Analytical Mechanics

Shinichi Hirai

Dept. Robotics, Ritsumeikan Univ.

Agenda

Schedule

Introduction to Analytical Mechanics

Illustrative Examples

- Free fall of a mass
- Open/Closed link mechanisms
- Watt's governor
- Beam deformation

MATLAB environment

5 Summary

Schedule (tentative)

Introduction	1 week
Variational Principles	2 weeks
MATLAB	2 weeks
Link Mechanisms	2 weeks
Rigid Body Rotation	2 weeks
Elastic Deformation	4 weeks
Inelastic Deformation	2 weeks

web page

```
\label{eq:http://www.ritsumei.ac.jp/~hirai/} \mbox{English} \longrightarrow \mbox{Classes} \longrightarrow 2024 \mbox{ Analytical Mechanics}
```

or directly http://www.ritsumei.ac.jp/~hirai/edu/2024/analytical_mechanics/ analytical_mechanics.html

Newton mechanics vs Lagrange mechanics

Newton mechanics

vectors

linear momentum, force, angular momentum, moment, \cdots vectors depend on coordinate systems

internal forces have to be identified and eliminated constraints should be solved explicitly

Lagrange mechanics

scalars

kinetic energy, potential energy, work done by external forces, \cdots scalars are independent of coordinate systems

internal forces do not appear in Lagrangian constraints can be incorporated into Lagrangian

Free fall of a mass (Newton mechanics) х m gravitational force

Newton mechanics

mg

linear momentum
$$p = mv$$

Newton's eq. of motion $\frac{\mathrm{d}p}{\mathrm{d}t} = -mg$
 $\frac{\mathrm{d}p}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(mv) = m\dot{v}$
differential equation $m\dot{v} = -mg$

Free fall of a mass (Lagrange mechanics)

Lagrange mechanics

force

mg

kinetic energy
$$T = \frac{1}{2}mv^2$$

potential energy $U = mgx$
Lagrangian $\mathcal{L} = T - U = \frac{1}{2}mv^2 - mgx$
Lagrange eq. of motion $\frac{\partial \mathcal{L}}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial \mathcal{L}}{\partial v}\right) = -mg - m\dot{v} = 0$

Open link mechanism

Open link mechanism

Newton mechanics

- identify all forces applied to each link (inc. internal forces)
- 2 apply Newton's eqs. of motion (and Euler's eqs. of rotation)

$$m_1 \dot{\mathbf{v}}_1 = m_1 \mathbf{g} + \mathbf{R}^{1,0} + \mathbf{R}^{1,2}, \quad m_2 \dot{\mathbf{v}}_2 = m_2 \mathbf{g} + \mathbf{R}^{2,1}, \quad \cdots$$

eliminate internal forces $R^{1,0}$, $R^{1,2}$, $R^{2,1}$

Lagrange mechanics

formulate kinetic and potential energies

$$T=T_1+T_2, \quad U=U_1+U_2$$

2 apply Lagrange's eqs. of motion to Lagrangian $\mathcal{L} = T - U$

Closed link mechanism

Closed link mechanism

 $\begin{array}{ll} \mbox{left arm} & \mbox{link } 1 - \mbox{link } 2 \Rightarrow \mbox{open link mech.} \Rightarrow \mbox{Lagrangian } \mathcal{L}_{\rm left} \\ \mbox{right arm} & \mbox{link } 3 - \mbox{link } 4 \Rightarrow \mbox{open link mech.} \Rightarrow \mbox{Lagrangian } \mathcal{L}_{\rm right} \end{array}$

geometric constraints

tip position of left arm = tip position of right arm $X \stackrel{\triangle}{=} l_1 C_1 + l_2 C_{1+2} - l_3 C_3 - l_4 C_{3+4} + x_1 - x_3 = 0$ $Y \stackrel{\triangle}{=} l_1 S_1 + l_2 S_{1+2} - l_3 S_3 - l_4 S_{3+4} + y_1 - y_3 = 0$

Lagrangian

$$\mathcal{L} = \mathcal{L}_{\mathrm{left}} + \mathcal{L}_{\mathrm{right}} + \lambda_x X + \lambda_y Y$$

Watt's governor (Newton mechanics)

rotation around driving axis

$$\begin{split} I_1 &= m(I\cos\theta_2)^2 = mI^2\cos^2\theta_2\\ \tau &= \frac{\mathrm{d}}{\mathrm{d}t}(I_1\dot{\theta}_1) = \dot{I}_1\dot{\theta}_1 + I_1\ddot{\theta}_1\\ \tau &= \left\{mI^2 \cdot 2\cos\theta_2(-\sin\theta_2)\dot{\theta}_2\right\}\dot{\theta}_1 + \left\{mI^2\cos^2\theta_2\right\}\ddot{\theta}_1 \end{split}$$

rotation around free-joint axis

$$l_{2} = ml^{2}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(l_{2}\dot{\theta}_{2}) = mg \times l\cos\theta_{2} - ml\cos\theta_{2}\dot{\theta}_{1}^{2} \times l\sin\theta_{2}$$

$$ml^{2}\ddot{\theta}_{2} = mgl\cos\theta_{2} - ml^{2}\cos\theta_{2}\sin\theta_{2}\dot{\theta}_{1}^{2}$$

need to identify centrifugal force

Shinichi Hirai (Dept. Robotics, Ritsumeikan

Analytical Mechanics

Watt's governor (Lagrange mechanics)

position of mass

$$\mathbf{x} = \begin{bmatrix} I \cos \theta_1 \cos \theta_2 \\ I \sin \theta_1 \cos \theta_2 \\ -I \sin \theta_2 \end{bmatrix} = I \begin{bmatrix} \cos \theta_1 \cos \theta_2 \\ \sin \theta_1 \cos \theta_2 \\ -\sin \theta_2 \end{bmatrix}$$

Watt's governor (Lagrange mechanics)

velocity of mass

$$\mathbf{v} = \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \frac{\partial \mathbf{x}}{\partial \theta_1} \frac{\mathrm{d}\theta_1}{\mathrm{d}t} + \frac{\partial \mathbf{x}}{\partial \theta_2} \frac{\mathrm{d}\theta_2}{\mathrm{d}t}$$
$$= l\dot{\theta}_1 \begin{bmatrix} -\sin\theta_1\cos\theta_2\\\cos\theta_1\cos\theta_2\\0 \end{bmatrix} + l\dot{\theta}_2 \begin{bmatrix} -\cos\theta_1\sin\theta_2\\-\sin\theta_1\sin\theta_2\\-\cos\theta_2 \end{bmatrix}$$
$$\mathbf{v}^2 = (l\dot{\theta}_1)^2 \cdot \cos^2\theta_2 + (l\dot{\theta}_2)^2 \cdot 1 + 2(l\dot{\theta}_1)(l\theta_2) \cdot 0$$
$$= l^2(\cos^2\theta_2\dot{\theta}_1^2 + \dot{\theta}_2^2)$$

kinetic/potential energies, work done by external torque

$$T = \frac{1}{2}ml^2(\cos\theta_2^2\dot{\theta}_1^2 + \dot{\theta}_2^2), \quad U = -mgl\sin\theta_2, \quad W = \tau\theta_1$$

Watt's governor (Lagrange mechanics)

Lagrangian

$$\mathcal{L} \stackrel{ riangle}{=} T - U + W$$

Lagrange eqs. of motion $\frac{\partial \mathcal{L}}{\partial \theta_k} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}_k} \right) = 0, \quad (k = 1, 2)$

$$\tau - \left\{ ml^2 \cdot 2\cos\theta_2(-\sin\theta_2)\dot{\theta}_2 \right\} \dot{\theta}_1 - \left\{ ml^2\cos^2\theta_2 \right\} \ddot{\theta}_1 = 0$$
$$-ml^2\cos\theta_2\sin\theta_2 \dot{\theta}_1^2 + mgl\cos\theta_2 - ml^2\ddot{\theta}_2 = 0$$

centrifugal or Coriolis terms yield naturally

Beam deformation

Beam deformation

elastic potential energy

$$U = \int_0^L \frac{1}{2} EA\left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)^2 \mathrm{d}x$$

piecewise linear approximation dividing interval [0, *L*] into 6 regions:

$$\int_0^L \mathrm{d}x = \int_{x_0}^{x_1} \mathrm{d}x + \int_{x_1}^{x_2} \mathrm{d}x + \dots + \int_{x_5}^{x_6} \mathrm{d}x$$

linear approximation:

$$\int_{x_i}^{x_j} \frac{1}{2} EA\left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)^2 \mathrm{d}x \approx \frac{1}{2} \begin{bmatrix} u_i & u_j \end{bmatrix} \frac{EA}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix}$$

Beam deformation

elastic potential energy

$$U = \frac{1}{2} \begin{bmatrix} u_0 & u_1 & \cdots & u_6 \end{bmatrix} \frac{EA}{h} \begin{bmatrix} 1 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & & -1 & 1 \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_5 \\ u_6 \end{bmatrix}$$

Deformation is described by a finite number of variables u_0 through u_6

finite element method (FEM)

What is MATLAB?

- Software for numerical calculation
- 2 can handle vectors or matrices directly
- Functions such as ODE solvers and optimization
- Toolboxes for various applications
- both programming and interactive calculation

What is MATLAB?

MATLAB environment

MATLAB Total Academic Headcount (TAH) MATLAB with all toolboxes is available

Information

https://it.support.ritsumei.ac.jp/hc/ja

What is MATLAB?

- Install MATLAB into your own PC or mobile
- Sample programs are on the web of the class
- You can use your own PC or mobile in class

Summary: pros & cons of Lagrange mechanics

Pros

scalar description

- once energies and works are formulated, derivative calculation yields equations of motion directly
- do not have to introduce internal forces
- effective for complex systems, such as link mechanisms, rotating or deforming objects

Cons

- difficult to understand the derived equation intuitively
- all non-potential forces, such as friction and viscous forces, are treated as external forces