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.. Definition of G -Lie foliations

G : a connected Lie group

M : a smooth manifold

Definition

A G -Lie foliation of M is a foliation of M

endowed with a transverse (G ,G )-structure.
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M : a closed manifold

Theorem (Fedida)

Any G-Lie foliation F of M is given by

▶ a homom hol : π1M −→ G and

▶ a fiber bundle dev : M̃univ −→ G, which

is π1M-equivariant.

dev(c ·x) = hol(c) ·G dev(x) (∀c∈π1M , ∀x∈M̃univ)
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.. Example 1: Linear flows on T 2

α := slope
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.. Example 1: Linear flows on T 2

Let dev : R2 −→ R be the projection along

the lines of slope α s.t. dev(0, 0) = 0.

Let hol = dev |Z2 : π1T
2 ∼= Z2 ↪→ R2 −→ R.
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.. Example 2: Homogeneous G -Lie foliations

H , G : Lie groups,

K < H : a Lie subgroup,

Γ < H × G : a lattice,

M = K\H × G/Γ has a G -Lie fol given by

▶ hol : π1M ∼= Γ ↪→ H × G → G and

▶ dev = proj2 : K\H × G −→ G .
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.. Example 3: Hector-Matsumoto-Meigniez’s example

∃ an SL(2;R)-Lie fol on a closed 5-mfd

whose leaves are Cantor’s tree surfaces.
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.. Preceding results: Solvable case

A list of authors on the classification of G -Lie

foliations in the case where G is solvable:

▶ Haefliger + Ghys,

▶ Caron-Carrière,

▶ Matsumoto-Tsuchiya,

▶ Meigniez.

In the semisimple case, only one result due to
Zimmer has been known .
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.. Preceding results: Semisimple case

X : a symmetric sp. of non-cpt type (i.e.,
X =

∏
i Hi/Ki) s.t. rankRHi > 1.

(M ,F) : a closed mfd with a minimal G -Lie fol.

Theorem (Zimmer)

If M admits a Riemannian metric s.t. ∀L ∈ F is
isometric to X , then

▶ ∃ a homogeneous G-Lie fol (M0,F0) and

▶ ∃ a C∞-map h : M → M0 s.t. F = h∗F0.

Moreover, G is semisimple and hol(π1M) is
arithmetic.
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.. Main theorem

X : a symmetric sp. of non-cpt type (i.e.,
X =

∏
i Hi/Ki) s.t. Hi ̸= SL(2;R).

(M ,F) : a closed mfd with a minimal G -Lie fol.

Theorem (Meigniez-N.)

If M admits a Riemannian metric s.t. ∀L ∈ F is
isometric to X , then (M ,F) is homogeneous, i.e.,

▶ ∃ a homogeneous G-Lie fol. (M0,F0) and

▶ ∃ a homeo h : M → M0 s.t. F = h∗F0.

Moreover, G is semisimple.
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.. Corollaries

Combining with Margulis’ theorems, we get

the following corollaries.

Corollary

π1M is isomorphic to a cocpt lattice in

G ×
∏

Hi , which is superrigid and arithmetic.

Corollary

(M ,F) is locally rigid in the sense of

deformation theory.
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.. Outline of the proof of the main theorem

Slogan: “Rigidity comes from the boundary of infinity.”

Consider the case of X = Hn. The key step is to observe that
π1M acts on the leafwise boundaries conformally, which yields

φ : π1M −→ Conf(∂Hn) = H .

By using φ× hol : π1M −→ H × G , construct a homogeneous
G -Lie fol (M0,F0). Obtain a homeo h : M −→ M0 s.t.
F = h∗F0 by using the classifying map M −→ M0 of F .
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Thank you for your attention!!
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