Analytical Mechanics: Variational Principles

Shinichi Hirai

Dept. Robotics, Ritsumeikan Univ.

Agenda

- Variational Principle in Statics
- Variational Principle in Statics under Constraints
- Variational Principle in Dynamics
- 4 Variational Principle in Dynamics under Constraints

Statics

Variation principle in statics

minimize
$$I = U - W$$

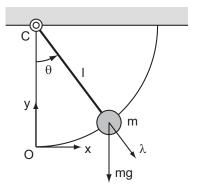
under constraint

minimize
$$I = U - W$$

subject to $R = 0$

Solutions

- analytically solve $\delta I = 0$
- numerical optimization (fminbnd or fmincon)



simple pendulum of length I and mass m suspended at point C τ : external torque around C, θ : angle around C Given τ , derive θ at equilibrium.

Statics in variational form

U potential energy*W* work done by external forces/torques

Variational principle in statics

Internal energy I = U - W reaches to its minimum at equilibrium:

$$I = U - W \rightarrow \mathsf{minimum}$$

Statics in variational form

Solutions:

Solve

minimize
$$I = U - W$$

analytically

Solve

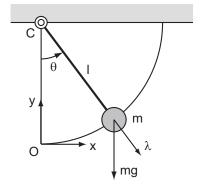
minimize
$$I = U - W$$

numerically

Solve

$$\delta I = 0$$

analytically



$$U = mgl(1 - \cos \theta), \quad W = \tau \theta$$
$$I = mgl(1 - \cos \theta) - \tau \theta$$

Solve

minimize
$$I = mgI(1 - \cos \theta) - \tau \theta$$

analytically

$$\frac{\partial I}{\partial \theta} = mgI \sin \theta - \tau = 0$$

Equilibrium of moment around C

Solve

minimize
$$I = mgl(1 - \cos \theta) - \tau \theta$$

 $(-\pi \le \theta \le \pi)$

numerically

Apply fminbnd to minimize a function numerically

Sample Programs

- minimizing internal energy
- internal energy of simple pendulm

```
Result
```

```
>> internal_energy_simple_pendulum_min
thetamin =
    0.5354
```

```
Imin =
```

-0.0261

Solve

$$\delta I = 0$$

analytically

$$\parallel$$

$$I = mgl(1 - \cos \theta) - \tau \theta$$

 $I + \delta I = mgl(1 - \cos(\theta + \delta \theta)) - \tau(\theta + \delta \theta)$

Note that
$$\cos(\theta + \delta\theta) = \cos\theta - (\sin\theta)\delta\theta$$
:
$$I = mgI(1 - \cos\theta) - \tau\theta$$

$$I + \delta I = mgI(1 - \cos\theta + (\sin\theta)\delta\theta) - \tau(\theta + \delta\theta)$$

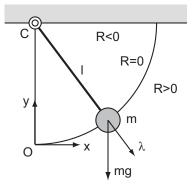
$$\downarrow \downarrow$$

$$\delta I = mgI(\sin\theta)\delta\theta - \tau\delta\theta$$

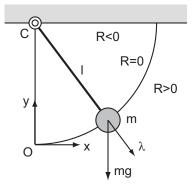
$$= (mgI\sin\theta - \tau)\delta\theta \equiv 0, \quad \forall \delta\theta$$

$$\downarrow \downarrow$$

$$mgI\sin\theta - \tau = 0$$



simple pendulum of length I and mass m suspended at point C $[x, y]^{\top}$: position of mass $[f_x, f_y]^{\top}$: external force applied to mass Given $[f_x, f_y]^{\top}$, derive $[x, y]^{\top}$ at equilibrium.



geometric constraint

distance between C and mass = I

$$R \stackrel{\triangle}{=} \left\{ x^2 + (y - I)^2 \right\}^{1/2} - I = 0$$

U potential energy

W work done by external forces/torques

R geometric constraint

Variational principle in statics

Internal energy U-W reaches to its minimum at equilibrium under geometric constraint R=0:

minimize U - W subject to R = 0

Solutions:

Solve

minimize
$$U - W$$
 subject to $R = 0$

analytically

Solve

minimize
$$U - W$$
 subject to $R = 0$

numerically

Solve

minimize
$$U - W$$
 subject to $R = 0$

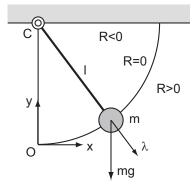
analytically

$$\Downarrow$$

minimize
$$I = U - W - \lambda R$$

 λ : Lagrange's multiplier

$$\delta I = \delta (U - W - \lambda R) = 0$$



$$U = mgy, \quad W = f_x x + f_y y$$

 $R = \{x^2 + (y - I)^2\}^{1/2} - I$

$$I = mgy - (f_x x + f_y y) - \lambda \left[\left\{ x^2 + (y - I)^2 \right\}^{1/2} - I \right]$$

Note that $\delta R = R_x \, \delta x + R_y \, \delta y$, where

$$R_{x} \stackrel{\triangle}{=} \frac{\partial R}{\partial x} = x \left\{ x^{2} + (y - I)^{2} \right\}^{-1/2}$$

$$R_{y} \stackrel{\triangle}{=} \frac{\partial R}{\partial y} = (y - I) \left\{ x^{2} + (y - I)^{2} \right\}^{-1/2}$$

$$\downarrow \downarrow$$

$$\delta I = mg \, \delta y - f_x \delta x - f_y \delta y - \lambda R_x \delta x - \lambda R_y \delta y$$

= $(-f_x - \lambda R_x) \delta x + (mg - f_y - \lambda R_y) \delta y \equiv 0, \quad \forall \delta x, \delta y$

$$-f_{x} - \lambda R_{x} = 0$$

$$mg - f_{y} - \lambda R_{y} = 0$$

$$\Downarrow$$

$$\begin{bmatrix} 0 \\ -mg \end{bmatrix} + \begin{bmatrix} f_{x} \\ f_{y} \end{bmatrix} + \lambda \begin{bmatrix} R_{x} \\ R_{y} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ -mg \end{bmatrix} \text{ grav. force, } \begin{bmatrix} f_x \\ f_y \end{bmatrix} \text{ ext. force, } \lambda \underbrace{\begin{bmatrix} R_x \\ R_y \end{bmatrix}} \text{ constraint force}$$
 gradient vector (\bot to $R=0$)

three equations w.r.t. three unknowns x, y, and λ :

$$-f_x - \lambda R_x = 0$$

$$mg - f_y - \lambda R_y = 0$$

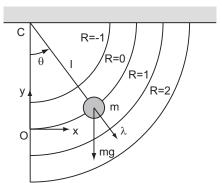
$$R = 0$$

we can determine position of mass $[x, y]^{\top}$ and magnitude of constraint force λ

Note

$$I = U - W - \lambda R$$

= $U - (W + \lambda R)$



 λ magnitude of a constraint force R distance along the force

constraint force \bot contour R = constant

 λR work done by a constraint force

 $W + \lambda R$ work done by external & constraint forces

Solve

minimize
$$I = U - W$$

subject to $R = 0$

numerically

Apply fmincon to minimize a function numerically under constraints Note: "Optimization Toolbox" is needed to use fmincon

Sample Programs

- minimizing internal energy (Cartesian)
- internal energy of simple pendulm (Cartesian)
- constraints

Result:

```
>> internal_energy_pendulum_Cartesian_min Local minimum found that satisfies the constraints.
```

<stopping criteria details>

```
qmin = 1.4001 3.4281
```

```
Imin = -0.4897
```

Statics under multiple constraints

U potential energy

W work done by external forces/torques

 R_1, R_2 geometric constraints

Variational principle in statics

Internal energy U-W reaches to its minimum at equilibrium under geometric constraints $R_1=0$ and $R_2=0$:

$$\delta I = \delta (U - W - \lambda_1 R_1 - \lambda_2 R_2) = 0$$

 λ_1, λ_2 : Lagrange's multipliers

Dynamics

Lagrangian

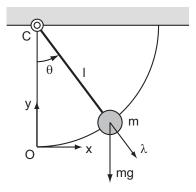
$$\mathcal{L} = T - U + W$$
 $\mathcal{L} = T - U + W + \lambda R$ (under constraint)

Lagrange equations of motion

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} = \boldsymbol{0}$$

Solutions

- numerical ODE solver (ode45)
- constraint stabilization method (CSM)



simple pendulum of length I and mass m suspended at point C τ : external torque around C at time t, θ : angle around C at time t Derive the motion of the pendulum.

Dynamics in variational form

T kinetic energy

U potential energy

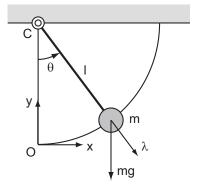
W work done by external forces/torques

Lagrangian

$$\mathcal{L} = T - U + W$$

Lagrange equation of motion

$$\frac{\partial \mathcal{L}}{\partial \theta} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = 0$$



$$T = \frac{1}{2}(ml^2)\dot{\theta}^2$$

$$U = mgl(1 - \cos\theta), \quad W = \tau\theta$$

Lagrangian

$$\mathcal{L} = \frac{1}{2}(ml^2)\dot{ heta}^2 - mgl(1-\cos\theta) + au\theta$$

partial derivatives

$$\frac{\partial L}{\partial \theta} = -mgl \sin \theta + \tau, \quad \frac{\partial L}{\partial \dot{\theta}} = (ml^2)\dot{\theta}$$
$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{\theta}} = ml^2 \ddot{\theta}$$

Lagrange equation of motion

$$-mgl\sin\theta + \tau - ml^2\ddot{\theta} = 0$$

Equation of the pendulum motion

$$ml^2\ddot{\theta} = -mgl\sin\theta + \tau$$

$$\downarrow \downarrow$$

Canonical form of ordinary differential equation

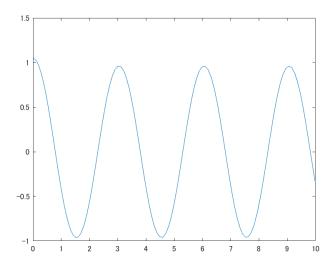
$$\dot{ heta} = \omega$$
 $\dot{\omega} = rac{1}{ml^2} (au - mgl \sin heta)$

can be solved numerically by an ODE solver

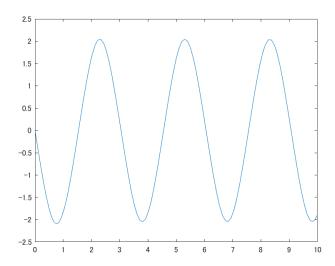
Sample Programs

- solve the equation of motion of simple pendulum
- equation of motion of simple pendulum
- external torque

Result

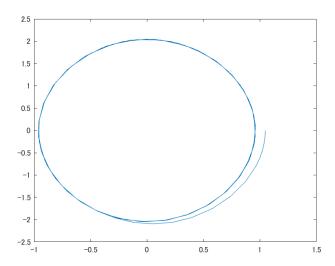


Result



Example (simple pendulum)

Result



Example (pendulum with viscous friction)

Assumptions

viscous friction around supporting point C works viscous friction causes a negative torque around C magnitude of the torque is proportional to angular velocity

viscous friction torque $=-b\dot{ heta}$ (b: positive constant)

Replacing τ by $\tau - b\dot{\theta}$:

$$(ml^2)\ddot{\theta} = (\tau - b\dot{\theta}) - mgl\sin\theta$$
 \downarrow

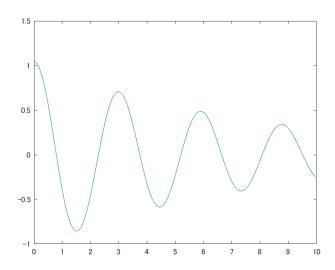
$$\dot{ heta} = \omega$$
 $\dot{\omega} = rac{1}{ml^2} \left(\tau - b\omega - mgl \sin heta
ight)$

Example (pendulum with viscous friction)

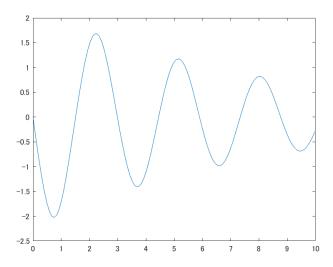
Sample Programs

- solve the equation of motion of damped pendulum
- equation of motion of damped pendulum
- external torque

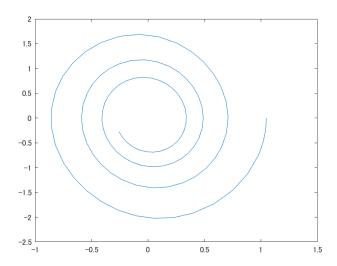
Example (pendulum with viscous friction) Result

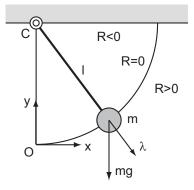


Example (pendulum with viscous friction) Result

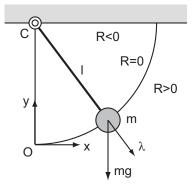


Example (pendulum with viscous friction) Result





simple pendulum of length I and mass m suspended at point $C[x, y]^{\top}$: position of mass at time $t[f_x, f_y]^{\top}$: external force applied to mass at time t. Derive the motion of the pendulum in Cartesian coordinates.



geometric constraint

distance between C and mass = I

$$R \stackrel{\triangle}{=} \left\{ x^2 + (y - I)^2 \right\}^{1/2} - I = 0$$

Dynamics under single constraint

T kinetic energy

U potential energy

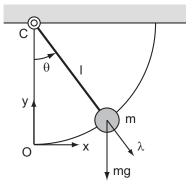
W work done by external forces/torques

Lagrangian

$$\mathcal{L} = T - U + W + \lambda R$$

Lagrange equations of motion

$$\begin{split} \frac{\partial \mathcal{L}}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{x}} &= 0 \\ \frac{\partial \mathcal{L}}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{y}} &= 0 \end{split}$$



$$T = \frac{1}{2}m\{\dot{x}^2 + \dot{y}^2\}$$

$$U = mgy, \quad W = f_x x + f_y y$$

$$R = \{x^2 + (y - I)^2\}^{1/2} - I$$

Lagrangian

$$\mathcal{L} = \frac{1}{2}m\{\dot{x}^2 + \dot{y}^2\} - mgy + f_x x + f_y y + \lambda \left[\left\{ x^2 + (y - I)^2 \right\}^{1/2} - I \right]$$

partial derivatives

$$\frac{\partial \mathcal{L}}{\partial x} = f_x + \lambda R_x, \quad \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}$$
$$\frac{\partial \mathcal{L}}{\partial y} = -mg + f_y + \lambda R_y, \quad \frac{\partial \mathcal{L}}{\partial \dot{y}} = m\dot{y}$$

Lagrange equations of motion

$$f_x + \lambda R_x - m\ddot{x} = 0$$
$$-mg + f_y + \lambda R_y - m\ddot{y} = 0$$

Lagrange equations of motion

$$\begin{bmatrix} 0 \\ -mg \end{bmatrix} + \begin{bmatrix} f_x \\ f_y \end{bmatrix} + \lambda \begin{bmatrix} R_x \\ R_y \end{bmatrix} + \left\{ -m \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} \right\} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 gravitational external constraint inertial

dynamic equilibrium among forces

three equations w.r.t. three unknowns x, y, and λ :

$$m\ddot{x} = f_x + \lambda R_x$$

$$m\ddot{y} = -mg + f_y + \lambda R_y$$

$$R = 0$$

three equations w.r.t. three unknowns x, y, and λ :

$$m\ddot{x} = f_x + \lambda R_x$$

$$m\ddot{y} = -mg + f_y + \lambda R_y$$

$$R = 0$$

Mixture of differential and algebraic equations

Difficult to solve the mixture of differential and algebraic equations

Constraint stabilization method (CSM)

Constraint stabilization

convert algebraic eq. to its almost equivalent differential eq.

algebraic eq.
$$R = 0$$

ļ

differential eq.
$$\ddot{R} + 2\alpha \dot{R} + \alpha^2 R = 0$$

(α : large positive constant)

critical damping (converges to zero most quickly)

Constraint stabilization method (CSM)

Dynamic equation of motion under geometric constraint:

differential eq.
$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} = \boldsymbol{0}$$
 algebraic eq.
$$R = 0$$

$$\Downarrow$$
 differential eq.
$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} = \boldsymbol{0}$$
 differential eq.
$$\ddot{R} + 2\alpha \dot{R} + \alpha^2 R = 0$$

can be solved numerically by an ODE solver.

Computing equation for constraint stabilization

Assume R depends on x and y: R(x, y) = 0Differentiating R(x, y) w.r.t time t:

$$\dot{R} = \frac{\partial R}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial R}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t} = R_x \dot{x} + R_y \dot{y}$$

Differentiating $R_x(x, y)$ and $R_y(x, y)$ w.r.t time t:

$$\dot{R}_{x} = \frac{\partial R_{x}}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial R_{x}}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t} = R_{xx}\dot{x} + R_{xy}\dot{y}$$
$$\dot{R}_{y} = \frac{\partial R_{y}}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial R_{y}}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t} = R_{yx}\dot{x} + R_{yy}\dot{y}$$

Second order time derivative:

$$\begin{split} \ddot{R} &= (\dot{R}_x \dot{x} + R_x \ddot{x}) + (\dot{R}_y \dot{y} + R_y \ddot{y}) \\ &= (R_{xx} \dot{x} + R_{xy} \dot{y}) \dot{x} + R_x \ddot{x} + (R_{yx} \dot{x} + R_{yy} \dot{y}) \dot{y} + R_y \ddot{y} \end{split}$$

Computing equation for constraint stabilization

Second order time derivative:

$$\ddot{R} = \left[\begin{array}{cc} R_{x} & R_{y} \end{array} \right] \left[\begin{array}{cc} \ddot{x} \\ \ddot{y} \end{array} \right] + \left[\begin{array}{cc} \dot{x} & \dot{y} \end{array} \right] \left[\begin{array}{cc} R_{xx} & R_{xy} \\ R_{yx} & R_{yy} \end{array} \right] \left[\begin{array}{cc} \dot{x} \\ \dot{y} \end{array} \right]$$

Equation to stabilize constraint:

Equation for stabilizing constraint R(x, y) = 0:

$$-R_x\dot{v}_x-R_y\dot{v}_y=C(x,y,v_x,v_y)$$

where

$$C(x, y, v_x, v_y) = \begin{bmatrix} v_x & v_y \end{bmatrix} \begin{bmatrix} R_{xx} & R_{xy} \\ R_{yx} & R_{yy} \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$
$$+ 2\alpha (R_x v_x + R_y v_y) + \alpha^2 R$$

In this example

$$P = \{x^2 + (y - I)^2\}^{-1/2}, \quad R_x = xP, \quad R_y = (y - I)P$$

$$R_{xx} = P - x^2P^3, \quad R_{yy} = P - (y - I)^2P^3$$

$$R_{xy} = R_{yx} = -x(y - 1)P^3$$

Combining equations of motion and equation for constraint stabilization:

$$\begin{aligned}
x &= v_x \\
\dot{y} &= v_y
\end{aligned}$$

$$\begin{bmatrix}
m & -R_x \\
m & -R_y \\
-R_x & -R_y
\end{bmatrix}
\begin{bmatrix}
\dot{v}_x \\
\dot{v}_y \\
\lambda
\end{bmatrix} =
\begin{bmatrix}
f_x \\
-mg + f_y \\
C(x, y, v_x, v_y)
\end{bmatrix}$$

five equations w.r.t. five unknown variables x, y, v_x , v_y and λ

given
$$x$$
, y , v_x , $v_y \Longrightarrow \dot{x}$, \dot{y} , \dot{v}_x , \dot{v}_y

This canonical ODE can be solved numerically by an ODE solver.

Let $\mathbf{x} = [x, y]^{\mathsf{T}}$. Introducing gradient vector

$$\mathbf{g} = \left[\begin{array}{c} R_{\mathsf{x}} \\ R_{\mathsf{y}} \end{array} \right]$$

yields

$$\dot{R} = \mathbf{g}^{\top} \dot{\mathbf{x}}$$

Introducing Hessian matrix

$$H = \left[\begin{array}{cc} R_{xx} & R_{xy} \\ R_{yx} & R_{yy} \end{array} \right]$$

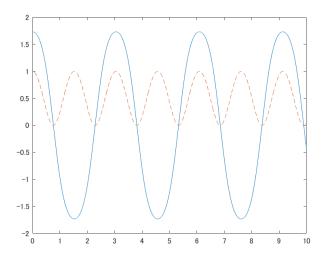
yields

$$\ddot{R} = \mathbf{g}^{\top} \ddot{\mathbf{x}} + \dot{\mathbf{x}}^{\top} H \dot{\mathbf{x}}$$

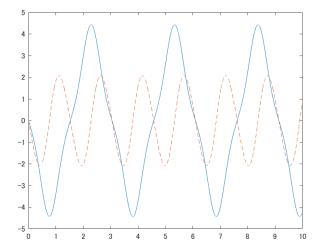
Sample Programs

- solve the equation of motion of simple pendulum (Cartesian)
- equation of motion of simple pendulum (Cartesian)

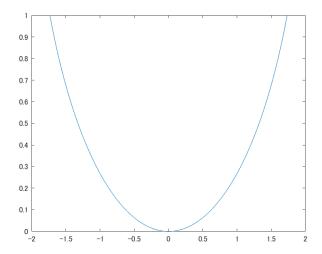
t-x, y



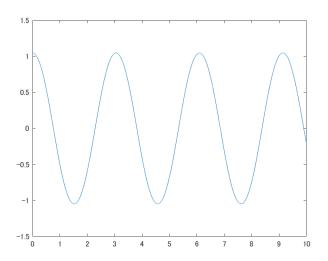
 $t-v_x, v_y$



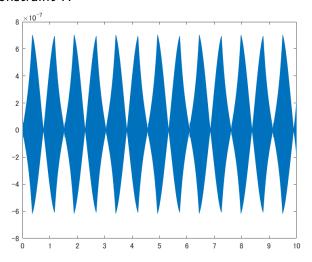
х-у



t–computed θ



t–constraint *R*



Notice

Lagrangian

$$\mathcal{L} = T - U + W + \lambda R$$

= $T - (U - W - \lambda R)$
= $T - I$

Lagrangian is equal to the difference between kinetic energy and internal energy under a constraint

Summary

Variational principles

- statics I = U W
- statics under constraint $I = U W \lambda R$

$$\delta I \equiv 0$$

- dynamics $\mathcal{L} = T U + W$
- ullet dynamics under constraint $\mathcal{L} = T U + W + \lambda R$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} = \boldsymbol{0}$$

constraint stabilization method

Summary

How to solve a static problem

Solve (nonlinear) equations originated from variation or

Numerically minimize internal energy

How to solve a dynamic problem

- Step 1 Derive Lagrange equations of motion analytically
- Step 2 Solve the derived equations numerically

Report

Report # 1 due date : Oct. 28 (Mon) 1:00 AM

Simulate the dynamic motion of a pendulum under viscous friction described with Cartesian coordinates x and y. Apply constraint stabilization method to convert the constraint into its almost equivalent ODE, then apply any ODE solver to solve a set of ODEs (equations of motion and equation for constraint stabilization) numerically.

Submit your report in pdf format to manaba+R

File name shoud be:

student number (11 digits) your name (without space).pdf

For example 12345678901HiraiShinichi.pdf

Report

Report # 2 due date : Nov. 4 (Mon) 1:00 AM

Assume that a system is described by four coordinates q_1 through q_4 . Two constraints R_1 and R_2 are imposed on the system. Let $\boldsymbol{q} = [q_1, q_2, q_3, q_4]^{\top}$ and $\boldsymbol{R} = [R_1, R_2]^{\top}$. Let \boldsymbol{g}_1 and H_1 be gradient vector and Hessian matrix related to R_1 while \boldsymbol{g}_2 and H_2 be gradient vector and Hessian matrix related to R_2 . Let J be Jacobian given by

$$J = \begin{bmatrix} \partial R_1/\partial q_1 & \partial R_1/\partial q_2 & \partial R_1/\partial q_3 & \partial R_1/\partial q_4 \\ \partial R_2/\partial q_1 & \partial R_2/\partial q_2 & \partial R_2/\partial q_3 & \partial R_2/\partial q_4 \end{bmatrix}$$

Show the following equations:

$$\dot{R} = J\dot{q}$$

$$\ddot{R} = J\ddot{q} + \begin{bmatrix} \dot{q}^{\top}H_1\dot{q} \\ \dot{q}^{\top}H_2\dot{q} \end{bmatrix}$$

Small virtual deviation of variables or functions.

$$y = x^2$$

Let us change variable x to $x + \delta x$, then variable y changes to $y + \delta y$ accordingly.

$$y + \delta y = (x + \delta x)^{2}$$
$$= x^{2} + 2x \delta x + (\delta x)^{2}$$
$$= x^{2} + 2x \delta x$$

Thus

$$\delta y = 2x \, \delta x$$

Small virtual deviation of variables or functions.

$$I = \int_0^T \left\{ x(t) \right\}^2 \, \mathrm{d}t$$

Let us change function x(t) to $x(t) + \delta x(t)$, then variable I changes to $I + \delta I$ accordingly.

$$I + \delta I = \int_0^T \{x(t) + \delta x(t)\}^2 dt$$
$$= \int_0^T \{x(t)\}^2 + 2x(t) \delta x(t) dt$$

Thus

$$\delta I = \int_0^T 2x(t) \, \delta x(t) \, \mathrm{d}t$$

Variational operator δ

 $\delta\theta$ virtual deviation of variable θ $\delta f(\theta)$ virtual deviation of function $f(\theta)$

$$\delta f(\theta) = f'(\theta)\delta\theta$$

virtual increment of variable
$$\theta \to \theta + \delta \theta$$
 increment of function $f(\theta) \to f(\theta + \delta \theta) = f(\theta) + f'(\theta)\delta \theta$ $f(\theta) \to f(\theta) + \delta f(\theta)$

simple examples

$$\delta(5x) = 5 \, \delta x \qquad \delta x^2 = 2x \, \delta x$$

$$\delta \sin \theta = (\cos \theta) \, \delta \theta, \qquad \delta \cos \theta = (-\sin \theta) \, \delta \theta$$

Variational operator δ

 $\delta\theta$ virtual deviation of variable θ $\delta f(\theta)$ virtual deviation of function $f(\theta)$

$$\delta f(\theta) = f'(\theta)\delta\theta$$

virtual increment of variable
$$\theta \to \theta + \delta \theta$$
 increment of function $f(\theta) \to f(\theta + \delta \theta) = f(\theta) + f'(\theta)\delta \theta$ $f(\theta) \to f(\theta) + \delta f(\theta)$

simple examples

$$\delta(5x) = 5 \, \delta x \qquad \delta x^2 = 2x \, \delta x$$

$$\delta \sin \theta = (\cos \theta) \, \delta \theta, \qquad \delta \cos \theta = (-\sin \theta) \, \delta \theta$$

Appendix: Variational calculus

assume that heta depends on time t virtual increment of function $heta(t) o heta(t) + \delta heta(t)$

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} \to \frac{\mathrm{d}}{\mathrm{d}t} (\theta + \delta\theta) = \frac{\mathrm{d}\theta}{\mathrm{d}t} + \frac{\mathrm{d}}{\mathrm{d}t} \delta\theta$$
$$\int \theta \, \mathrm{d}t \to \int (\theta + \delta\theta) \, \mathrm{d}t = \int \theta \, \mathrm{d}t + \int \delta\theta \, \mathrm{d}t$$

variation of derivative and integral

$$\delta \frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \delta\theta$$
$$\delta \int \theta \, \mathrm{d}t = \int \delta\theta \, \mathrm{d}t$$

variational operator and differential/integral operator can commute

Appendix: Lagrange multiplier method

converts minimization (maximization) under conditions into minimization (maximization) without conditions.

minimize
$$f(x)$$

subject to $g(x) = 0$
 \Downarrow
minimize $I(x, \lambda) = f(x) + \lambda g(x)$
 \Downarrow

$$\frac{\partial I}{\partial x} = \frac{\partial f}{\partial x} + \lambda \frac{\partial g}{\partial x} = \mathbf{0}$$

$$\frac{\partial I}{\partial \lambda} = g(x) = 0$$

Appendix: Lagrange multiplier method (example)

Length of each edge of a cube is given by x, y, and z. Determine x, y, and z that minimizes the surface of the cube when the cube volume is constantly specified by a^3 :

minimize
$$S(x, y, z) = 2xy + 2yz + 2zx$$

subject to $R(x, y, z) \stackrel{\triangle}{=} xyz - a^3 = 0$

Introducing Lagrange multiplier λ , the above conditional minimization can be converted into the following unconditional minimization:

minimize
$$I(x, y, z, \lambda) = S(x, y, z) + \lambda R(x, y, z)$$

= $2xy + 2yz + 2zx + \lambda(xyz - a^3)$

Appendix: Lagrange multiplier method (example)

Calculating partial derivatives:

$$\frac{\partial I}{\partial x} = 2y + 2z - \lambda yz = 0 \tag{1}$$

$$\frac{\partial I}{\partial y} = 2z + 2x - \lambda z = 0 \tag{2}$$

$$\frac{\partial I}{\partial z} = 2x + 2y - \lambda xy = 0 \tag{3}$$

$$\frac{\partial I}{\partial \lambda} = xyz - a^3 = 0 \tag{4}$$

Calculating $(1) \cdot x - (2) \cdot y$, we have

$$z(x-y)=0,$$

which directly yields x = y. Similarly, we have y = z and z = x. Consequently, we concludes x = y = z = a.

Appendix: ODE solver

Let us solve van del Pol equation:

$$\ddot{x} - 2(1 - x^2)\dot{x} + x = 0$$

Canonical form:

$$\dot{x} = v$$

$$\dot{v} = 2(1 - x^2)\dot{x} - x$$

State variable vector:

$$q = \left[egin{array}{c} x \\ v \end{array}
ight]$$

File van_der_Pol.m describes the canonical form:

```
function dotq = van_der_Pol (t,q)
    x = q(1);
    v = q(2);
    dotx = v;
    dotv = 2*(1-x^2)*v - x;
    dotq = [dotx; dotv];
end
```

File name van_der_Pol should conincide with function name van_der_Pol.

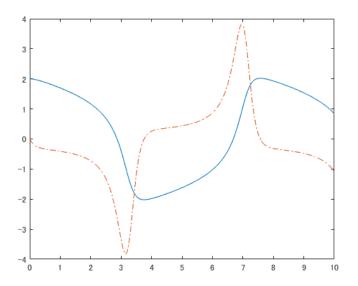
File van_der_Pol_solve.m solves van der Pol equation numerically:

```
timestep=0.00:0.10:10.00;
qinit=[2.00;0.00];
[time,q]=ode45(@van_der_Pol,timestep,qinit);

% line style solid - broken -. chain -- dotted:
plot(time,q(:,1),'-', time,q(:,2),'-.');
```

```
>> time
time =
    0.1000
    0.2000
    0.3000
    0.4000
>> q
    2.0000
    1.9917
          -0.1504
    1.9721 -0.2338
    1.9461
          -0.2822
    1.9163
             -0.3125
```

The first and second columns corresponds to x and v.



Lagrangian $\mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t)$ w.r.t. a set of generalized coordinates \boldsymbol{q} and its time derivative $\dot{\boldsymbol{q}}$ time integral of Lagrangian:

action integral
$$=\int_{t_1}^{t_2} \mathcal{L}(oldsymbol{q}, \dot{oldsymbol{q}}, t) \, \mathrm{d}t$$

Variational principle in dynamics

variation of action integral vanishes for any geometrically admissible variation of q

V.I.
$$\stackrel{\triangle}{=} \int_{t_1}^{t_2} \delta \mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) \, \mathrm{d}t \equiv 0$$

for any $\delta \boldsymbol{q}$ satisfying $\delta \boldsymbol{q}(t_1) = 0$ and $\delta \boldsymbol{q}(t_2) = 0$

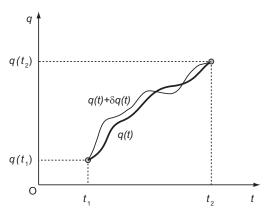
Lagrangian $\mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t)$ w.r.t. a set of generalized coordinates \boldsymbol{q} and its time derivative $\dot{\boldsymbol{q}}$ time integral of Lagrangian:

action integral
$$=\int_{t_1}^{t_2} \mathcal{L}(oldsymbol{q}, \dot{oldsymbol{q}}, t) \, \mathrm{d}t$$

Variational principle in dynamics

variation of action integral vanishes for any geometrically admissible variation of q

$$\text{V.I.} \stackrel{\triangle}{=} \int_{t_1}^{t_2} \delta \mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) \, \mathrm{d}t \quad \equiv \quad 0$$
 for any $\delta \boldsymbol{q}$ satisfying $\delta \boldsymbol{q}(t_1) = 0$ and $\delta \boldsymbol{q}(t_2) = 0$



Lagrangian corresponding to $\mathbf{q} + \delta \mathbf{q}$:

$$\mathcal{L}(\boldsymbol{q} + \delta \boldsymbol{q}, \dot{\boldsymbol{q}} + \delta \dot{\boldsymbol{q}}, t) = \mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) + \left(\frac{\partial L}{\partial \boldsymbol{q}}\right)^{\top} \delta \boldsymbol{q} + \left(\frac{\partial L}{\partial \dot{\boldsymbol{q}}}\right)^{\top} \delta \dot{\boldsymbol{q}}$$

variation of $L(q, \dot{q}, t)$:

$$\delta \mathcal{L} = \left(\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}}\right)^{\top} \delta \boldsymbol{q} + \left(\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}}\right)^{\top} \delta \dot{\boldsymbol{q}}$$

time integral of the second term:

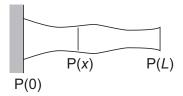
$$\begin{split} &\int_{t_{1}}^{t_{2}} \left(\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}}\right)^{\top} \delta \dot{\boldsymbol{q}} \, \mathrm{d}t = \int_{t_{1}}^{t_{2}} \left(\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}}\right)^{\top} \frac{\mathrm{d}}{\mathrm{d}t} \delta \boldsymbol{q} \, \mathrm{d}t \\ &= \underbrace{\left[\left(\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}}\right)^{\top} \delta \boldsymbol{q}\right]_{t=t_{1}}^{t=t_{2}} - \int_{t_{1}}^{t_{2}} \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}}\right)^{\top} \delta \boldsymbol{q} \, \mathrm{d}t \\ &\quad 0 \ \, \text{since} \, \delta \boldsymbol{q}(t_{1}) = 0 \, \, \text{and} \, \delta \boldsymbol{q}(t_{2}) = 0 \\ &= \int_{t_{1}}^{t_{2}} \left(-\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}}\right)^{\top} \delta \boldsymbol{q} \, \mathrm{d}t \end{split}$$

Variation of action integral:

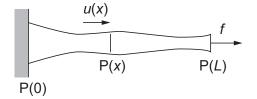
$$V.I. = \int_{t_1}^{t_2} \left(\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} \right)^{\top} \delta \boldsymbol{q} \, dt + \int_{t_1}^{t_2} \left(-\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \right)^{\top} \delta \boldsymbol{q} \, dt$$
$$= \int_{t_1}^{t_2} \left(\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} - \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \right)^{\top} \delta \boldsymbol{q} \, dt \quad \equiv \quad 0 \qquad \forall \delta \boldsymbol{q}$$
$$\Downarrow$$

Lagrange equation of motion

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} = \boldsymbol{0}$$



natural shape at time 0



deformed shape at time t

Deformation at time t is described by function u(x, t) $(0 \le x \le L)$

E: Young's modulus at point P(x)

A: Cross-sectional area at point P(x)

 ρ : density at point P(x)

Assumption: A(x), E(x), and $\rho(x)$ do not change despite of extension, *i.e.* axial deformation is negligible.

Kinetic energy, elastic potential energy, and work done by external force

$$T = \int_0^L \frac{1}{2} \rho A \left(\frac{\partial u}{\partial t}\right)^2 dx$$

$$U = \int_0^L \frac{1}{2} EA \left(\frac{\partial u}{\partial x}\right)^2 dx$$

$$W = \int_0^L u(L, t)$$

Lagrangian

$$\mathcal{L} = T - U + W$$

$$= \int_{0}^{L} \frac{1}{2} \rho A \left(\frac{\partial u}{\partial t}\right)^{2} dx - \int_{0}^{L} \frac{1}{2} EA \left(\frac{\partial u}{\partial x}\right)^{2} dx + f u(L, t)$$

Variation of Lagrangian

$$\delta \mathcal{L} = \int_0^L \rho A \frac{\partial u}{\partial t} \frac{\partial}{\partial t} \delta u \, dx - \int_0^L E A \frac{\partial u}{\partial x} \frac{\partial}{\partial x} \delta u \, dx + f \, \delta u(L, t)$$

Recall

$$\delta U = \int_0^L EA \frac{\partial u}{\partial x} \frac{\partial}{\partial x} \delta u \, dx$$
$$= EA \frac{\partial u}{\partial x} \delta u \bigg|_{x=L} - \int_0^L \frac{\partial}{\partial x} \left(EA \frac{\partial u}{\partial x} \right) \delta u \, dx$$

Time-integral of the first term of $\delta \mathcal{L}$:

$$\int_{t_{1}}^{t_{2}} \int_{0}^{L} \rho A \frac{\partial u}{\partial t} \frac{\partial}{\partial t} \delta u \, dx \, dt$$

$$= \int_{0}^{L} \int_{t_{1}}^{t_{2}} \rho A \frac{\partial u}{\partial t} \frac{\partial}{\partial t} \delta u \, dt \, dx$$

$$= \int_{0}^{L} \left\{ \left[\rho A \frac{\partial u}{\partial t} \delta u \right]_{t=t_{1}}^{t=2} - \int_{t_{1}}^{t_{2}} \frac{\partial}{\partial t} \left(\rho A \frac{\partial u}{\partial t} \right) \delta u \, dt \right\} \, dx$$

$$= \int_{0}^{L} \left\{ - \int_{t_{1}}^{t_{2}} \rho A \frac{\partial^{2} u}{\partial t^{2}} \delta u \, dt \right\} dx$$

$$= \int_{t_{1}}^{t_{2}} \int_{0}^{L} \left\{ - \rho A \frac{\partial^{2} u}{\partial t^{2}} \delta u \right\} dx \, dt$$

$$\begin{aligned} \text{V.I.} &= \int_{t_1}^{t_2} \delta \mathcal{L} \, \mathrm{d}t \\ &= \int_{t_1}^{t_2} \int_{0}^{L} \left\{ -\rho A \frac{\partial^2 u}{\partial t^2} + \frac{\partial}{\partial x} \left(E A \frac{\partial u}{\partial x} \right) \right\} \delta u \, \mathrm{d}x \, \mathrm{d}t \\ &+ \int_{t_1}^{t_2} \left\{ -E A \frac{\partial u}{\partial x} \, \bigg|_{x=L} + f \right\} \delta u(L, t) \, \mathrm{d}t \end{aligned}$$

should be equal to 0 for any $\delta u(x,t)$

$$-\rho A \frac{\partial^2 u}{\partial t^2} + \frac{\partial}{\partial x} \left(E A \frac{\partial u}{\partial x} \right) = 0, \qquad -E A \frac{\partial u}{\partial x} \bigg|_{x=t} + f = 0$$

Equation of deformation (partial differential equation)

$$\rho A \frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x} \left(E A \frac{\partial u}{\partial x} \right)$$

Boundary conditions

$$u(0,t) = 0$$

$$E(L,t)A(L,t)\frac{\mathrm{d}u}{\mathrm{d}x}(L,t) = f(t)$$

Initial conditions (example)

$$u(x,0) = 0, \quad \forall x \in [0, L]$$

$$\frac{\mathrm{d}u}{\mathrm{d}t}(x,0) = 0, \quad \forall x \in [0, L]$$

Assume that E. A, and ρ are constant:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

where $c = \sqrt{E/\rho}$

Given function f(x), let

$$u(x,t)=f(x-ct)$$

Then

$$\partial u/\partial x = f'(x - ct), \quad \partial^2 u/\partial x^2 = f''(x - ct),$$

 $\partial u/\partial t = f'(x - ct)(-c), \quad \partial^2 u/\partial t^2 = f''(x - ct)(-c)^2$

Thus, f(x - ct) is one solution of the PDE.

Given function g(x), let

$$u(x,t)=g(x+ct)$$

Then

$$\frac{\partial u}{\partial x} = g'(x+ct), \quad \frac{\partial^2 u}{\partial x^2} = g''(x+ct),$$

$$\frac{\partial u}{\partial t} = g'(x+ct)(+c), \quad \frac{\partial^2 u}{\partial t^2} = g''(x+ct)(+c)^2$$

Thus, g(x + ct) is one solution of the PDE.

Rayleigh wave

Solution f(x - ct): wave propagating at speed +c

Solution g(x + ct): wave propagating at speed -c