The relationship between the peak ventricular pressure
and the sliding rate B,_;; in Fig. 7 is determined largely by
the bidirectional interaction between the mechanical part
of the hybrid model and the dynamics of the Laplace
heart. Therefore in the present study we first validated the
hybrid model by reconstructing the ventricular pressure-
volume relationship (Fig. 2) and the F-V relationship
(Figs. 3 and 4). We also confirmed that the parameters of
the circulation are in good agreement with estimated val-
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ues between those of the simplified model and the experi-
mental values (Table 2). Thus we believe that the present-
ed biological Laplace heart combined with simple pre-
and afterload models is appropriate for the simulation of
the heart dynamics with varying cross-bridge kinetics.

In a separate series of simulations (not shown), we con-
firmed that the sag and overshoot of 4 around 4, also oc-
curs in the smaller biological Laplace heart of the guinea
pig during rapid ejection and refilling phases. This notion
can be proved in an analytical way as follows:

The sphere-shaped volume () of radius » equals

V=4 m3/3 (10)
Therefore
r=(3/4 n)l3 Y13 (11)

For an end systolic volume of 40% V (the standard ejec-
tion fraction = 0.6), the radius 7 , is

= (3/4 m)1B3 0.4153 p1/3 12)

Thus the ratio of the radius before and after the contrac-
tion is independent of the size of the Laplace heart.

rolr=0.4=0.736 (13)

Since L is proportional to 7, the extent of the shortening
of L is also independent of the heart size.

L=2mr/N (14)

If large and small hearts have a common ejection peri-
od and a common ejection fraction, the velocity of the L
shortening is equal for both hearts. If a smaller heart has a
shorter ejection period, as is true in reality, the rate of L
shortening will be faster in a small animal than in a large
animal. Thus the effect depicted in Fig. 6 is expected to be
even more prominent in a smaller heart provided a given
value of B . We therefore believe that the peak pressure-
B g relationship in Fig. 6 also holds for the small hearts of
experimental animals.

Limitations of the present study

The heart has a complex muscle layer exhibiting fiber
anisotropy and heterogeneous muscle thickness. Also,
different parts of the ventricles are activated with different
timing. In our study, the ventricle is assumed to be a thin-
walled Laplace heart to reduce the complexity of the cou-
pled cell-circulation hemodynamics method. Thus the de-
gree of sag or overshoot of 4 for the real heart may be dif-
ferent for different cells in different layers of the muscle.

In the real heart, the compliant ends of the muscle,
which we did not include in the model, may also influence
the relationship between the peak pressure-B,; relation-
ship. The models for human atrial and ventricular cells are
based on rather limited experimental data. Furthermore,
the theory of nearest-neighbor cooperative influences was
developed for the skeletal muscle rather than for the cardi-

ac muscle [4]. It is expected that more complete human
cell models will become available.

APPENDIX

A new cardiac contraction model
based on an NL model and a
Robinson model

by Takayuki TAKAHATA, Takao SHIMAYOSHI,
Akira AMANO, Eun Bo SHIM, and
Akinori NOMA

The cross-bridge dynamics in the Negroni and Lascano
(NL) model [2, 3] are described by a four-state reaction
scheme consisting of free troponin (T), Ca2*-bound tropo-
nin (TCa), Ca?*-bound troponin with attached cross
bridge (TCa®), and troponin with attached cross bridges
(T"), as shown in Schema A1.

Ca2+ Scheme A1

Y1

- > TCa

Z
Ca2+
Ca?-+

‘/Y

Ca?
d[TCa)/dt=Y,[T]+ Z,[TCa"] - (Z, + Y,) [TCa]
d[TCa’)dt =Y, [TCa] + Z; [T"] - (Z, + Y, + Y,) [TCa’]
d[T*Vdt = ¥, [TCa"] - (Z; + Y, + ¥,) [T"]
[T]=1-[TCa] - [TCa"] - [T"]

The Ca bound to troponin is given by ([TCa] + [TCa*]) x
[troponin], .., with [troponin], ,,, = 0.07 mM.

The stoichiometry for Ca?* binding to troponin is one
to one, and thus only a slight positive cooperativity is
found in the steady-state relationship between [Ca?*] and
[TCa*] (ny = 1.27). The three-state cooperative model of
Robinson et al. [4] reads

kon il Scheme A2
Ca+A+M TAM A-M
koff g

where A is the regulatory unit consisting of a troponin-ac-
tin complex and M the myosin head. A-M and A-M repre-
sent the cross bridges with weak and strong binding, re-
spectively. Although one-to-one stoichiometry is as-
sumed for the Ca?* binding to troponin, a high cooperativ-
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Exp. Recording 1Hz

Simulation

Fig. A1. Reconstruction of the
developed tension. The left pan-

el refers to Pieske et al. [13], and

% the right panel is the simulation
Ca?* signal .
> 1.0} i‘.i 1.0 result of isometric contraction in-
= 4 duced by a Ca?* transient shown
= i as a dotted curve repeated with
S Tension
n % 1 Hz frequency.
e
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=
=
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ity of the Hill coefficient n; > 5 was observed in
experiments [4, 12] and was reconstructed in the relation-
ship between [Ca’']-[A-M] by introducing nearest-
neighbor cooperative influences. In detail, the Ca?* disso-
ciation rate from regulatory units (k,z) and the cross-
bridge dissociation rate (g) decreases, though the cross-
bridge association rate (f) increases with progressive acti-
vation of the system. However, it is not possible to recon-
struct the L-F relationship by using the Robinson model,
simply because the length of sarcomere was not included
in the model. For convenience in model development, we
replaced ¥, and Z, in the NL model by k_ and & of the
Robinson model, respectively, and Y, and Z, by fand g,
respectively. The cooperativity parameters, U, V. W, X,
and Z in the original paper were used with no modifica-

tion.
Y, (ms ) = a,, [Ca?"] (A1)

Z, (1) = by (14 £33 (@2 = D (1 +£, (&7 = D)2

(A2)
Y, (s =f (1+f; (2= 1)) (1 +f; (2! - 1))
(A3)
Z,(ms =g, (1+f; (e926-1))? (A4)
Y,=2Z, (AS)
Z,=40-7, (A6)
Y, (ms1)=0.24 (A7)
Y, (um=2-ms) = 9000 (dX/d7)?,
or
Y, (nm~2-ms) = 180 (dX/ds)? when dX/ds >0. (A8)

After model fitting to the experimental recordings, oth-
er parameters were set as follows. The original kinetic
rates for the skeletal muscle for Ca?* association (k,, =
17.3 mM''ms ') and dissociation (k = 0.2 ms™!), cross-

107
o
o
Y
o)
[
e}
(5]
o
g
=]
Za
L simulation
0 °® Gwathmey et.al.(1990) @
7.0 6.5 6.0 55 5.0

pCa

Fig. A2. Reconstruction of the pCa?*-force relationship. The
crosses represent the experimental data obtained by Gwath-
mey and Haijjar [14], and the continuous curve is the simula-
tion result of the hybrid model. ny = 3.41 and the half maxi-
mum pCa, 5 = 6.11 in the simulation.

bridge attachment (f=0.00136 ms™') and detachment (g =
0.015 ms™!), were adjusted for the cardiac muscle as rep-
resentedina,, b, f. .., and g . in Eqs. A9-A12 to recon-
struct an average time course of developed tension as re-
corded, using human heart trabeculae as shown in Fig. Al
[13].

a,, (mM-'ms) =32 (A9)
b, (ms™)=0.054 (A10)
.. (ms1) =0.0000851 (AlD)
g, (ms!) =0.000649 (A12)

According to the Ca?" sensitivity in intact myocytes,
which is higher than in skinned fiber, the [Ca?*]-force
curve in the Robinson model [4] was shifted to the left by
decreasing the dissociation rate k g (b, = 0.054 ms™!) in
the hybrid model (Fig. A2). In the original Robinson mod-
el the half-saturation concentration K|, 5 equals approxi-
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A. Kentish et.al.(1986)

O\ 2000 S

Fig. A3. The Ca?*-force rela-
tions at various sarcomere
lengths (SL). The experimen-
tal data by Kentish et al. [12]
is cited for a comparison with
the simulation results in the
right panel. Note that the de-
crease in the slope with de-
creasing SL is well simulat-
ed.
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mately 2 uM, whereas in the presented model it is approx-
imately 0.7 uM. This value is higher than the original
measurement in the human trabeculae of ~0.56 puM [14].
However, to avoid a significant amount of remaining F, at
the end of diastole, a shift of the F,-[Ca®"] relation was
necessary in the present study, as shown in Fig. A2.

To be consistent with the Robinson model, Y, was set
equal to Z;, and Z; was 40 Y, according to the NL model.
To achieve a slower time course in the cardiac muscle
compared to the skeletal muscle, the constants of Jom» and
&.m Were much reduced from the original values, whereas
the rate Y, was left as it is in the original NL model to
maintain the rapid recovery of force after an instantaneous
shortening of the fiber.

In the NL model, the dependence of developed tension
on the sarcomere length is well reconstructed simply by
assuming an effective concentration of [TCa] ([TCal,; in
Negroni and Lascano [3]) for the cross-bridge attachment,
but in the Robinson model the L-F relation was not con-
sidered at all. Recently, Schneider ef al. [15] simulated the
sarcomere length-dependent force generation (Frank-
Starling law) successfully by introducing the titin’s pas-
sive tension. In their model, the cross-bridge concentra-
tion was altered by introducing the SL-dependent rate of
the myosin binding through titin-based passive tension.
We introduced this relation simply by replacing the frac-
tional activation parameters 77 and £ by new parameters S
(Eq. A13) and f; (Eq. A14), respectively, only for the sake
of computational simplicity.

Sz =8+ ([TCa] + [TCa*] + [T*]) (A13)
fH=S" ([TCa™1 + [T*]D (A14)
with 0 <= [TCa], [TCa"], [T*] < 1.0,
§= L-085 1 I-14 (AL5)
[1 o008 ](1 1 008 J

The f,; and f; are described using an “S function” given
by Eq. A1S5, where L (um) represents the half-sarcomere
length in the original NL model. The new equations A13,
Al4, and A15 well reconstructed the force-pCa?* rela-
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Fig. A4. Reconstruction of the length-force relations at differ-
ent [Ca?*] using the hybrid model.

tions [12] measured at different sarcomere lengths in Fig.
A3 and the force-sarcomere length relations at different
[Ca?']in Fig. A4.

As demonstrated in the single fiber experiment in skel-
etal muscle [1], the velocity of the filament sliding during
isotonic contraction decreases in an exponential manner
as the mechanical load is decreased. In the NL model,
however, the F-V relation is linear (Eq. A16).

dX/dt (um'ms ) =1.2 - (A — h,) with A, = 0.005 um
(Al6)
In contrast, the original data points for initial rapid
shortening in the skeletal muscle obtained in Piazzesi et
al. [1] could be fitted with an equation,
ho—h
dX/df (umms) = B (> — 1)
with B ;= 1.887 pm/ms.

We used Eq. A17 to calculate the sliding rate of the my-
osin head in the present cardiac cell model because it
overlaps fortuitously with Eq. A16 over a physiological
range from 0.6 to 1.0 &, (see Fig. 4 in RESULTS).

The myofilament force F; is calculated as

(A17)
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Fy=4-8 ([TCa"1+[T]) - h (A18)
with 4 = 1,800 and 450 mN/mm?/um/uM in the ventricle
[3] and atrium [16], respectively.

For calculating the force of the parallel elastic compo-

nent, F,, we used the format of F,, as used by Landesberg
and Sideman [17].

D (L7 Ly~

Wiy i Dal,
if L<L,

Kpg(e
Kpy (1-L/Ly)

F (A19)

e =

with K. =3 mN/mm?, K,; =30 mN/mm?, D= 10, and L,
=0.97 um (model fit) for both the ventricle and atrium.
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