On rigidity of Lie foliations

Gaël Meigniez* Hiraku Nozawa**

*Laboratoire de Mathématiques de Bretagne Atlantique Université de Bretagne-Sud

> **Department of Mathematical Sciences College of Science & Engineering Ritsumeikan University

17 March 2014, The MSJ Spring meeting at Gakushuin University

Gaël MEIGNIEZ and Hiraku NOZAWA On r

G : a connected Lie group

M: a smooth manifold

Definition

A <u>G-Lie foliation</u> of M is a foliation of M endowed with a transverse (G, G)-structure.

Gaël MEIGNIEZ and Hiraku NOZAWA On rigidity of Lie foliations

M: a closed manifold

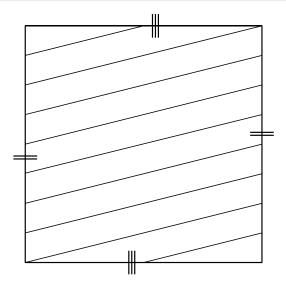
Theorem (Fedida)

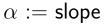
Any G-Lie foliation \mathcal{F} of M is given by

a homom hol : π₁M → G and
a fiber bundle dev : M̃^{univ} → G, which is π₁M-equivariant.

$$\operatorname{dev}(c \cdot x) = \operatorname{hol}(c) \cdot_{G} \operatorname{dev}(x) \; (\forall c \in \pi_{1}M, \forall x \in \widetilde{M}^{\operatorname{univ}})$$

Example 1: Linear flows on T^2

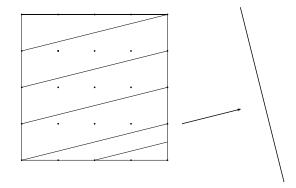




Gaël MEIGNIEZ and Hiraku NOZAWA

Example 1: Linear flows on T^2

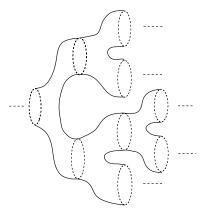
Let dev : $\mathbb{R}^2 \longrightarrow \mathbb{R}$ be the projection along the lines of slope α s.t. dev(0, 0) = 0. Let hol = dev $|_{\mathbb{Z}^2} : \pi_1 T^2 \cong \mathbb{Z}^2 \hookrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R}$.



$$\begin{array}{l} H,\ G:\ \text{Lie groups,}\\ K < H:\ \text{a Lie subgroup,}\\ \Gamma < H \times G:\ \text{a lattice,}\\\\ M = K \backslash H \times G / \Gamma \text{ has a } G \text{-Lie fol given by}\\ \bullet \ \text{hol}: \pi_1 M \cong \Gamma \hookrightarrow H \times G \to G \text{ and}\\ \bullet \ \text{dev} = \text{proj}_2: K \backslash H \times G \longrightarrow G. \end{array}$$

Example 3: Hector-Matsumoto-Meigniez's example

 \exists an SL(2; \mathbb{R})-Lie fol on a closed 5-mfd whose leaves are Cantor's tree surfaces.



Gaël MEIGNIEZ and Hiraku NOZAWA

A list of authors on the classification of G-Lie foliations in the case where G is solvable:

- ► Haefliger + Ghys,
- Caron-Carrière,
- Matsumoto-Tsuchiya,
- Meigniez.

In the semisimple case, only one result due to Zimmer has been known .

X : a symmetric sp. of non-cpt type (i.e., $X = \prod_i H_i/K_i$) s.t. rank_R $H_i > 1$. (M, \mathcal{F}) : a closed mfd with a minimal G-Lie fol.

Theorem (Zimmer)

If M admits a Riemannian metric s.t. $\forall L \in \mathcal{F}$ is isometric to X, then

▶ \exists a homogeneous G-Lie fol (M_0, \mathcal{F}_0) and

▶ ∃ a C^{∞} -map $h : M \to M_0$ s.t. $\mathcal{F} = h^* \mathcal{F}_0$. Moreover, G is semisimple and hol $(\pi_1 M)$ is arithmetic. X : a symmetric sp. of non-cpt type (i.e., $X = \prod_i H_i/K_i$) s.t. $H_i \neq SL(2; \mathbb{R})$. (M, \mathcal{F}) : a closed mfd with a minimal G-Lie fol.

Theorem (Meigniez-N.)

If M admits a Riemannian metric s.t. $\forall L \in \mathcal{F}$ is isometric to X, then (M, \mathcal{F}) is homogeneous, i.e.,

- ▶ \exists a homogeneous G-Lie fol. (M_0, \mathcal{F}_0) and
- ▶ \exists a homeo $h : M \to M_0$ s.t. $\mathcal{F} = h^* \mathcal{F}_0$.

Moreover, G is semisimple.

Combining with Margulis' theorems, we get the following corollaries.

Corollary

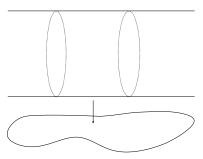
 $\pi_1 M$ is isomorphic to a cocpt lattice in $G \times \prod H_i$, which is superrigid and arithmetic.

Corollary

(M, \mathcal{F}) is locally rigid in the sense of deformation theory.

Outline of the proof of the main theorem

Slogan: "Rigidity comes from the boundary of infinity."



Consider the case of $X = \mathbb{H}^n$. The key step is to observe that $\pi_1 M$ acts on the leafwise boundaries conformally, which yields

$$\varphi: \pi_1 M \longrightarrow \operatorname{Conf}(\partial \mathbb{H}^n) = H.$$

By using $\varphi \times \text{hol} : \pi_1 M \longrightarrow H \times G$, construct a homogeneous *G*-Lie fol (M_0, \mathcal{F}_0) . Obtain a homeo $h : M \longrightarrow M_0$ s.t. $\mathcal{F} = h^* \mathcal{F}_0$ by using the classifying map $M \longrightarrow M_0$ of \mathcal{F} .

Gaël MEIGNIEZ and Hiraku NOZAWA

[1] P. Caron and Y. Carrière, Flots transversalement de Lie \mathcal{R}^n , flots transversalement de Lie minimaux, *C. R. Acad. Sci. Paris Sér. A-B* **291** (1980), 477–478.

[2] É. Ghys, Appendix E of *Riemannian foliations by P. Molino*, Progr. Math. 78, Birkhäuser, Boston-Basel, 1988.

[3] A. Haefliger, Groupoïdes d'holonomie et classifiants, in *Structure transverse des feuilletages* (Toulouse, 1982), pp. 70–97, *Astérisque* 116, 1984.

[4] G. Hector, S. Matsumoto and G. Meigniez, Ends of leaves of Lie foliations, *J. Math. Soc. Japan* **57** (2005), 753–779.

[5] G.A. Margulis, *Discrete subgroups of semisimple Lie groups*, Ergeb. Math. Grenzgeb. (3), 17, Springer-Verlag, Berlin, 1991.

[6] S. Matsumoto and N. Tsuchiya, The Lie affine foliations on 4-manifolds, *Invent. Math.* **109** (1992), 1–16.

[7] G. Meigniez, Feuilletages de Lie résolubles, *Ann. Fac. Sci. Toulouse Math. (6)* **4** (1995), 801–817.

[8] G. Meigniez, Holonomy groups of solvable Lie foliations, in *a colloquium in honor of Pierre Molino's 60th birthday* (Montpellier, 1995), 107–146. Progr. Math. **145**, Birkhäuser, Boston, MA, 1997.

[9] G. Meigniez and H. Nozawa, Rigidity of Lie foliations with symmetric leaves, in preparation.

[10] R. Zimmer, Arithmeticity of holonomy groups of Lie foliations, *J. Amer. Math. Soc.* **1** (1988), 35–58.

Thank you for your attention!!

Gaël MEIGNIEZ and Hiraku NOZAWA On rigidity of Lie foliations