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Agenda

@ Variational Principle in Statics
© Variational Principle in Statics under Constraints
© Variational Principle in Dynamics

@ Variational Principle in Dynamics under Constraints
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Statics

Variation principle in statics
minimize | =U—- W

under constraint

minimize | =U - W
subjectto R=0

Solutions
@ analytically solve 6/ =0

@ numerical optimization (fminbnd or fmincon)
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Example (simple pendulum)

simple pendulum of length / and mass m suspended at point C
T: external torque around C, #: angle around C
Given 7, derive # at equilibrium.
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Statics in variational form

U  potential energy
W work done by external forces/torques

Variational principle in statics
Internal energy | = U — W reaches to its minimum at equilibrium:

[=U— W — minimum
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Statics in variational form

Solutions:

@ Solve
minimize [ =U - W

analytically

@ Solve

minimize [ =U—- W

numerically

@ Solve
51

I
o

analytically
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Example (simple pendulum)

U= mgl(l—cosf), W =r6
I = mgl(1 — cosf) — 70
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Example (simple pendulum)

Solve
minimize | = mgl/(1 — cosf) — 76
analytically
\
ol :
0= mglsind —17 =0

Equilibrium of moment around C
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Example (simple pendulum)
Solve

minimize | = mgl(1 — cosf) — 70
(—m <6 <)

numerically

4

Apply fminbnd to minimize a function numerically
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Example (simple pendulum)

Sample Programs

@ minimizing internal energy

@ internal energy of simple pendulm
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Example (simple pendulum)

Result
>> internal_energy_simple_pendulum_min

thetamin =

0.5354

Imin =

-0.0261
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Example (simple pendulum)
Solve
ol =0

analytically
4
| = mgl(1 —cosf) — 76
I+ 61 = mgl(1 — cos(6 + 06)) — 7(0 + 60)
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Example (simple pendulum)

Note that cos(6 + 06) = cos 6 — (sin 6)d0:

I = mgl(1 — cosf) — 10
I 4+ 61 = mgl(1 — cos @ + (sin0)66) — 7(6 + 60)

4

51 = mgl(sin 0)56 — 166
= (mglsinf — 7)50 = 0, Vol

\
mglsinf —7 =0
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Example (pendulum in Cartesian coordinates)

simple pendulum of length / and mass m suspended at point C
[x, y]": position of mass

[, f,]": external force applied to mass
Given [f,, f,]", derive [x, y]" at equilibrium.
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Example (pendulum in Cartesian coordinates)

geometric constraint
distance between C and mass = /

RELE+(y =12} —1=0
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Statics under single constraint

potential energy
work done by external forces/torques
geometric constraint

s

Variational principle in statics

Internal energy U — W reaches to its minimum at equilibrium under
geometric constraint R = 0:

minimize U — W
subjectto R=0
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Statics under single constraint

Solutions:
@ Solve
minimize U — W
subjectto R=0
analytically
@ Solve
minimize U — W
subjectto R=0
numerically
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Statics under single constraint
Solve

minimize U — W
subjectto R=0

analytically

N2
minimize [ =U—- W — AR

A: Lagrange's multiplier

U
51 =5(U—-W—=AR)=0
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Example (pendulum in Cartesian coordinates)

U=mgy, W="fx+Tfy
R={2+(y— 12} =1
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Example (pendulum in Cartesian coordinates)

| = mgy — (fx + f,y) — [{x + ( /)2}1/2—/}
Note that R = R, dx + R, dy, where

s OR OoR _ x{x +y /)2}—1/2

R 2
Z—R =(y =N {t+(y -0

1>

Ry
4

5/:mg5y—f5x—f5y—)\R5x—)\R oy
= (—f — AR)ox+ (mg — f, — AR, )0y =0, Vox,dy

20 / 83
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Example (pendulum in Cartesian coordinates)

[ 0 } grav. force, [ e } ext. force, /\[ R } constraint force

gradient vector (L to R =0)
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Example (pendulum in Cartesian coordinates)

three equations w.r.t. three unknowns x, y, and A:

—f— AR, =0
mg —f, — AR, =0
R=0

I

we can determine position of mass [x, y|" and magnitude of
constraint force A
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Example (pendulum in Cartesian coordinates)
Note
I=U—W=)R
= U— (W +AR)

magnitude of a constraint force
distance along the force

o >

constraint force L
contour R = constant

AR work done by a constraint force

W + AR  work done by external & constraint forces
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Statics under single constraint
Solve

minimize | =U— W
subject to R =0

numerically

Apply fmincon to minimize a function numerically under constraints
Note: " Optimization Toolbox" is needed to use fmincon
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Example (pendulum in Cartesian coordinates)

Sample Programs
@ minimizing internal energy (Cartesian)

@ internal energy of simple pendulm (Cartesian)

@ constraints
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Example (pendulum in Cartesian coordinates)
Result:

>> internal_energy_pendulum_Cartesian_min
Local minimum found that satisfies the constraints.

<stopping criteria details>
gqmin =

1.4001
3.4281

Imin =
-0.4897
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Statics under multiple constraints

V) potential energy
w work done by external forces/torques
Ri, R, geometric constraints

Variational principle in statics

Internal energy U — W reaches to its minimum at equilibrium under
geometric constraints Ry = 0 and R, = 0:

minimize U — W

subjectto R =0, R, =0

5/ = 5(U— W— /\1R1 - )\2R2) = 0
A1, A2: Lagrange's multipliers
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Dynamics

Lagrangian

L=T-U+W
L=T-U+W+AR (under constraint)

Lagrange equations of motion

Solutions
@ numerical ODE solver (ode45)
@ constraint stabilization method (CSM)
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Example (simple pendulum)

simple pendulum of length / and mass m suspended at point C
T: external torque around C at time t, #: angle around C at time t
Derive the motion of the pendulum.
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Dynamics in variational form

T  kinetic energy
U potential energy
W work done by external forces/torques

Lagrangian

L=T-U+W

Lagrange equation of motion
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Example (simple pendulum)

o)
©

T = %(mﬂ)é2
U= mgl(1—cosf), W =r6

Shinichi Hirai (Dept. Robotics, Ritsumeikan | Analytical Mechanics: Variational Principles 31/83



Example (simple pendulum)

Lagrangian
1 .
L= E(m/2)92 — mgl(1 — cosf) + 76

partial derivatives

% = —mglsinf + T, % = (ml?)d
i% = ml*0
dt 96

Lagrange equation of motion

—mglsin@+7—ml?0 =0
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Example (simple pendulum)

Equation of the pendulum motion
miP6 = —mglsinf + 7
\

Canonical form of ordinary differential equation
0=w

: 1 :
w= W(T—mg/sm(‘))

can be solved numerically by an ODE solver
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Example (simple pendulum)

Sample Programs
@ solve the equation of motion of simple pendulum

@ equation of motion of simple pendulum

@ external torque
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Example (simple pendulum)
Result

15 T T
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Example (simple pendulum)
Result

25 T T
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Example (simple pendulum)
Result

25 T T
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Example (pendulum with viscous friction)
Assumptions

viscous friction around supporting point C works
viscous friction causes a negative torque around C
magnitude of the torque is proportional to angular velocity

viscous friction torque = — b (b: positive constant)

Replacing 7 by 7 — bo:
(mI?)0 = (1 — b)) — mgl sin 6
4
0=w
1

=5 (1 — bw — mglsin9)
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Example (pendulum with viscous friction)

Sample Programs
@ solve the equation of motion of damped pendulum
@ equation of motion of damped pendulum

@ external torque
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Example (pendulum with viscous friction)
Result

15
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Example (pendulum with viscous friction)
Result
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Example (pendulum with viscous friction)
Result

2

15 -

1t

05
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Example (pendulum in Cartesian coordinates)

simple pendulum of length / and mass m suspended at point C
[x, y]": position of mass at time t

[, f,]": external force applied to mass at time t
Derive the motion of the pendulum in Cartesian coordinates.
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Example (pendulum in Cartesian coordinates)

geometric constraint
distance between C and mass = /

RELE+(y =12} —1=0
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Dynamics under single constraint

T  kinetic energy
U potential energy
W  work done by external forces/torques

Lagrangian

L=T-U+W+AR

Lagrange equations of motion
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Example (pendulum in Cartesian coordinates)

1
T = 5m{5<2 +y*}

U=mgy, W=fx+1fy
R=1{xX+(y— 12} =1
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Example (pendulum in Cartesian coordinates)

Lagrangian

L= %m{xz +y?} —mgy + fix + fy + A [{x2 +(y =12} - /]

partial derivatives

oL oL :
g - f;< + )\RX, a = mx
oc oc

— =-mg+f + AR, a—y—my

Lagrange equations of motion

i+ AR, —mx =0
-mg+1f, + AR, —my =0
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Example (pendulum in Cartesian coordinates)

Lagrange equations of motion

0 + A + A R +<— X ~ |9
—mg f, R, Tyl o
gravitational external constraint inertial

dynamic equilibrium among forces
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Example (pendulum in Cartesian coordinates)

three equations w.r.t. three unknowns x, y, and A:

mx = f, + AR,
my = —mg + f, + AR,
R=0
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Example (pendulum in Cartesian coordinates)

three equations w.r.t. three unknowns x, y, and A:

mx = f, + ARy
my = —mg + f, + AR,
R=0

Mixture of differential and algebraic equations

4

Difficult to solve the mixture of differential and algebraic equations
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Constraint stabilization method (CSM)

Constraint stabilization
convert algebraic eq. to its almost equivalent differential eq.

algebraiceq. R=0

4

differential eq. R + 2aR + a?R =0

(v large positive constant)

critical damping (converges to zero most quickly)
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Constraint stabilization method (CSM)

Dynamic equation of motion under geometric constraint:

oL docL
ifF ial eq. == — — & —
differential eq t 96 0

algebraiceq. R=0
U

oL docL
differential eq. — — —— =
ifferential eq 9q  dt9q 0

differential eq. R+ 2aR + a?R =0

can be solved numerically by an ODE solver.
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Computing equation for constraint stabilization

Assume R depends on x and y: R(x,y) =0
Differentiating R(x,y) w.r.t time t:

~ ORdx 4 9R OR dy

T ox dt dy dt

Differentiating R.(x,y) and R,(x,y) w.r.t time t:
_ ORcdx N IR, dy

T Ox dt - Oy dt

_OR,dx | OR,dy

Y Ox dt 8y dt

=Rx+ Ry

= Rox+ Ryy
= Rx+ R,y

Second order time derivative:

R = (Rx + RX) + (R,y + R,¥)
= (RXX).( + ny)./)k + Rx + (Ryx).( + Ry}/)y + Ryy
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Computing equation for constraint stabilization
Second order time derivative:

5 X o R Ry X
R=lr R[] 1| R R ]G
Equation to stabilize constraint:

o mfE]-c(E ][5

yx Yy

+2a(Rex + R,y) + o®R

AN JANS
U’ Ve =X, Vy =Y

e m ] B B[]

+ 2a(Revi + Ryv,) + ®R
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Example (pendulum in Cartesian coordinates)
Equation for stabilizing constraint R(x,y) = 0:

—Rov — Ryv, = C(x,y, vy, vy)

where

RXX RX VX
oy, VX,Vy) N [ He W } { Ryx Ry>y/ } { 1

vy

+ 2a(Revie + Ryv,) + o®R
In this example

P={+(y—-N*} R=xP, R =(y-IP
Ro=P—x*P*, R, =P—(y—1)?P®
nyzRyX:—x(y—l)P3
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Example (pendulum in Cartesian coordinates)

Combining equations of motion and equation for constraint
stabilization:

X = Vg
y= Vy
m —R, Ve fi
m —R, v, | = —mg +f,
-R. —R, A C(x,y, vy, vy)

five equations w.r.t. five unknown variables x, y, v,, v, and A

given X, y, Vi, vV, = X, ¥, Vx, V,

This canonical ODE can be solved numerically by an ODE solver.
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Example (pendulum in Cartesian coordinates)

Let x =[x, y]". Introducing gradient vector
£ |
R,

yields
Introducing Hessian matrix

R« R

H = |: XX Xy :|
Ryx Ry

yields

R=g'x+x Hx
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Example (pendulum in Cartesian coordinates)

Sample Programs
@ solve the equation of motion of simple pendulum (Cartesian)

@ equation of motion of simple pendulum (Cartesian)
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Example (pendulum in Cartesian coordinates)
t—x,y
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Example (pendulum in Cartesian coordinates)

t=vy, vy
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Example (pendulum in Cartesian coordinates)
x-y
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Example (pendulum in Cartesian coordinates)
t—computed 6

15
1k 4
05 - q
ot
-05F 4
1} . 4
-1.5 .
0 1 2 3 4 5 6 7 8 9 10
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Example (pendulum in Cartesian coordinates)
t—constraint R

-7
8 x10 .

6

at

2

-4+
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Notice

Lagrangian
L=T-U+W+AR

=T —(U=W=2\R)
=T

Lagrangian is equal to the difference between kinetic energy and
internal energy under a constraint
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Summary

Variational principles
@ statics [ = U — W
@ statics under constraint [ = U — W — AR

ol = 0

@ dynamics L=T - U+ W
@ dynamics under constraint L=T — U+ W + AR

@ constraint stabilization method
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Summary

How to solve a static problem

Solve (nonlinear) equations originated from variation
or
Numerically minimize internal energy

How to solve a dynamic problem

Step 1 Derive Lagrange equations of motion analytically
Step 2 Solve the derived equations numerically
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Report

Report # 1 due date : Oct. 28 (Mon) 1:00 AM

Simulate the dynamic motion of a pendulum under viscous friction
described with Cartesian coordinates x and y. Apply constraint
stabilization method to convert the constraint into its almost
equivalent ODE, then apply any ODE solver to solve a set of ODEs
(equations of motion and equation for constraint stabilization)
numerically.

Submit your report in pdf format to manaba+R

File name shoud be:
student number (11 digits) your name (without space).pdf
For example  12345678901HiraiShinichi.pdf
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Report
Report # 2 due date : Nov. 4 (Mon) 1:00 AM

Assume that a system is described by four coordinates g; through gj.
Two constraints R; and R, are imposed on the system. Let g = [qy,
G2, 93, q2]" and R =[Ry, R>]". Let g1 and H; be gradient vector
and Hessian matrix related to R; while g> and H, be gradient vector
and Hessian matrix related to R,. Let J be Jacobian given by

= 6’Rl/afh 3R1/3C72 8R1/8q3 8R1/8q4:|

N 8R2/8q1 8R2/(9q2 8"?2/3(73 5’/’?2/6(]4

Show the following equations:
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Appendix: Variational calculus
Small virtual deviation of variables or functions.

y=x"

Let us change variable x to x + dx, then variable y changes to y + dy
accordingly.

y + 0y = (x + 6x)?
= x? 4+ 2x 0x + (0x)?
= x> + 2x Ox

Thus

0y = 2x 0x
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Appendix: Variational calculus
Small virtual deviation of variables or functions.

= /OT{X(t)}2 dt

Let us change function x(t) to x(t) + dx(t), then variable / changes
to I + &1 accordingly.

I+ 61 = /T{x(t) +ox(t)}? dt
- /OT (x(D)F + 2x(t) ox(t) dt

Thus

51 — /T2x(t) 5x(t) dt
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Appendix: Variational calculus

Variational operator o

00 virtual deviation of variable 6
df(0) virtual deviation of function f(0)

5F(0) = £(6)50

virtual increment of variable 6 — 6 + 60

increment of function f(0) — f(6 + 00) = £(0) + f'(6)00
f(0) — £(0) + f(0)

simple examples

5(5x) =56x  0x* = 2x dx
dsinf = (cosf) 60, dcosf = (—sinf) 0
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Appendix: Variational calculus

Variational operator o

00 virtual deviation of variable 6
df(0) virtual deviation of function f(0)

5F(0) = £(6)50

virtual increment of variable 6 — 6 + 60

increment of function f(0) — (0 + 60) = f(6) + 1'(0)00
f(0) — f(0) +of(0)

simple examples

§(5x) =56x  0x* = 2x dx
dsinf = (cosf) 60, dcosf = (—sinf) 0
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Appendix: Variational calculus

assume that @ depends on time t
virtual increment of function 6(t) — 6(t) + 66(t)

d‘) d (9+59)—@+3(se

/9dt—>/ (0 +66) dt-/&dt%—/c?@dt

variation of derivative and integral

6d—i = i(59

d
/Gdt—/éedt

variational operator and differential /integral operator can commute
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Appendix: Lagrange multiplier method
converts minimization (maximization) under conditions into
minimization (maximization) without conditions.

minimize f(x)
subject to g(x) =0

4

minimize /(x,\) = f(x) + \g(x)

U
ol of og
8_x_8_x+)\$_0
ol
5_g(x)—0
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Appendix: Lagrange multiplier method (example)

Length of each edge of a cube is given by x, y, and z.
Determine x, y, and z that minimizes the surface of the cube when
the cube volume is constantly specified by a°:

minimize S(x,y,z) = 2xy + 2yz + 2zx
subject to R(x,y, z) 2 xyz—a =0

Introducing Lagrange multiplier )\, the above conditional minimization
can be converted into the following unconditional minimization:

minimize /(x,y,z,A\) = S(x,y,z) + AR(x,y, z)
= 2xy + 2yz + 2zx + A(xyz — a°)
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Appendix: Lagrange multiplier method (example)

Calculating partial derivatives:

%:2y—|—2z—)\yz:0 (1)
g—)//:Zz+2x—>\zx:0 (2)
%:2x+2y—)\xy=0 (3)
%:xyz—a"’zO (4)

Calculating (1) - x — (2) - y, we have

z(x—y)=0,

which directly yields x = y. Similarly, we have y = z and z = x.
Consequently, we concludes x =y = z = a.
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Appendix: ODE solver

Let us solve van del Pol equation:
X=2(1-x)x+x=0

Canonical form:

State variable vector:
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Appendix: ODE solver (MATLAB)

File van_der_Pol.m describes the canonical form:

function dotq = van_der_Pol (t,q)

x = q(1);
v = q(2);
dotx = v;

dotv = 2% (1-x"2)*v - x;
dotq [dotx; dotv];
end

File name van_der_Pol should conincide with function name
van_der_Pol.
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Appendix: ODE solver (MATLAB)

File van_der_Pol_solve.m solves van der Pol equation numerically

timestep=0.00:0.10:10.00;
qinit=[2.00;0.00];
[time,q]l=o0de45(@van_der_Pol,timestep,qinit);

% line style solid -  broken -. chain -- dotted :
plot(time,q(:,1),’-’, time,q(:,2),’-.7);
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Appendix: ODE solver (MATLAB)

>> tim
time =

O O O O

>>q

= = ¢
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e

.1000
.2000
.3000
.4000

.0000
.9917
.9721
.9461
.9163

The first and second columns corresponds to x and v.

0
-0.1504
-0.2338
-0.2822
-0.3125
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Appendix: ODE solver (MATLAB)
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Dynamics in variational form

Lagrangian £(q, g, t) w.r.t.
a set of generalized coordinates g and its time derivative q
time integral of Lagrangian:

[%)
action integral :/ L(q,q,t)dt

t1

Variational principle in dynamics

variation of action integral vanishes
for any geometrically admissible variation of g

A [P
v.|.:/ 50(q, ¢, 8)dt = 0

t1

for any dq satisfying dq(t;) =0 and dq(t) =0
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Dynamics in variational form

Lagrangian £(q, g, t) w.r.t.
a set of generalized coordinates g and its time derivative g
time integral of Lagrangian:

to
action integral :/ L(q,q,t)dt

t1

Variational principle in dynamics

variation of action integral vanishes
for any geometrically admissible variation of g

A [P
v.|.=/ 50(q, ¢, 8)dt = 0

t1

for any dq satisfying dq(t;) =0 and dq(t) =0
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Dynamics in variational form

q
() froeerermerreee e :
a+sq(t)
TR E— :
© t t t

Lagrangian corresponding to q + 0q:

L . oL\ " oL\ " .
L(q+46q,q+dq,t)=L(q,q,t) + (%> 6q + (_q) oq

Shinichi Hirai (Dept. Robotics, Ritsumeikan | Analytical Mechanics: Variational Principles 73 /83



Dynamics in variational form
variation of L(q, g, t):

oL\ " oL\ " .
e (£) o0+ (3) 5

time integral of the second term:
A ./Q(a£>Td
. (5 dt - . —6 dt
/1’1 (aq) 9 t1 aq dt 9

%]
2 /doL\"
— — 2= sqdt
/tl (dtae;) 9

t=

oL\ "

(a‘q) 5"]
t=t1

0 since dq(t;1) =0 and 0q(t,) =0

/o doL\"
= _ oq dt
/ﬁ ( dtac':> 9
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Dynamics in variational form

Variation of action integral:

2oL\ " 2/ daL\"
VI = i I dt+/ (———_) Sqdt
/tl (8q) TET ), Uatag) 7

to T
2/ (%—i%) bgdt = 0 Véq
t1

Lagrange equation of motion
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Example (extension of beam)

P(X) P(L)

P(0)

natural shape at time 0

P(x) P(L)
P(0)
deformed shape at time t

Deformation at time t is described by function u(x, t) (0 < x < L)
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Example (extension of beam)

E: Young's modulus at point P(x)

A: Cross-sectional area at point P(x)

p: density at point P(x)

Assumption: A(x), E(x), and p(x) do not change despite of

extension, i.e. axial deformation is negligible.

Kinetic energy, elastic potential energy, and work done by external
force

L1 ou\?
L1 ou\?

W = f u(L,¢t)

U
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Example (extension of beam)
Lagrangian

L=T-U+W

ou ou
—/0 2'0A<8) dx—/0 2EA(8X) dx + f u(L, t)

Variation of Lagrangian
oL = / pAggéu dx — / EA@géu dx + f du(L, t)
Ox Ox
Recall

ou 0

Lo Ju
X—L_/o EM (EA8X> du dx

Shinichi Hirai (Dept. Robotics, Ritsumeikan [Analytical Mechanics: Variational Principles 78 / 83




Example (extension of beam)

Time-integral of the first term of JL:

// A——5udxdt
:// A——5udtdx

ou 2 9 ou
A— — A—
/o {{p alﬁu}t:t1 /tl En <p i )(5udt} dx
L tr 82
:/0 {—/ 5 2(5udl‘}dx
tr L 82
:/tl /0 { azéu}dxdt
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Example (extension of beam)

%)
V.L —/ oL dt
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Example (extension of beam)
Equation of deformation (partial differential equation)

Pu_ 9 (_,0u
A5 <EA$)

u(0,t) =0

Boundary conditions

du
E(L, t)A(L, t)d (L, t) = f(t)
Initial conditions (example)

u(x,0)=0, Vxel0, L]
S0 =0, Wxe[o, L]
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Example (extension of beam)

Assume that E. A, and p are constant:

Pu 0%

o2~ C o
where ¢ = \/E/p
Given function f(x), let
u(x, t) = f(x —ct)
Then

Ou/ox = f'(x — ct), 0?u/ox® = f"(x — ct),
Ou/ot = f'(x — ct)(—c), 0*u/0t® = f"(x — ct)(—c)?

Thus, f(x — ct) is one solution of the PDE.
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Example (extension of beam)
Given function g(x), let

u(x, t) = g(x + ct)
Then
Ou/Ox = g'(x + ct), 0?u/ox* = g"(x + ct),
Ou/ot = g'(x + ct)(+c), Pu/ot® = g"(x + ct)(+c)?

Thus, g(x + ct) is one solution of the PDE.

Rayleigh wave

Solution f(x — ct) : wave propagating at speed +c
Solution g(x + ct) : wave propagating at speed —c
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