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Determination of elliptic curves with everywhere good reduction
over real quadratic fields

By

TAKAAKI KAGAWA

Abstract. All elliptic curves having everywhere good reduction over Q(+/29) are
determined by studying the fields of 2- and 3-division points. As a byproduct of the
argument, the elliptic curves over some real quadratic fields are determined. Though
part of the result are already obtained in [2], [4], [5], [10], the proof given in the present
paper is simpler.

1. Introduction. Let d be the discriminant of a real quadratic field and y, the associated
Dirichlet character. Let Sy = S2(I'o(d), %) be the space of cuspforms of Neben-type of weight
two. When S; has a 2-dimensional @Q-simple factor, Shimura [14] constructed a certain
abelian surface A defined over @) from the factor and showed that A splits over the field
Q(V/d) as B x B', where B is an elliptic curve defined over Q(v/d) and B’ is the conjugate of
B. It is known that the curve B, which we call Shimura’s elliptic curve over Q(+/d), has
everywhere good reduction over Q(+/d), and is isogenous over Q(v/d) to B'. Conversely, it is
conjectured by Pinch ([10]) that any elliptic curve with such properties should be isogenous
over Q(+v/d) to Shimura’s elliptic curve. By Shimura [14], S, is {0} for d = 5,13,17, and 2-
dimensional and @-simple for d = 29,37, 41. Hence, assuming Pinch’s conjecture, there are
no such curves when d = 5,13,17, and there is only one isogeny class of such curves when
d =129,37,41. In [3], [4], it was proved that this conclusion is true without the conjecture for
all these d except d = 29 (see also [2], [10]). In this paper, we prove that it is also true for
d = 29 by determining all elliptic curves with everywhere good reduction over k = Q(+/29).

In his paper [9], Nakamura has proved the conjecture of Serre given in [11], p. 184, which
states that Shimura’s elliptic curve over k is isogenous over k to

E :y +xy+ely=x

with discriminant —¢!?, where ¢ = (5 + v/29)/2 is a fundamental unit of k; see also [15].
Nakamura’s result concerning Serre’s conjecture (Lemma 2 below) forms one of the vital
steps for our determination of elliptic curves with everywhere good reduction over k in the
present paper.

We also deal with many other fields in Appendix, where we use similar arguments given in
section 3.1 in order to simplify the arguments in our previous papers [2], [4], [5], [10].
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2. Results. Let k = Q(v/29) and let &, E; be as in Section 1. We have Ej(k),, =
((0,0)) 2 Z/3Z. This follows from the following three facts: (0,0) € E;(k) is of order 3;
#(E1),, (Ok/Ps) =9 and #(E1), (Ok/b7) =6, where O is the ring of integers of k, ps
(resp. p;) is a prime ideal lying above 5 (resp.7); the reduction map
Ei(k)yos — (El)pp((Ok/pp) is injective, where (E1)pp is the reduction of E; modulo p,
(p =5,7). A defining equation of E; := E;/((0,0)) is calculated by Vélu’s formula ([18]):

Ey:y* +xy+ey =x° — 5% — (2 +7<%),
whose discriminant is —e'*. As will be shown, E, does not have a k-rational point of order 3,
and hence #E, (k) = 1.
At present, we have some examples of elliptic curves with everywhere good reduction

over k, namely Ei, E, E; and E), where E', E, denote the conjugates of Ei, E, over k,
respectively. Our aim is to prove that there are no such curves other than these:

Theorem 1. Up to isomorphism over k = Q(v/29), the four curves listed above are all the
elliptic curves with everywhere good reduction over k.

By definition, E; and E, are 3-isogenous over k. Moreover, E; and E/| are 5-isogenous
over k, because Ej has a k-rational subgroup V defined by x> — ex — (4 + 21¢)/5, and there is
an isomorphism defined over k between E)| and

EJV Y’ 4+ XY 4+Y =X — (24 3)°X — 138
given by the substitution
X=(E@+e x+ B +e),Y =(+e)y+3e(e? + ) ’x + 4.

(The equation of E;/V given above is also calculated by Vélu’s formula.) Hence

Corollary 1. All elliptic curves with everywhere good reduction over k = Q(\/29) are
isogenous over k.

3. Proof of Theorem 1.

Notation. For a number field K, we denote by (Ox and hg its ring of integers and its
class number, respectively. If nt is a divisor of K, hg(m) denotes the ray class number of K
modulo nt.

The following two lemmas are known:

Lemma 1. Let k be a real quadratic field with narrow class number 1 and let | be a prime
number which is inert in k. Then for any semi-stable elliptic curves E, E over k which are
l-isogenous over k, either E or E has a k-rational point of order

Proof. [6],p.248. O

Remark. The condition of the lemma that / is inert in k is necessary, because the results
of Serre [11] used in [6] require the assumption that / is unramified, and the conclusion of the
lemma does not hold in general if / splits in k. For example, as was shown above, our curves
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E; and E) are 5-isogenous over @Q(v/29) but none of the two curves have any Q(v/29)-
rational points of order 5. (See also the arguments in pp. 248-249 of [6] and in pp. 320-323
of [11].)

Lemma 2. Let E be an elliptic curve with everywhere good reduction over ©Q(+/29) with
discriminant A = —&" (n = 2,4,8,10). If E has a ©Q(~\/29)-rational point of order 3, then E is
isomorphic over Q(\/29) to Ey given in Section 1 or to its conjugate E.

Proof. This was proved in the proof of the theorem of [9]. [

Let E be an elliptic curve with everywhere good reduction over k = Q(v/29) with
discriminant A4 = +¢”" (n € Z), where ¢ = (5++/29)/2. In view of the formulae for an
admissible change of variables, we may assume that 0 = n < 12. The following lemma and
propositions, together with Lemmas 1 and 2, imply Theorem 1.

Lemma 3. Let E| be as in Section 1. The only k-rational subgroup of Ei of order 3 is
E, (k)tors = <(070)>

Proposition 1. The discriminant of E is of the form —&" (n = 2,4,8,10).

Proposition 2. E admits a 3-isogeny defined over k.

The proof of Theorem 1 is as follows. If E has a k-rational point of order 3, then Lemma 2
and Proposition 1 imply that E is E; or E|. If E has no k-rational point of order 3, then take a
curve E which is 3-isogenous over k to E; the existence of E is guaranteed by Proposition 2.
By Lemmas 1, 2 and Proposition 1, E is E; or E' and, by Lemma 3, E is E, or E’, which
proves Theorem 1. Thus, to complete the proof of Theorem 1, all that remains is to prove
Lemma 3 and Propositions 1, 2.

We can prove Lemma 3 easily. Indeed, the x-coordinate x € k of a point of a k-rational
subgroup of E; of order 3 satisfies x(3x> + x> + 3e%x + 3¢*) = 0, and 3x> + x> + 3e%x + 3¢* is
irreducible modulo the prime ideal ((1 4+ v/29)/2) whose norm is 7, as claimed.

We will prove Propositions 1 and 2 in the following sections.

3.1. Proof of Proposition 1. Let E and A be as in the preceding section and let N = k(+/4).
Since 4 = +¢", we have N = k, k(v/—1) or k(v/%¢). Note that, since the norm of ¢ is —1,
k(1/¢) and k(,/—¢) are conjugate over @) and hence we may assume that N = k, k(~/—1) or
k(1/€). We first show that N must be k(v/—1), that is, the sign of 4 is — and 7 is even.

Let k;, be the extension of k generated by the coordinates of all points of order 2. Since, by
Proposition 2.2 of [2], E has no k-rational points of order 2, k, /N is a cyclic cubic extension.
Further k,/N is unramified outside 2 by the criterion of Néron-Ogg-Shafarevich ([16],
p. 184). Thus we have

Lemma 4. h](\%) := hn(]] p) is divisible by 3, where the product is taken over all prime ideals
of N dividing 2. pl2

We interpret the divisibility of h](\?) by 3 in terms of class number.

The discriminant of k(v/—1) is 2* - 29? (see Proposition 17 of Chapter III in [8]).
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Lemma 5. Let m > 1 be square-free and congruent to 5 modulo 8 and let L = Q(\/m).

Supposing that the norm of the fundamental unit € of L is —1, the discriminant of L(\/¢) is
—16m?>.

Proof. Since the discriminant of the polynomial X? — ¢ is 4e, the relative discriminant
dp (5L of L(y/€)/L is a divisor of 40,. If d; (7, = OL, then we have |d;( 7| = m? by the
formula

ldr | = ldo YN e

(see [8], pp. 60, 66, or [19], p. 44). Here d, (s (resp. di, = m) is the discriminant of L(v/¢)
(resp. of L), and Npd, /), is the norm of the ideal d; ), - We must have d;( z) = —m?,
since L(+/¢) is a quartic field having two real embeddings and a pair of complex embeddings
(see [19], Lemma 2.2). This contradicts the fact that the discriminant of a number field must
be congruent to 0 or 1 modulo 4 (see [8], p.67). Hence 2 is wildly ramified in the extension

L(y/e)/L and hence d;( ), =40, by Proposition8 of Chapter III in [8], whence
drijs = —16m? by the above formula. [

Remark. Let L, € be as in Lemma 5 and let w = (1 4+ /m)/2. The ring of integers of
L(\E)iISZDZw D Z\cDLw\/c = Op © Op\/E, since its discriminant is —16m?.

Hence there is just one prime p of N dividing 2 and the norm of p is 4. By this and the
formula for the ray class number (Theorem 1 of Chapter VI in [8]), we obtain the following:

Lemma 6. The ray class number hj(\%) = hy(p) is equal to hy, whence hy = 0 (mod 3).

Lemma 7. hy = hy( 7 =1 and hk(\/—_l) =3

Proof. The assertion that s =1 is clear. The assertion that &z =1 is proved by
checking that all the prime ideals with norm less than or equal to 13 (=the integral
part of the Minkowski bound for k(y/¢)) are principal. For k(v/—1), we have

From Lemmas 6 and 7 it follows that N = k(v/—1) and 4 is of the form —** (0 = n < 6).
Next we show that both of the cases n = 0 and n = 3 are impossible. The discriminant 4
and the quantities ¢4, ¢6 defined as usual satisfy ¢j — ¢z =17284. Hence, if 4 = —*"
(n = 0,3), then (c4/*"/3,cg/€") is a k-rational point of the elliptic curve C: y> = x> + 1728.

Lemma 8. The Mordell-Weil group C(k) of C over k is ((—12,0)) >~ Z/27Z.
Proof. The rank of C(k) is shown to be 0 by the well-known formula
rank C(k) = rank C(®Q) + rank C*(Q),

where C?? is the quadratic twist of C by 29, and also by 2-descent via 2-isogeny (cf. [16],
[17]). Combining the injectivity of the reduction map C(k) — Cy,(Cx/,), where p,
(p =5,7) is a prime ideal of k dividing p and C, is the reduction of C modulo p,, with the
facts that #Cy, (O /ps) =2 -3, #Cy. (Or/p;) =22, and also with the fact that order of the
point (—12,0) is 2, we see that C(k),, is of order 2. The proof of the lemma is now
complete. [

tors

Hence, if A = —1 or 4 = —¢°, then ¢ = 0, that is, the j-invariant of E is 1728. But this is
impossible by Theorem 2 (a) in [13] (see also [10], Remark 2.1.4.1).
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Now we have proved Proposition 1.

3.2. Proof of Proposition 2. We again let £ and 4 be as above.

To prove Proposition 2, suppose that the assertion is false. Let k3 be the extension
of k generated by the 3-torsion points of E and let M = k(v/=3) and K = k(v/4) =
k(a) = Q(a), where a = +/e. We may regard G = Gal(ks/k) as a subgroup of GL,(IF3). Since
ks contains K ([11], p. 305) and K is a cubic extension of k, the order of G is divisible by 3.
Thus, by Proposition 15 of [11], G is contained in a Borel subgroup, or G contains SL;(IF3).
The former case is equivalent to the assertion that E admits a 3-isogeny defined over k,
being excluded by our assumption. Therefore SL,(IF;) C G, which is equivalent to the
assertion G = GL,(IF3), since the map det : G — IF} is surjective by the commutativity of
the diagram

G I GL2 (IF3 )

Resl ldet

Gal(M/k) =

Thus the Galois group Gal(ks/K), whose order is 24, is a 2-Sylow subgroup of G = GL,(IF;3),
whose order is 2* - 3, and is isomorphic to

(o,7]0*=1,7° = 1,010 =7°),

the semi-dihedral group of order 16.
We quote some results which are proved in [9] or easily deduced from results in the paper.

Lemma 9. Let K be as above and let F = Q(n), where 1> — 2n> — 7 — 1 = 0. Then the fields
F,K and M have the following properties:

(1) K = kF. (Note that o> +n(n —3)a—1=0.)
2) O =Zn), Ox = Or|a]. Hence the discriminant of F (resp. K) is —3 - 29 (resp. 3% - 293).
( U] p P
(3) hr =1.
4) The prime 3 decomposes in F and MK as p;p? and (R;R5%8%)%, respectively, where
3 313
p; = (n = 1), p} = (n + 1) are distinct prime ideals of F, and 35, ¥}, K5 are distinct
prime ideals of MK. The primes ps, b are inert in K.
5) The prime 29 decomposes in F and K as D30 and (B,0%B5)% respectively, where
29729 9P29 Y,
P29, Dho are distinct prime ideals of F and B9, V5o are distinct prime ideals of K.
(6) The real prime of F is unramified in K.
(7) n— — 1 induces an isomorphism Oy [py = Fg =IF3(a), where a = a + p5.
(8) MK is the Hilbert class field of Q(v/—87).

Let p be the principal ideal 3¢;. Assume first that £ has ordinary reduction at p. Then, by
the corollary to Proposition 11 of [11] and (4) of Lemma 9, the ramification index of p in
ks/k is 2. It follows from (4), (8) of Lemma 9 and the criterion of Néron-Ogg-Shafarevich
that k3 /@Q(+/—87) is an unramified extension. But it is impossible, since MK is the maximal
unramified abelian extension of Q(v/—87) (see [20]).

Suppose next that £ has supersingular reduction at p. Then by Proposition 12 of [11], the
inertia group in k3/k of a prime ideal of k3 dividing p is a cyclic group of order 8. There are
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exactly three such subgroups of GL,(IF3), namely (7), g(t)g~", ¢°(r)g 2, where 7 is as above
and g = ((1) } ) is of order 3. Let * be a prime ideal of k3 dividing p with inertia group (7).

By (4) of Lemma 9, we must have 8 N K = p; and the fixed field of k3 by the group (7) is a
quadratic extension of K unramified outside p} and the real primes p'l), p2) of K. However,
we have

Lemma 10. Az (pipUp2)) is odd.
Proof. Let m = pipUp@ and let
Ky={xeK*|(xm)=1},Kn1 = {x €Ky |x=1(mod)m}.
The following three units generate the group Ky /K1 = Fs3(a)” x (—1) x (—1):
= (" =2n) +a,uy =~y + (n = 2a,us =1+ (27 — )
Indeed, u; = a, up = uz =1 (mod p5) by Lemma (7) of 9, and

u) = 3124..., 4P = 0815...,
w) = 0554, ul)=-0708.. .
ul) =—1411..., o = 1804...,
where ) (i =1,2) means the conjugacy corresponding to p'). (We normalize ) as

a) =1.731...,a® = —0.5774 .. .. Note that ) = »® =2.546....) Hence hx(m) = hg by
the formula for the ray class number. Thus it is enough to prove that hg is odd. Let F be as in
Lemma 9. By (2), (4), (5) and (6) of Lemma 9, the only prime of F ramifying in K is p,.
Hence Kk is odd by (3) of Lemma 9 and (a) of Theorem 10.4 in [19]. (In fact, we can check
that hx = 1 and thus Ag(p;pWp@) =1) O

Again we have a contradiction. Hence E admits a 3-isogeny defined over k.

The proof of Theorem 1 is complete.

4. Appendix. Let k be a real quadratic field and let £ be an elliptic curve with everywhere
good reduction over k with discriminant A. If £ has no k-rational points of order 2, then the
0= hy vz V) (g p) is divisible by 3 (cf. Lemma 4).

Assume first that the class number of & is prime to 6. Then E has a global minimal model
([12], Corollary to Theorem 1), and hence we may take 4 to be a unit. Hence, if h,(c ), hl(cz()\/—
and h K(yz) are all prime to 3, then each elliptic curve with everywhere good reduction over
has a k rational point of order 2.

Assume next that hx = 2. Since E has everywhere good reduction over k, the principal
ideal (4) is a 12-th power, say (4) = a'2. Since h; =2, (4) = (02)® = (a)° for some « € k*.
Therefore k(v/A) is one of the fields k, k(v/—1), k(v/£¢) and hence an argument similar to
that given above can be applied.

Computing h,(cz), h1(<2)\/— and hl({) (we omit the details, merely remarking that
Ay in man( c_zi%es) and cé)\Qbmin this with results in [1], we obtain:

k(VA) y g )

ray class number h? KA =

Theorem 2. (1) If m =2, 3,5, 10, 13,15, 17, 21, 30, 34, 39, 42, 47, 58, 66, 70, 73, 74, 85, 94
or 97, then there are no elliptic curves with everywhere good reduction over Q(\/m).
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(2) If m=6,7, 14, 41 or 65, then every elliptic curve with everywhere good reduction over
k=Q(y/m) has a k-rational point of order 2 Thus the curves E;
(1=i=18,23 =i =40) listed in Section 5 of [1] are all the elliptic curves having
everywhere good reduction over these fields.

For the values of m above such that the class number of Q(+/m) is prime to 6, that is, for
m=2,3,5,6,7,13,14,17,21, 41, 47,73, 94, 97, the same results have already been obtained
in [2], [4], [5], [10]. It is worth remarking that we use the class field theory only, whereas the
authors of [2], [4] and [5] used Serre’s results on Galois representation theory ([11]) or the
ramification theory in Kummer extensions in addition.

We can check that there is only one isogeny class for m = 6,7,14,41 and that there are
exactly two isogeny classes for m = 65. Below we show the isogeny graphs among the related
elliptic curves. For elliptic curves E, E’ defined over k and a rational prime p, the graph

E-LFE
means that £ and E’ are p-isogenous over k.

Let d(m) be the discriminant of a quadratic field Q(y/m). Then, on the other hand, the
structure of the space Sy, introduced in Section 1 is known. For the values of m stated in
Theorem 2 (1), S4;n) has no 2-dimensional @Q-simple factor. For m = 6,7,41, Sy, is
2-dimensional and @Q-simple; for m = 14, it is a direct product of a 2-dimensional Q-simple
subspace and a 4-dimensional @Q-simple subspace; for m = 65, it is a direct product of two
@Q-simple subspaces of dimension 2 (the above calculations of S,y are done by Y. Hasegawa
and T. Hibino independently). Hence, for the values of m in Theorem 2, the conjecture
stated in Section 1 is true.

Eqn
/
2 2
3 3 Eyo Eg E3
E3 E; Eg
Q(V7) : 7 7 7 7
Q(+/6) : 2 2 2
2 2
3 3 Eq Er E14
E4 Eg Esg
2
Eiz
7 2 2 2
Ess Eie Ege Ea3 Egq Egs
Q(V14): 2 2 Q(V4T) : 2 2
Ey7 7 Ehg Eog Egr
2 2 2 2 2 2
Q(v65) : E33 E3qy E3p E3g E3s E31 Ego E37
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