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Abstract

In this chapter, we consider the problem of identifying an unknown
parametrized family of chaotic dynamical systems from a variety of
its time series data with a change in the bifurcation parameters. In
an experimental situation, in which no a priori analytical knowledge
of the dynamical systems is available, we present an algorithm for es-
timating the underlying bifurcation parameters of the chaotic time
series. First, we construct a “qualitatively similar” parametrized
family of nonlinear predictors from the sets of chaotic time series.
These chaotic time series are then characterized in terms of the
“qualitatively similar” bifurcation parameters of the nonlinear pre-
dictors. Numerical experiments using the Rössler equations show
the efficiency of the algorithm.
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25.1 Introduction

Suppose we have an unknown system, A, whose dynamical state is recorded
into a single time series {ξt}. Time series analysis in general aims to study
the dynamical structure of the underlying system A, using only the time series
{ξt}. Since we focus on chaotic dynamics, our particular interest is in detecting
the deterministic nonlinear low-dimensional chaotic property of the time series.
To date, many algorithms have been developed to characterize the chaotic

property of the time series [1, 2]. These algorithms estimate the statistical
properties of the underlying chaotic attractors, such as fractal dimension [3],
Lyapunov spectrum [4–6], and Kolomogorov-Sinai entropy [7].
Although the conventional studies mainly deal with chaotic time series gen-

erated from a single dynamical system, in this chapter we attempt to analyze
more detailed dynamical structures such as the bifurcation structure that un-
derlies the chaotic time series.
For this purpose, we consider the following problem (see Fig. 25.1):

“There exists an unknown system, A, whose dynamics is changed by a set
of external conditions, namely, bifurcation parameters p = (p1, · · ·, pm).
From such a systemA, we record I sets of chaotic time series {ξt(p(i))}i=1,···,I
associated with different bifurcation parameter values {p(i)}i= 1,···,I . Here,
assume that we have no knowledge of the system A, such as the functional
form of the dynamics, its dependence on the bifurcation parameters, and
the bifurcation parameter values {p(i)}i=1,···,I .”

There exist many practical examples for this problem formulation. In chem-
ical or physical experiment, it is in general impossible to reproduce exactly the
same experimental settings in the daily recording. Every recording data there-
fore should be different from the others, because there should be some changes
in the daily experimental conditions. Another example is a chaotic chemical
sensor, which is designed to evaluate the taste of food by using a membrane
oscillator put in a chemical liquid [8]. With a change in the proportion of
the chemical ingredients, the sensory membrane system exhibits a variety of
complex oscillatory patterns such as chaos.
Given a set of time series, {ξt(p(i))}i=1,···,I , associated with different bifur-

cation parameter values, we consider a most efficient way to characterize the
time series.
In conventional chaotic time series analysis, statistical quantities such as the

fractal dimension and the Lyapunov spectrum are used for characterization.
This approach, however, has severe limitations. Suppose, for example, we try to
distinguish the difference between two time series. If the bifurcation parameter
values, undergoing within the two time series, are close to each other, then the
statistical properties of the two time series will be similar to each other. Hence,
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FIGURE 25.1
Problem setting: There exists an unknown dynamical system, A, which
exhibits a variety of oscillatory patterns with a change in its external
conditions, i.e., the bifurcation parameters p = (p1, · · ·, pm). At different
bifurcation parameter values {p(i)}i=1,···,I , I sets of chaotic time series
{ξt(p(i))}i=1,···,I are recorded from the system A.

detection of a slight difference between the two time series by estimating their
statistical quantities might be quite difficult.
Since the dynamical structure of the time series is changed by the bifurcation

parameters, it is natural to characterize the time series {ξt(p)} in terms of
the associated bifurcation parameter values p. In order to distinguish our
standpoint from the conventional one, we call the characterization of chaotic
time series in terms of the underlying bifurcation parameters, “recognition” of
chaotic time series .
In order to “recognize” chaotic time series, it is necessary to estimate the

underlying bifurcation parameter values from time series. Since the problem
provides no information about the bifurcation parameters and their family of
dynamics, estimation of the exact bifurcation parameter values is practically
impossible. However, it is possible to estimate “qualitatively similar” bifur-
cation parameter values instead. Here, “qualitatively similar” bifurcation pa-
rameters mean that the parameters give rise to a family of dynamical systems
that exhibit bifurcation phenomena qualitatively similar to those of the original
family.
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In the investigation of nonlinear predictions [9–13], several interesting studies
have been carried out for reconstructing a qualitatively similar parametrized
family of chaotic dynamics using a parametrized family of nonlinear predic-
tors. In [9], although no specific results are presented, some schemes for recon-
structing a parametrized family of chaotic dynamics using nonlinear predictors
have been discussed. In [12], some experimental results on reconstructing a
one-parameter family of discrete-time dynamical systems have been reported,
based on the assumption that the sets of bifurcation parameter values and the
associated time series are known and are available.
Our approach to the problem is based on a simple algorithm proposed in

[14, 15]. The algorithm attempts to reconstruct a family of dynamical systems
from time series under the condition that the underlying bifurcation param-
eter values are unknown. The efficiency of the algorithm is shown by recon-
structing three families of dynamical systems: the Hénon family, the coupled
logistic/delayed-logistic family, and the Rössler family.
In this chapter, we review the algorithm developed in [14,15] and demonstrate

its applicability to the problem of “recognizing” chaotic time series.
This chapter is organized as follows. In Sec. 25.2, an algorithm for re-

constructing a parametrized family of chaotic dynamics is first described. In
Sec. 25.3, the algorithm is tested against the Rössler family with two param-
eters. In Sec. 25.4, experimental study is reported for “recognizing” chaotic
time series. Finally, Sec. 25.5 is devoted to some discussions with conclusions.

25.2 Reconstructing a Parametrized Family of Chaotic
Dynamics

Consider a parametrized family of continuous-time dynamical systems:

dηt

dt
= f(p, ηt), ηt ∈ RD, p ∈ Rm, (25.2.1)

and their observations:

{ξt(p) = g(ηt(p)) : 0 ≤ t ≤ T}, (25.2.2)

at I different sets of parameter values:

p ∈ {p(i)}i=1,2,···,I , (25.2.3)

where g : Rn → R1 is a smooth observation function and ηt(p) is a solution
for (25.2.1) at the parameter values p. Here, we assume the followings:

(1) The functional form of the parametrized family of vector fields f : Rm ×
RD → RD is unknown, but f is assumed to be smooth.
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(2) The functional form of g is unknown, but g is assumed to be smooth.
(3) m = dim p and the sets of parameter values {p(i)}i=1,···,I are unknown,

but {p(i)}i=1,···,I are assumed to be closely located in the parameter space.
(4) D = dim ηt is unknown.
(5) I sets of time series, {ξt(p(i))}i=1,···,I , are all chaotic.

Under conditions (1)–(5), we reconstruct an unknown parametrized family
of dynamical systems from the available time series.
The algorithm is mainly composed of two steps: First, within a same parametrized

family, nonlinear predictors F (Ω, ·), which model I sets of time series {ξt(p(i))}i=1,···,I ,
are constructed. This means that I sets of nonlinear prediction parameters
{Ω(p(i))}i=1,···,I , which correspond to each time series {ξt(p(i))}i=1,···,I , are
sought. Second, by the singular value decomposition , principal components Γ
are extracted from the nonlinear prediction parameters {Ω(p(i))}i=1,···,I .

FIGURE 25.2
Basic algorithm: Within a same parametrized family, nonlinear predictors
F (Ω, ·) are constructed for chaotic time series {ξt(p(i))}i=1, ···,I . Then, principal
components Γ are extracted from the nonlinear prediction parameters Ω. If
there exists a one-to-one correspondence between Γ and p, the principal
parameters Γ are considered as the “qualitative” parameters of the original
bifurcation parameters p.
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As illustrated in Fig. 25.2, in the principal component parameter space Γ,
we define a parametrized family of nonlinear predictors F (Γ, ·).
As is shown by the following numerical experiments, the principal component

parameters Γ can be considered as the “qualitative” parameters of the original
bifurcation parameters p, in the sense that: (1) There seems to exist a one-
to-one correspondence between Γ and p; (2) The parametrized family F (Γ, ·)
gives rise to qualitatively similar bifurcation phenomena as the original f(p, ·).

25.2.1 Average filtering of chaotic time series

Since time series are usually sampled digitally in laboratory experiments, let
(25.2.2) be rewritten as

{ξn(p) = g(ηn∆t(p)) : n = 1, · · ·, N}, (25.2.4)

where ηt(p) is a solution for (25.2.1) at the parameter values p, and ∆t is a
sampling rate.
In order to reduce the noise effect, an averaging filter is applied to the time

series of (25.2.4). The filtered time series are given by

{ξ̂n(p(i)) =
∑n+W

k=n ξk(p(i))
WΞ

: n = 1, · · ·, N −W}i=1,···,I , (25.2.5)

with Ξ = max
n,i

(∣∣∣∣∣
n+W∑
k=n

ξk(p(i))

∣∣∣∣∣
)

, (25.2.6)

where W + 1 is the window length of the moving average and Ξ is a normal-
ization constant.

25.2.2 Nonlinear predictors

From the filtered time series {ξ̂n(p(i)) : n = 1, · · ·, N−W}i=1,···,I , a d-dimensional
trajectory {Xn(p(i)) : n = (d− 1)τ + 1, · · ·, N −W}i=1,···,I is reconstructed by
using a delay-coordinate [16, 17]:

Xn(p) = t(1xn(p),2 xn(p), · · ·,d xn(p))

= t(ξ̂n(p), ξ̂n−τ (p), ξ̂n−2τ(p), · · ·, ξ̂n−(d−1)τ (p)), (25.2.7)

where t denotes transposition. The Filtered Delay Embedding Prevalence The-
orem [17] guarantees that the reconstructed trajectory {Xn(p(i))}i=1,···,I is
qualitatively the same as the original {ηn∆t(p(i))}i=1,···,I .
Next, for each reconstructed trajectory, {Xn(p(i))}i=1,···,I , we seek an ordi-

nary differential equation of the form

dφt

dt
= F (Ω, φt), (25.2.8)
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that satisfies

Xn+k(p(i)) = φk∆t (Ω(p(i)),Xn(p(i))) (25.2.9)

for k = 1, · · ·, K,

where Ω ⊂ RL stands for a set of parameters of nonlinear function F (·, ·),
φt : RL × Rd → Rd stands for a solution of (25.2.8) at Ω = Ω(p(i)) with an
initial condition φ0(Ω, X) = X, and K stands for the maximum time steps,
where L will be specified later.
As the nonlinear function model F : RL ×Rd → Rd, the multi-layer percep-

tron (MLP) [18–21] is exploited in this chapter, where the MLP composed of
three-layers (d-units in the input layer, h-units in the hidden layer, and d-units
in the output layer) is given by

F (Ω, φ) = t(F1(Ω, φ), F2(Ω, φ), · · ·, Fd(Ω, φ)), (25.2.10)

where

Fk(Ω, φ) =
h∑

j=1

ω(k−1)h+j σ

(
d∑

i=1

ωdh+(j−1)d+i
iφ+ ω2dh+j

)
(k = 1, · · ·, d),

σ(x) =
2.0

1 + e−x
− 1.0,

Ω = t(ω1, ω2, · · ·, ωL) with L = (2d+ 1)h,

φ = t( 1φ, 2φ, · · ·, dφ ).

The parameters {Ω(p(i))}i=1,···,I of the nonlinear function F , which models
the data dynamics {Xn(p(i))}i=1,···,I , are computed in the following manner:
First, the reconstructed data are periodically ordered as

{Xn(p(1))}, {Xn(p(2))}, · · ·, {Xn(p(I))},
{Xn(p(I + 1))} (= {Xn(p(1))}), · · ·. (25.2.11)

Second, Ω(p(1)), which minimizes the cost function:

U(Ω) =
N−W−K∑

n=(d−1)τ+1

K∑
k=1

1
2
| Xn+k(p(1))− φk∆t(Ω, Xn(p(1))) |2, (25.2.12)

are computed via the quasi-Newton method1 [22], where the initial condition for
1In the quasi-Newton method, a local minimum of the cost function (25.2.12) is sought

by the iterative procedure of Ωn+1 = Ωn − Hn∇U(Ωn), where ∇U(Ωn) and Hn stand
for a gradient vector and an approximation of the inverse Hessian of U (Ω) at Ω = Ωn.
There is a variety of update formulas for estimating a series of {Hn}. In our numerical
experiments, we exploit the Broyden-Fletcher-Goldfarb-Shanno formula with Luenberger’s
self-scaling formula.
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Ω(p(1)) is given by a set of random values, uniformly distributed over [0, 0.1]L.
In a similar manner, Ω(p(i)) (2≤i) are computed by minimizing the cost

function (25.2.12) defined for the reconstructed data {Xn(p(i))}, where Ω(p(i−
1)) are used as the initial condition instead of random values.
In our numerical experiments, we set the number of the quasi-Newton’s it-

eration steps to 20 for i < 10I and 40 for 10I ≤ i.
The procedures for computing {Ω(p(i))}i=1,2,··· are repeated until they con-

verge to a periodic sequence, as

Ω(p(NI )), Ω(p(NI + 1)), · · ·, Ω(p(NI + I)),

Ω(p(NI + I + 1)) (= Ω(p(NI))), · · ·, (25.2.13)

where NI is assumed to be sufficiently large.

25.2.3 Extracting principal bifurcation parameters

In the final step of the algorithm, principal component parameters are ex-
tracted from the L-dimensional parameters of Ω, by the Karhunen-Loève (KL)
transform [23–26].
First, we consider the subsequence of the parameters {Ω(p(i)) : i = NI , NI +

1, · · ·, NI +NJ − 1}, and compute {δΩi : i = 1, · · ·, NJ} and Ω0, as

Ω0 =
1
NJ

NJ∑
i=1

Ω(p(NI + i− 1)), (25.2.14)

δΩi = Ω(p(NI + i− 1)) −Ω0, (25.2.15)

where NJ stands for the number of the elements.
Second, the multivariate distribution of {δΩi : i = 1, · · ·, NJ} is computed in

terms of the covariance matrix:

ΩL×L =
1
NJ

NJ∑
i=1

δΩi
tδΩi. (25.2.16)

Since ΩL×L has non-negative eigenvalues {λ1, λ2, · · ·, λL}, we arrange them in
descending order, as

λ1 ≥ λ2 ≥ · · · ≥ λL ≥ 0. (25.2.17)

Applying the KL-transformation to δΩ, the principal parameters are obtained
as

Γ = (γ1, γ2, · · ·, γL) = t[u1 | u2 | · · · | uL]
−1 δΩ (25.2.18)
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where {u1, u2, · · ·, uL} stand for the eigenvectors corresponding to {λ1, λ2, · · ·,
λL}.
Since transformation (25.2.18) diagonalizes the covariance matrix (25.2.16)

in the Γ-space, the diagonal elements {λ1, λ2, · · ·, λL} represent significance of
their corresponding principal parameters {γ1, γ2, · · ·, γL}.
Finally, by computing the normalized eigenvalues

Λi = 100× λi∑L
j=1 λj

[%] (i = 1, · · ·, L), (25.2.19)

the number of significant parameters M is determined. If the nonlinear predic-
tion parameters {δΩi : i = 1, · · ·, NJ} are all confined in the m-dimensional lin-
ear subspace of δΩ, we can expect thatM = m and that Γm = t(γ1, γ2, · · ·, γm)
represents the significant set of parameters for the nonlinear predictors (25.2.8).

With respect to the significant parameters Γm, the m-parameter family of
nonlinear predictors is given by

dφt

dt
= F (Ω(Γm), φt), (25.2.20)

where

Ω(Γm) = t[u1 | u2 | · · · | uL]
−1[Γm | 0] + Ω0, (25.2.21)

where 0 denotes an (L−m)-dimensional zero column vector.

Since the sequence of the significant parameters

Γm(p(1))→ Γm(p(2))→ · · · → Γm(p(NJ)) (25.2.22)

can be considered as the image of the sequence of the original bifurcation
parameters

p(1)→ p(2) → · · · → p(I)→ p(I + 1)(= p(1))→ · · · (25.2.23)

in the significant parameter space of nonlinear predictors, we call the origi-
nal sequence of (25.2.23) “bifurcation path” and its corresponding sequence of
(25.2.22) “bifurcation locus.”
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25.3 Numerical Experiment on the Rössler Equations

Now, we test the algorithm against the Rössler equations [27]:

d 1ηt

dt
= 2ηt − 3ηt,

d 2ηt

dt
= 1ηt − p2

2ηt, (25.3.24)

d 3ηt

dt
= p3

1ηt − p1
3ηt + 1ηt

3ηt.

We selected the Rössler equations as the testing example for two reasons: The
bifurcation structure of the equations has been well studied (e.g., [28]) and this
bifurcation structure is fairly moderate.
In this experiment, p3 is fixed as

p3 = 0.3, (25.3.25)

so that the system (25.3.24) is considered as a two-parameter family. Figure
25.3 (a) shows a local bifurcation diagram of (25.3.24), with

(p1, p2) ∈ [ 4.3, 5.7 ]× [ 0.30, 0.36 ], (25.3.26)

while Fig. 25.3 (b) shows a global bifurcation diagram, with

(p1, p2) ∈ [ 3.814, 8.814 ]× [ 0.25, 0.429 ]. (25.3.27)

The bifurcation diagram shows the existence domain of periodic attractors,
where the color indicates the number of their periods (see the colored samples
in Fig. 25.3 (e)).
The bifurcation structures shown in Figs. 25.3 (a) and (b) have been thor-

oughly studied by Gaspard-Kapral-Nicolis [28]. On the (p1, p2)-parameter
space, it is clearly seen that “fishhook”-like periodic windows form a spiral
structure. In the upper-half region of Fig. 25.3 (b), (25.3.24) has a homoclinic
orbit, which passes through the origin and generates a “screw”-type strange
attractor. In the lower-half region, on the other hand, (25.3.24) has no ho-
moclinic orbit with respect to the origin and exhibits a “spiral”-type strange
attractor.

25.3.1 Reconstructing bifurcation diagrams

Consider twelve different sets of parameter values (see Fig. 25.4 (a)):

p(i) = (p1(i), p2(i))

=
(
0.7 sin(2π

(i− 1)
12

) + 5.0, 0.03 cos(2π
(i− 1)
12

) + 0.33
)
(25.3.28)
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(a) (b)

.

(c) (d)

.

(e)

FIGURE 25.3
(a) (p1, p2)-bifurcation diagram of the Rössler equations with
(p1, p2) ∈ [4.3, 5.7]× [0.30, 0.36]. (b) (p1, p2)-bifurcation diagram of the Rössler
equations with (p1, p2) ∈ [3.814, 8.814]× [0.25, 0.429]. The rectangle region
corresponds to the bifurcation diagram of Fig. 25.3 (a). (c) (γ1, γ2)-bifurcation
diagram of the nonlinear predictors (25.2.20) with
(γ1, γ2) ∈ [−0.103, 0.105] × [−0.044, 0.051]. (d) (γ1,−γ2)-bifurcation diagram of the
nonlinear predictors (25.2.20) with (γ1, γ2) ∈ [−0.175, 0.568]× [−0.123, 0.160]. The
rectangle region corresponds to the bifurcation diagram of Fig. 25.3 (c). (e)
The colored samples.



540 Identification of a Parametrized Family

and measure the associated time series

{ξn(p(i)) = 2ηκ+n∆t(p(i))) : n = 1, · · ·, 3000}i=1,···,12, (25.3.29)

where each trajectory is calculated by numerically integrating (25.3.24) with
initial condition η0 =t (0.05, 0, 0) by using the fourth-order Runge-Kutta algo-
rithm with a time step of 0.01. The transient time and the sampling rate are
set to (κ,∆t) = (2.0, 0.2).
Following the procedures described in Sec. 25.2, we first reconstruct trajec-

tories {Xn(p(i))}i=1,···,12 in a filtered delay-coordinate space with (d,W, τ ) =
(3, 8, 4). Here, the reconstruction dimension d is set equal to the dimension
of the original dynamical system, since one can estimate the dimension by a
variety of time series analyses, e.g., [3,24]. Of course, our procedure works well
for d larger than three.
Second, using the nonlinear predictors defined by (25.2.8) with h = 10, we

seek the parameters {Ω(p(1)),Ω(p(2)), · · ·} corresponding to
{Xn(p(1))}, {Xn(p(2))}, · · ·, {Xn(p(12))},

{Xn(p(13))} (= {Xn(p(1))}), · · · (25.3.30)

by minimizing the cost function defined by (25.2.12) with K = 4.
Finally, we extract principal component parameters {γ1, γ2, · · ·} of Ω by ap-

plying the KL-transform to subsequence

{Ω(p(NI)), Ω(p(NI + 1)), · · ·, Ω(p(NI +NJ − 1))} (25.3.31)

with (NI , NJ) = (1440, 24).

The solid line of Fig. 25.4 (b) shows the normalized eigenvalues {Γk = 100×
λk/

∑70
j=1 λj [%] : k = 1, · · ·, 10} of the covariance matrix (25.2.16) and the

broken line shows their accumulated sums {∑k
j=1 Γj [%] : k = 1, · · ·, 10}. Since

Fig. 25.4 (b) shows that
∑2

j=1 Γj > 95[%], it is clearly seen that the principal
component parameters of (25.3.31) are Γ2 = (γ1, γ2). The dimension of the
bifurcation parameters p is therefore correctly estimated as m = 2.
Figure 25.4 (c) shows the bifurcation locus in the (γ1, γ2)-space. Compared to

the bifurcation path of Fig. 25.4 (a), the original configuration of the bifurcation
path is preserved in the bifurcation locus without any large distortion.
Correspondence between the principal parameters and the original ones can

be roughly illustrated as p1 ↔ γ1 and p2 ↔ γ2.
Figures 25.3 (c) and (d) show bifurcation diagrams of the reconstructed fam-

ily of dynamical systems (25.2.20) in the (γ1, γ2)-space. The local bifurcation
diagram of Fig. 25.3 (c) reproduces qualitatively similar bifurcation phe-
nomena as the original. The bifurcation structures with continually connected
fishhooks are discernible.
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(a) (b) (c)

(d)

FIGURE 25.4
(a) Bifurcation path in the (p1, p2)-space. (b) Normalized eigenvalues
{Γk = 100× λk/

∑70
j=1 λj [%] : k = 1, · · ·, 10} (solid line) of the principal components

and their accumulated sums {∑k
j=1 Γj [%] : k = 1, · · ·, 10} (broken line). (c)

Bifurcation locus in the (γ1, γ2)-space. (d) Bifurcation locus in the (γ1, γ3)-space.
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In Fig. 25.4 (d), bifurcation locus in the (γ1, γ3)-space is shown. We see that
the amplitude of γ3 eventually increases for large |γ1|. This indicates that the
image of the original parameter space p on the Γ-space is not exactly confined
in the (γ1, γ2)-space. The approximation error due to describing the distorted
image by a two-dimensional linear surface may grow in the outer region. This
might be the original cause of the bifurcation structures being qualitatively
different from the original ones discernible in the outer region of the global
bifurcation diagram of Fig. 25.3 (d). The situation might be improved by
approximating the nonlinear manifold by nonlinear transformations.

25.4 Recognizing Chaotic Time Series

In this section, we apply the qualitative family of nonlinear predictors con-
structed in Sec. 25.3 for the “recognition” of chaotic time series. Here, we
characterize chaotic time series {ξn(p∗)} by estimating its associated bifur-
cation parameter values p∗ in terms of its image in the nonlinear prediction
parameter space Γ2(p∗).
For chaotic time series:

{ξn(p∗) =2 ηκ+n∆t(p∗) : n = 1, · · ·, 3000}, (25.4.32)

recorded in the same condition as (25.3.29), the corresponding bifurcation pa-
rameters Γ2(p∗) are sought by minimizing the cost function:

U(Γ2) =
N−W−K∑

n=(d−1)τ+1

K∑
k=1

1
2
| Xn+k(p∗)− φk∆(Γ2, Xn(p∗)) |2 (25.4.33)

where φt : R2 × Rd → Rd stands for a solution of (25.2.20) at the parameter
values Γ2 with an initial condition φ0(Γ2, X) = X.
For 48 sets of bifurcation parameter values (see Fig. 25.5 (a)):

p(i) = (p1(i), p2(i))

=
(

R1 cos(2π
(i− 1)
12

) + 5.0, R2 sin(2π
(i− 1)
12

) + 0.33
)

(i = 1, · · ·, 12)
with (R1, R2) = (0.35, 0.015), (0.7, 0.03), (1.4, 0.06), (2.1, 0.09), (25.4.34)

the corresponding parameters {Γ2(p(i))} in the Γ2-space are estimated.
Figure 25.5 (b) shows the results of the “recognition” of chaotic time series.

From the similar configurations discernible in the locations of the corresponding
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bifurcation parameters in the p-space and the Γ2-space, we see that parameters
qualitatively similar to the original p can be estimated in the Γ2-space. This
implies that there exists a one-to-one correspondence between the original bi-
furcation parameters p and the nonlinear prediction parameters Γ2.

(a) (b)

FIGURE 25.5
Experiment for recognizing chaotic time series. (a) Selected parameters in the
(p1, p2)-space. (b) Estimated parameters in the (γ1, γ2)-space.

25.5 Discussions and Conclusions

In this chapter, a method has been described for constructing a parametrized
family of nonlinear predictors “qualitatively similar” to a family of chaotic dy-
namics. Numerical experiments using the Rössler equations have demonstrated
the efficiency of the algorithm.
On the basis of the family qualitatively similar to the Rössler equations,

it was shown that chaotic time series can be systematically characterized in
terms of the qualitative parameters of the nonlinear predictors. Our experi-
ments therefore demonstrated the applicability of the method for “recognizing”
chaotic time series.
In the present experiment, robustness of the algorithm against noise was

not considered. For a moderate amount of observational noise, we have con-
firmed that the algorithm works efficiently [15]. It is, however, necessary to
consider limitations of the algorithm against very large observational noise and
dynamical noise.
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In nonlinear time series analysis of complex real-world data, the following
question often arises:

Does the irregularity observed in real-world time series originate from
deterministic chaos or stochastic dynamics?

The conventional approach to answering the above question has been attempt-
ing to characterize chaos by analysing a single set of time series data [1, 2].
This type of approach can sometimes be controversial, because accurate char-
acterization of chaotic properties becomes very difficult when time series data
are very short and when time series data are contaminated with strong noise.
We emphasize that our approach of identifying a parametrized family of

chaotic dynamics from time series can potentially solve this problem. If a low-
dimensional bifurcation structure is clearly detected by our algorithm, then, our
algorithm gives the strongest evidence for low-dimensional chaos in real-world
time series, because stochastic dynamics can never give rise to such smooth
low-dimensional bifurcations. As a method to detect chaos with the strongest
evidence, our algorithm will be further applied to a variety of real-world time
series data.
Finally, we note that the algorithm described in this chapter has recently

been extended to analysis of non-stationary time series and to synchronization
analysis of coupled nonlinear oscillators. Interested readers are referred to [29]
and [30] for details.



References 545

References

[1] H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S. Tsimring, “The analysis
of observed chaotic data in physical systems,” Rev. Mod. Phys., Vol. 65, pp.
1331-1392, 1993.

[2] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge Univer-
sity Press, Cambridge UK, 1997.

[3] P. Grassberger and I. Procassia, “Measuring the strangeness of strange attrac-
tors,” Physica D, Vol. 9, pp. 189–208, 1983.

[4] M. Sano and Y. Sawada, “Measurement of the Lyapunov spectrum from chaotic
time series,” Phys. Rev. Lett., Vol. 55, pp. 1082–1085, 1985.

[5] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov
exponents from a time series,” Physica D, Vol. 16, pp. 285-317, 1985.

[6] J. P. Eckmann, S. O. Kanmphorst, D. Ruelle, and S. Ciliberto, “Liapunov ex-
ponents from a time series,” Phys. Rev. A, Vol. 34, pp. 4971-4979, 1986.

[7] A. M. Fraser, “Information and entropy in strange attractors,” IEEE Trans. Info.
Theory, Vol. 35, pp. 245-262, 1989.

[8] Y. Saida, T. Matsuno, and K. Yamafuji, Sensors and Materials, Vol. 4, p. 135,
1992.

[9] J. P. Crutchfield and B. S. McNamara, “Equations of motion from a data series,”
Complex Systems, Vol. 1, pp. 417-452, 1987.

[10] J. D. Farmer and J. J. Sidorowich, “Predicting chaotic time series,” Phys. Rev.
Lett., Vol. 59, pp. 845-848, 1987.

[11] A. Lapedes and R. Farber, “Nonlinear signal processing using neural networks:
Prediction and system modeling,” Tech. Rep. Los Alamos Nat. Lab., LA-UR-
87-2662, 1987.

[12] M. Casdagli, “Nonlinear prediction of chaotic time series,” Physicna D, Vol. 35,
pp. 335-356, 1989.

[13] G. Sugihara and R.M. May, “Nonlinear forecasting as a way of distinguishing
chaos from measurement error in time series,” Nature, Vol. 344, pp. 734-741,
1990.

[14] R. Tokunaga, S. Kajiwara, and T. Matsumoto, “Reconstructing bifurcation di-
agrams only from time waveforms,” Physica D, Vol. 79, pp. 348-360, 1994.

[15] I. Tokuda, S. Kajiwara, R. Tokunaga, and T. Matsumoto, “Recognizing chaotic
time-waveforms in terms of a parametrized family of nonlinear predictors,” Phys-
ica D, Vol. 95, pp. 380-395, 1996.

[16] F. Takens, “Detecting strange attractors in turbulence,” in Lecture Notes in
Math., Vol. 898, Springer, Berlin, pp. 366-381, 1981.

[17] T. Sauer, J. A. York, and M. Casdagli, “Embedology,” J. Stat. Phys., Vol. 65,
pp. 579-616, 1991.



546 References

[18] D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Parallel
Distributed Processing, MIT Press, Cambridge, 1986.

[19] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math.
Control Signals Systems, Vol. 2, pp. 303-314, 1989.

[20] K. Funahashi, “On the approximate realization of continuous mappings by neural
networks,” Neural Networks, Vol. 2, pp. 183-192, 1989.

[21] K. Hornik, “Multilayer feedforward networks are universal approximators,” Neu-
ral Networks, Vol. 2, pp. 359-366, 1989.

[22] D. G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, 1973.

[23] T. W. Anderson, An Introduction to Multivariate Statistical Analysis, Wiley,
1958.

[24] D. S. Broomhead and G. P. King, “Extracting qualitative dynamics from exper-
imental data,” Physica D, Vol. 20, pp. 217-236, 1986.

[25] A. I. Mees, P. E. Rapp, and L. S. Jennings, “Singular-value decomposition and
embedding dimension,” Phys. Rev. A, Vol. 36, pp. 341-346, 1987.

[26] A. M. Albano, J. Muench, C. Schwartz, A. I. Mees, and P. E. Rapp, “Singular-
value decomposition and the Grassberger-Procaccia algorithm,” Phys. Rev. A,
Vol. 38, pp. 3017-3026, 1988.
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Abstract

This chapter is devoted to a study of secure chaotic communication,
particularly for digital chaotic spreading spectrum communication
systems. A schematic of an existing spreading spectrum commu-
nication system (SSCS) is shown in Fig. 26.1. In this system, the
spreading/dispreading module may work in either DS (direct se-
quence) or FH (frequency hopping) mode. Our study on chaotic
SSCS (CSSCS) is in a broad sense: whenever a chaotic PN (pseudo-
noise) sequence (shown by the dotted line in Fig. 26.1) plays a role
in any SSCS module (shown by the solid line in Fig. 26.1), it is
referred to as a CSSCS.
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