

Special Lectures(特殊講義)

Soft Wearable Devices and Their Applications

ロボティクス学科 教授

岡田志麻(Shima Okada)

Pair them up in twos or threes.

Rules

To be paired with an international student and a Japanese student.

Pairing students who are not in the same laboratory.

Discussions must be in English.

Worksheets must be written in English.

*You can download the worksheet file (word or pdf) from Manaba+R report box.

* Reports must be submitted electronically via Manaba+R report box.

JIANG Hetian	寺崎 幸明
城奎介	宮田 麻未
岩崎 裕斗	花村健太
坂本陽飛	堀江 優太郎
常岡 晃大	安藤了
中水 翔太	大道康平
松久 紘典	田寺将樹
SINGH Ritu Raj	津田裕大
GU Jun	野口 裕太
ISHAAN Ayeeshique	萩原 孝紀
KHAN Moid	松本有大
THEKUALU Andrew	井口 龍司
YOHANSEN Kevin	塩原 巧大

- 0. Warming up
- 1. Sensors that measure human physiology (Mental and physical)
- 2 .Sensors that measure human motion and movement
- 3. Actuators that act on human physiology

Q0: Which type of robot do you like? And Why?

Please discuss in pairs for 5 minutes and decide.

https://robotsguide.com/robots

Touch something soft, Operated by human, Worn by human, Giving feedback to human...

Soft Wearable Devices and Their Applications

We need

Biomedical applications of soft,wareable sensors. e.g. Bending sensors, electrodes for nerve potentials, streching sensors

Why we need Soft Robotics techniques?

-The robot itself must be soft in order to interact with people.

NICOBO

"Soft robotics" is important in the research field of Biomedical Engineering.

We do not have good interaction,,,

Q3:Why do we need soft actuators?

Considering the caregiving scene. What is required for a robot to act on a person? (Both of Mental & Physical)

Why do you think "soft robotics" is necessary Biomedical engineering research?

Sensor

In order for a person to control the robot or for the robot to help the person, the robot needs to know the person's condition \Rightarrow Sensors that measure the human condition

Actuator

Robots act on a person's psyche, assist in movement, or physically work on a person's physiology to change that state, depending on the person's condition.

https://cybathlon.ethz.ch/en

There are eight competition disciplines: brain-computer interface (BCI), functional electrical stimulation bike, electric prosthetic hand, electric prosthetic leg, exoskeleton race, assisted robot, visual aid and electric wheelchair.

electric prosthesis

BCI

exoskeleton race

visual aid

assist robot

Functional electrical stimulation bike

electric wheelchair

electric artificial arm

1. Sensors that measure human physiology Q4 Part (Mental and physical)

2 .Sensors that measure human motion and movement

3. Actuators that act on human physiology

Biosignal of human body

bioelectrical is generated by the human body in response to the physical and mental activity.

✓ Brain, heart, muscle, etc.

This biosignal changes with your thought, intention, feeling, and what you are trying to do.

Method to measure bioelectrical signals

ATTERY

- The biosignal of human body can be considered same as battery, and it can be measured in sar, way as battery.
- Two metal plates, that is called "electrodes", are attached on the skin using conductive adhesive.
- These electrodes are connected to the measurement device, and biosignal can be measured.
- > Measured biosignal can be displayed on various devices.
 - ✓ Personal computer, smartphone, smartwatch, etc.

How do the robot obtain the information of human?

Stress	Electro-Cardiogram	ECG	$100\mu{\sim}10$ m	0.08~100
Think, Emotion	Electro-Electroencephalogram	EEG	$1\mu \sim 100\mu$	0.1~30
Move,Intention	Electro-Myogram	EMG	1μ \sim 10m	2~2000
Move,Think	Electro-Oculogram	EOG	0.1m~0.5m	DC~200
Stress	Cutaneous electric reflex	SSR	0.1m~5m	0.03~15

For Example Electroencephalography

EEG = changes in electrical potential at the epidermis of the head, where the electrical activity of individual nerve cells in the brain is aggregated through the skull and skin.

For Example Electromyography

Myopotentials are action potentials generated by muscle cells in living organisms during contractile activity.

The electromyogram is the variation of the weak electric field generated within that muscle on the vertical axis and time on the horizontal axis.

Myopotentials measured at the body surface are μ V to mV and amplified 100-10,000 times.

Why do potentials occur?

Futurize. きみの意志が、未来

1. firing signals from the brain travel through the nerves to the neuromuscular junction

2. when the firing signal reaches the neuromuscular junction, transmitters are released into the muscle fibres.

3. sodium ions are taken up by the cell by transmitters

(depolarisation)

 sodium ions are electrically charged and therefore generate a potential difference

Specific resistance of stretchable conductive elastomer

• Specific resistance is very low than others conductive paste. Futurize. **BAD**

Elongation rate of stretchable conductive elastomer

• Electric resistance is low, even in 100 % elongation.

Wearable Device for Simultaneous Monitoring of ECG and Thoracic Impedance, including Respiratory

Wearable Device for Simultaneous Monitoring of ECG and **Thoracic Impedance, including Respiratory**

- Fig.4 The raw data of two test: a) 15 rcpm and b) 30 rcpm Red line: Developed device, Gray line: Reference
- measurements were 0.01 seconds of two tests. -Fig.5 b)

Conclusion

The result of this research shows that the developed device can measure heart rate and thoracic impedance including respiratory rate simultaneously.

PSYCHO 🕥 Ciero シエロ管理者 # < x ₫ □ ⊞ RACEN POSIDI <u>テレビ前</u> **Crime Coefficient** Surveillance camera Futurize. きみの意志が、未来。

Q4: What are the advantages of using soft electrodes? Please imagine a scene of interaction with the robot.

What new technologies could be created if robots could know human biological signals?

1. Sensors that measure human physiology (Mental and physical)

- 2 .Sensors that measure human motion and movement
- 3. Actuators that act on human physiology

Manufactured by Bando Chemical Co., Ltd. elastic strain sensor C-STRETCH[®]

Schematic diagram of the structure (left: crosssectional view, right: perspective view)[3]

Features of the sensor

• Thin, flexible and expandable

Excellent movement tracking

When attached to a curved surface such as the

• Ability to detect exercise, etc. with high repeatability[3]

Low hysteresis

human body

Capacitance changes due to sensor elongation (change in area) \rightarrow (can be converted to a voltage value by a dedicated transmitter)

C(capacitance) =

Relationship between detection area and capacitance and comparison of elongation directions[3]

Relationship between single-axis elongation rate and capacitance [3]

Results of angular displacement

Comparison of angular displacement and displacement of voltage value applied to the sensor (70 bpm) Correspondence between angular displacement and volta

Angle meter and telescopic strain sensor when the angle is changed (left), 0 degrees (center), 45 degrees (right), 90 degrees

· Linear relationship between angle and sensor value

Since it is not in close contact with the joint, the sensor is deflected when the bend is shallow.

Results of angular displacement

At 40bpm

When moving quickly, the response of the sensor is delayed in bending and stretching. Not fully returning to its original form.

Conductive supporter fabricated

Supporter composed of conductive fibers in part

Conductive supporter fabricated

Measure the difference in flexion speed

Simultaneous measurement of supporter

and elbow angle

Sampling frequency: 100Hz

Equipment used: CONTEC (AD converter)

cido

Experiment 1	Side					
16 seconds total: 1 set × 10 sets						
4sec	4sec	4sec	4秒			
Standby in extension state	Slow flexion	Wait in a bent state	Slow extension			

Characteristic confirmation experimental results

Supporter partially composed of conductive yarn

Characteristic confirmation experimental results

Experiment 4 (Investigating the cause of resistance reduction during flexion stop)

Hypothesis

- During bending, the resistance value increases due to the stretching of the sensing part composed of conductive threads
- When bending is stopped, the elastic force works and the supporter tries to return to its original state, so the resistance value decreases (blue circle)
 * The friction force caused by the rubber mesh in the green frame does not withstand the elastic force that contracts the supporter.
- 3. When the extension is started, the resistance value rises rapidly due to the greater elastic force $F_{C1} + F_{c2} < F_s + F_{sp}$ $F_s > F_{sp}$

- F_{sp}: Resilience of supporters
 F_s: Elastic force of the sensing section
 F_C2, F_C2: Tightening force by rubber mesh

results
Experiment 4 (Investigating the cause of resistance reduction during flexion stop)

Characteristic confirmation experimental

Experimental

Futurize. きみの意志が、未来

 \checkmark Non-elastic taping on the top and bottom edges of the supporter

to prevent misalignment

- Measured only by supporters
- ✓ Conducted two experiments, one with and one without taping
- \checkmark The experimental protocol is the same as in Experiment 1.

Non-elastic taping (NICHIBAN) https://www.nichiban.co.jp/gen eral/health/

Investigation of the Factors Contributing to the Decrease in Resistance During Flexion Stop)

Difficulty of attachment for human joint

When fixed with taping, the decrease in resistance during flexion was suppressed.

https://www.youtube.com/watch?v=MIjISflodZk

https://www.youtube.com/watch?v=z6S8XiKcFWk

D. Goto, Y. Sakaue, T. Kobayashi, K. Kawamura, S. Okada and N. Shiozawa, "Bending Angle Sensor Based on Double-Layer Capacitance Suitable for Human Joint," in IEEE Open Journal of Engineering in Medicine and Biology, vol. 4, pp. 129-140, 2023, doi: 10.1109/OJEMB.2023.3289318.

(a) 16 rpm, (b) 32 rpm, and (c) 48 rpm

Is 'ideal' sitting posture real?: Measurement of spinal curves in four sitting postures

Claus, Andrew P et al. "Is 'ideal' sitting posture real? Measurement of spinal curves in four sitting postures." Manual therapy vol. 14,4 (2009): 404-8. doi:10.1016/j.math.2008.06.001

test voltage (V) 4.5 0.00 -0.05 4.0 05 50s 100s 150s 200s angle (°) 50 0s 50s 100s 150s 200s voltage (V) 4.6 0.0 4.4 -0.1 100s 50s 150s 200s distinctio angle $\binom{\circ}{}$ 10 0 -10 100s 150s 200s 0s 50s 2.5 F 0.0 50s 0s 100s 150s 200s

Futures: Sensor 1(Estimated Angle), Sensor 2 (Estimated Angle),

Model: Logistic Regression acc: 0.972

precision: 0.904 1. 1. 1. recall: 1. 0.868 1. 1. f1-score: 0.95 0.929 1. 1.

Model: Decision Tree acc: 0.947 precision: 1. 1. 0.833 1. recall: 0.8 1. 1. 1. f1-score: 0.889 1. 0.909 1.

Model: SVM

acc: 0.980 precision: 0.943 0.979 1. 1. recall: 1. 0.924 0.984 1. f1-score: 0.97 0.951 0.992 1.

Conductive, Strechable sensor

Q5: Let's think about soft sensors for human motion measurement.

Principles, advantages, and disadvantages of extension sensors.

Principles, advantages, and disadvantages of bending sensors.

Which sensor is better for robotic applications? Give an example and explain.

- 1. Sensors that measure human physiology (Mental and physical)
- 2 .Sensors that measure human motion and movement
- 3. Actuators that act on human physiology Q6 Part

Soft Robotics Actuator for Human

Sustainable Health Management for Well-being

A New Man-Machine Relationship Traditional Until now, people use machines. \rightarrow Trains, a machine as a means of transportation Man and machine are independent as "individuals" • <u>Health management</u> is possible, but <u>health promotion</u> is not. New depends on individual efforts **Symbiosis** Health management through routine biometric measurements is realized Integrating humans and machines to improve health Integration **Control of the daily human condition** By robotic tequniques

A New Man-Machine Relationship

Basic block diagram of the new man-machine

Background: 1 in 5 people in Japan are dissatisfied or have problems sleeping

Purpose: Rock the head through the respiratory cycle_(Perrault et al., 2019)

<u>Result:</u> Facilitated sleep onset in 4 out of 6

Fig. Deformable Pillow

Previous work :

- Effect of inducing sleep by shaking the body of mice(Konstantinos, 2019)
- Synchronization of neural firing_(Perrault 5, 2019), Acclimation to constant stimuli_(Öztürk-Çolak 5, 2020)

Target Value

Tested the effect of <u>"inducing sleep onset"</u> by rocking the head with a pillow at a respiratory cycle of 0.25 Hz.

Konstantinos Kompotis's, "Rocking Promotes Sleep in Mice through Rhythmic Stimulation of the Vestibular System,"Current Biology,Volume 29,Issue 3,4 February 2019. A. A.Perrault, A. Khani, C. Quairiaux, K. Kompotis, P. Franken, M. Muhlethaler, S. Schwartz, L. Bayer, "Whole-Night Continuous Rocking Entrains Spontaneous Neural Oscillations with Benefits for Sleep and Memory," Current Biology, February 2019 A. Öztürk-Çolak, S. Inami, J. R.Buchler, P. D.McClanahan, A. Cruz, C. Fang-Yen, K. Koh, "Sleep Induction by Mechanosensory Stimulation in Drosophila," Cell Reports, 2020.

Evaluation Method for Deep sleep Inducing

Testing the Sleep-Inducing Effect of 0.25 Hz Head Rocking

Experimental environment :

- Subjects: 6 healthy males (23.2 \pm 2.0 years old)
- Limit: 0 to 6 hours of sleep the day before
- Content: 1-hour nap from 14:30
- Allow a week between normal and deformable pillow

Measurement:

• Measuring instruments (bio-amplifiers): Polymate V / Polymate Mini. Sampling frequency: 1000 Hz

- **EEG** (Electrodes at O1 and A2 according to 10/20 method)
- ECG (Electrode attached based on 3-point induction)
- Subjective assessment (Karolinska sleep scale and visual analog scale)

EEG→Sleep latency ECG→Heart rate variability and parasympathetic index Subjective assessment

 \rightarrow Pre-Experiment Sleepiness, Post-Experiment Changes, and Pillow Preferences and Performance Evaluation

O1

Fig. Experimental Scene

Results by EEG

	Table. Sleep latency per subject						
	1	2	3	4	5	6	Average
Normal(Sleep latency[s])	307	410	205	1028	719	1234	651
Deformable Pillow([s])	719	205	307	307	410	925	479
Difference in sleep latency[s]	-412	205	-102	721	309	309	172
Results by FCC	-134	50	-50	70	43	25	26
NESULS DY LOO							

Table. Average per subject of parasympathetic index ^{*1}							
Subjects	1	2	3	4	5	6	Average
Normal(nHF)	0.19	0.14	0.23	0.10	0.06	0.10	0.136
Deformable Pillow(nHF)	0.17	0.16	0.20	0.11	0.08	0.14	0.143

Sleep latency shortened in 4 out of 6 patients, 2.9 ± 5.9 min on average Parasympathetic index high in 4 out of 6

Soft actuators change the physiological state of a Human due to the rocking effect

Q6:Please consider soft actuators that act on people.

Please tell me about soft actuators that improve human conditions. Please explain in detail how to use it.

Work with your partner to complete all work (You may submit the same answers as your partner)

Submit your work through Manaba+R Deadline :12/25 at 17:00(Electrical File) Or Submit now (Paper Document)

Merry Christmas & Happy New Year!

