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Abstract. A novel approach is presented for the reconstruction of phase synchronization phenom-
ena in a chaotic CO2 laser from experimental data. We analyze this laser system in a regime of
homoclinic chaos, which is able to phase synchronize with a weak sinusoidal forcing. Our tech-
nique recovers the synchronization diagram of the experimental system from only few measure-
ment data sets, thus allowing the prediction of the regime of phase synchronization as well as non-
synchronization in a broad parameter space of forcing frequency and amplitude without further
experiments.

INTRODUCTION

Synchronization is a fundamental phenomenon of coupled or forced nonlinear oscilla-
tors, which is nowadays attracting a significant interest of natural science and engineer-
ing. Up to date four basic types of synchronization, namely, complete [1, 2], generalized
[3], phase [4], and lag synchronization [5], have been found. Phase synchronization (PS)
of coupled or periodically forced complex systems has found many applications both in
laboratory experiments and in natural systems [6, 7].

To analyze data from such experimental systems, special techniques for PS analysis
have been developed and it has been shown that they are very efficient even for noisy
and non-stationary data [7, 8]. However, the problem of reconstructing models from
such synchronized data remains open. By using such models, it is of special interest to
infer a synchronization diagram which yields the regimes of PS, non-PS, and borderlines
between both, which are dependent upon the system parameters, such as the coupling
strength and the forcing frequency of interacting nonlinear oscillators. By recovering
such synchronization diagram from few sets of experimental data, a deeper insight
into the underlying system can be gained. This problem formulation is quite practical
in situations, where an extensive synchronization experiment is not possible or very
expensive and only limited sets are recorded. To retrieve the synchronization regime,
reconstruction of a family of models, which is parameterized by the coupling strength
and the forcing frequency, from recording data is required. In a recent study, we have
introduced a novel technique for constructing such a parameterized family of coupled
nonlinear models based on an artificial neural network and its parameter reduction
by singular value decomposition [9]. Our technique has been successfully applied to
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prototypical PS models and to experimental data from a paced plasma discharge tube,
where all of the dynamics were rather phase-coherent. However, the technique is not
straightforwardly applicable to more complex systems such as fast-slow dynamical
systems, which are quite common in nature and engineering.

This paper extends this approach [9] to the case of a homoclinic chaos and apply
it to experimental data from a CO2 laser [10]. This laser has been known as one of
the earliest systems that verified the existence of Shil’nikov-type chaos [11] in real
experiments. Under certain conditions, the output intensity of the laser consists of a
series of homoclinic spikes with chaotic time intervals [10]. Due to its similarities to
electrochemical spike trains traveling on the axons of biological neurons, the laser is
considered as an prototypical experimental system for the study of neural activity. With
a weak sinusoidal forcing, the homoclinic chaos is able to phase synchronize, where
the regime of PS gives rise to a clear Arnold tongue structure [12]. By the extended
approach, we demonstrate that the synchronous behavior of the laser system is modeled
from only three sets of data, obtained from measurements made with different forcing
conditions.

EXPERIMENTAL SYSTEM

Fig. 1 (a) shows a single mode CO2 laser with feedback. The optical cavity, 1 � 35 m long,
is defined by a reflecting grating (M1) acting as a totally reflecting mirror at the desired
wavelength (10.6 µm) and a partially reflecting mirror (M2). The laser medium, a gas
mixture of CO2, He, H, and N2, is excited by a discharge current of 6 mA applied to the
laser tube closed by two Brewster windows. The laser cavity also contains an electro-
optic modulator which controls the cavity losses by a feedback signal proportional to
the laser output intensity. By acting on the two control parameters of the feedback loop,
the gain and the bias voltage (B0), we can set the system in a condition where the output
intensity consists of a train of homoclinic spikes [10]. Fig. 1 (b) shows such homoclinic
spikes repeating with chaotic time intervals, where the averaged spiking frequency is
approximately 1 � 435 kHz (a time interval between one spike to the next is regarded
as one period in our PS analysis). It has been clarified that the homoclinic spikes are
generated by the Shil’nikov-type mechanism [11] associated with a saddle focus point
located near the origin. The typical characteristic of the laser is its fast-slow dynamical
structure. Namely, the laser dynamics is quite slow near the saddle point, whereas it is
much faster outside the homoclinicity.

By applying an external perturbation to the electric discharge, the chaotic laser system
can synchronize with a sinusoidal perturbation y

�
t ��� I sin

�
2πνt � [12]. By means of a

PC board (NI PCI-6040E) and an acquisition routine on LabView, we constructed the
synchronization diagram by varying the forcing parameters as

�
ν � I ��� [1 kHz: 2kHz] �

[0% : 3%] (Fig. 2, right). Then, for testing and validating our method, the laser intensity
x
�
t � and the external modulation y

�
t � were simultaneously measured. The recording

was made for 3 different parameter sets
�
ν � I �	� �

0[kHz] � 0[%] � , � 1 � 1[kHz] � 1 � 5[%] � ,�
1 � 7[kHz] � 1 � 5[%] � , which are all in a regime of non-PS. Based on only the three sets

of the bivariate data 
 x � t ��� y � t �� , our task is to predict for which parameters of forcing
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frequency ν and amplitude I the forced system is in the regime of PS.
This condition is practical for experimental situations, where an extensive exploration

of the synchronization phenomena is not possible. For instance, in neuroscience, a re-
sponse characteristic of a single neuron to sinusoidal forcing provides an important clue.
Due to its limited life-time, however, it is almost impossible to investigate the response
property of the physiological neuron to every combination of the forcing frequency and
the amplitude. It is therefore a strong challenge to estimate the synchronization diagram
from only a few sets of recording data.
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FIGURE 1. Experimental setup of the CO2 laser with feedback (upper) and time series � x � t ��� of the
laser intensity recorded without forcing (lower).

MODELING TECHNIQUE

Main points of our modeling technique for the forced homoclinic system are as fol-
lows. First, we embed the bivariate time series 
 x � t ��� y � t �� into delay coordinates
X
�
t � � 
 x � t ��� x � t � τ ��� � � � � x � t � �

d � 1 � τ �� , Y
�
t � � 
 y � t ��� y � t � τ ��� � � � � y � t � �

d � 1 � τ �� (d:
embedding dimension, τ: time lag) and suppose according to the embedding theorem
[13] that there exists the following dynamics

x
�
t � 1 � � F

�
X
�
t ��� Y � t � �� (1)

Second, we construct a nonlinear function F̃ , that approximates Eq. (1). Since the
function F is in an input-output form, which requires rather complex modeling, we make
a simplification. Namely, according to the property of PS, which is induced by only a
small forcing strength, we assume that the intensity of the forcing is much smaller than
that of the forced system ( � y �	�
� x � ) and via a first order approximation we obtain:

x
�
t � 1 � � F

�
X
�
t � ��� α1 I sin

�
2πνt ��� α2 I cos

�
2πνt � (2)

Then we model the forced homoclinic chaos with an approximate nonlinear function
F̃ . If the original forced dynamics is precisely modeled, the regime of PS as well as
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non-PS in the parameter space of forcing frequency ν and amplitude I can be predicted
by studying the model F̃ . A practical modeling procedure is to optimize all parameters

 Ω � α � of the model function F̃ by minimizing the cost function:

ED
�
Ω � α � � ∑t � I � ν 
 x

�
t � 1 � � F̃

�
Ω � X �

t � � � α1 I sin
�
2πνt � � α2 I cos

�
2πνt �� 2 � (3)

The modeling of the homoclinic system requires a careful treatment because of its
fast-slow dynamical property. To recover the global dynamics, a simultaneous modeling
of both slow and fast dynamics is indispensable. Since the homoclinicity determines
the global dynamical property, it is in particular important to precisely model the local
structure near the homoclinicity. To deal with this problem, the radial basis function
(RBF) [14, 15]

F̃
�
Ω � X � � ∑kΩk φ

�
σk �

�
X � ck

� � (4)

is exploited, where φ and ck stand for the basis function and the centroid and
�����

denotes the Euclidean norm. Although the RBF is a global functional approach, it has
a local property, which is suitable for the modeling of the delicate dynamics near the
homoclinicity [15].

Our modeling procedure consists of the following main steps:
(P1) The embedding dimension d and the time lag τ are chosen. The time lag is chosen

so that the structure of the two-dimensional unstable manifold of the saddle focus point
is fully unfolded. This is crucial for a precise modeling of the homoclinic structure. The
embedding dimension is set to be three, since a low-dimensional model is preferred for
simplicity and dimension three is in general sufficient to model the homoclinicity [11].

(P2) Due to the fast-slow dynamics, equally sampled data concentrate much more
densely near the homoclinicity than outside. For modeling both the fast and slow dy-
namics with a good balance, we scatter the data points. First, we define the slow data
as 
 X �

t � : � x � t � 1 � � x
�
t � 1 � ��� � 2 � 0 �∆t ��� Θv � , where the threshold Θv is chosen so

that the points near the homoclinicity are separated from the others. All other data
are regarded as fast data. Then among the slow data set, a subset of data satisfying

 � X �

t � � X
�
s � �
	 Θs ��� t � s � is extracted. In the same way, a subset of the fast data

satisfying 
 � X �
t � � X

�
s � �	 Θ f ��� t � s � is extracted.

(P3) From both of the fast and the slow data, the same number of centroids 
 ck � is
randomly selected with an addition of noise. The centroids with additive noise, called
chaperons, have been successfully applied to the modeling of homoclinic dynamics from
string data [15].

(P4) As a basis function, Gaussian RBF, φ
�
σk � r � � exp

� � r2 � σ2
k � , with an inhomoge-

neous variance parameter, σ2
k � mini �� k

�
ci � ck

� 2, is used. Due to the fast-slow property,
centroids selected in (P3) are located not uniformly in the data space. The inhomoge-
neous parameters are effective for interpolating such nonuniform centroids.

(P5) The model parameters 
 Ω � α � are optimized by the least-square-error algorithm
of the cost function E � ED � β 
 ∑kΩ2

k � ∑kα2
k � , where the first term corresponds to

the fitting error of Eq. (3) and the second term corresponds to the regularizer. The
regularizing constant β is chosen in such a way that a natural frequency of the nonlinear
model is close to the one of the original system.
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(P6) By changing the frequency v and the amplitude / of the forced model, x(t + 1)
= F(X(t)) + oci / sin(27iw) + 0,2 f cos(2jcvf), the model frequency v is computed by
its free-running. The synchronization diagram is finally drawn with a relative frequency
difference between the model and the forcing as Av = (v — v) / v.

RESULTS

FIGURE 2. Relative frequency difference Av of the laser experiment (left) and the model (right),
depending upon the forcing frequency and amplitude, which are varied as (v, /) E [1 kHz: 2kHz] x
[0% : 3%].

Frequency [kHz]

FIGURE 3. Borderlines between regimes of PS and non-PS for the laser (solid line) and the model
(dotted line with crosses).

To apply our modeling to the laser experiment, the embedding dimension, the time
lag, and the thresholds were set as (d, T, 0V, ®s, 0/) = (3, 10[ws], 0.0075, 0.012,
0.016). From each of the fast and the slow data from a non-forcing experiment, 300
chaperons were randomly selected with an addition of 30% noise of the data. By varying
the regularizing parameter in P £ [0.9: 1.1], we have confirmed that the nonlinear
model yields a natural frequency of v = 1.435 at P = 1.05, which coincides in a good
accuracy with the laser's original frequency measured from the non-forcing experiment.
We therefore exploited the nonlinear model optimized with the regularizing parameter
P = 1.05. Fig. 2 gives synchronization diagram of the original laser (left) and the
nonlinear model (right). The model diagram shows a strong similarity to the original.
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Fig. 3 shows borderlines between the regimes of PS and non-PS were for the original
laser and the nonlinear model, where the regime of PS was defined as �∆ν ��� 0 � 05 [12].
Again the model diagram is in a very good agreement with the experimental.

CONCLUSIONS

To conclude, the modeling approach enables the reconstruction of a synchronization di-
agram of a forced homoclinic system from only a few experimental records of bivariate
time series. The difficulty of modeling the global dynamical property of the homoclinic
chaos has been overcome by using the RBF, which is relatively simple to implement.
With an application to the experimental data of the CO2 laser, our technique was capa-
ble of predicting the regime of PS as well as non-PS in the parameter space of forcing
frequency and amplitude without further experiments. This approach should be of sig-
nificant importance especially for neuroscientific data, where extensive synchronization
analysis in a single neuron is quite difficult due to its short life-time and reproduction
of the same experiment with another neuron is almost impossible. Another important
future study is to extend our approach to a network of coupled oscillators, which has
many applications to synchronization of spatio-temporal systems such as electrochemi-
cal oscillators [16] or brain activity [8].
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