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Topological zoo of free-standing knots
in confined chiral nematic fluids

David Se&!, Simon Copar? & Slobodan Zumer'3

Knotted fields are an emerging research topic relevant to different areas of physics where
topology plays a crucial role. Recent realization of knotted nematic disclinations stabilized by
colloidal particles raised a challenge of free-standing knots. Here we demonstrate the creation
of free-standing knotted and linked disclination loops in the cholesteric ordering fields, which
are confined to spherical droplets with homeotropic surface anchoring. Our approach, using
free energy minimization and topological theory, leads to the stabilization of knots via the
interplay of the geometric frustration and intrinsic chirality. Selected configurations of the
lowest complexity are characterized by knot or link types, disclination lengths and self-linking
numbers. When cholesteric pitch becomes short on the confinement scale, the knotted
structures change to practically unperturbed cholesteric structures with disclinations expelled
close to the surface. The drops with knots could be controlled by optical beams and may be
used for photonic elements.
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he complexity and versatility of knots have fascinated

humanity for centuries, and since the pioneering work of

Kelvin and Tait"2, they have been systematically studied
as idealized topological entities®. Knotting and linking are not
limited to ropes* and are observed even at a molecular level in
DNA>S, polymers”® and single molecules’. However, the
intricacy of knots in physical systems extends beyond basic
mathematical notions of knot theory if the knot is a part of a
continuum field. The coexistence of the knot and the surrounding
physical field leads to additional topological and energetic
constraints, stability issues and the problem of precise material
manipulation and experiment design, required to create the
knots. Recently, knotted field structures have been observed and
engineered in optical fields'?, fluid vortices'!, quantum states'?
and liquid crystals (LCs)!37'°. As a medium that allows
topologically stable disclinations (defect lines in the nematic
order parameter field), nematic LCs are a choice component in
composite materials. The first linked disclinations in chiral
nematics, albeit transient and non-singular, were observed by
Bouligand'®!”. With the aid of optical manipulation, the
topological properties of closed disclination loops have been
probed more systematically in experiments involving
entanglement of colloidal particles. The entanglement enabled
creation of robust chains and two-dimensional (2D) colloidal
crystals, but also revealed that the disclinations can be formed
into knots and links of arbitrary complexity!>14,

Studying knotted disclinations in LCs offers a unique
opportunity for probing the most complex aspects of their
topological properties. It advances theoretical understanding of
the intricate topological nature of the material and drives the
improvement of precise experimental techniques needed to
control such structures. Variety of the complex metastable
structures, combined with fine experimental control thus sets a
path to creation of new topologically driven materials.

Contrary to the case of nematic colloids'®, where topology is
tuned by imposing complex boundary conditions in an infinitely
extending nematic field, nematic droplets offer a different kind of
frustration. The closed spherical boundary removes the existence
of a preferred axis, restoring the orientational isotropy of the
system and removing the influence of far-field imposed by
external boundaries. In nematic droplets, the structure is thus
influenced primarily by the anchoring condition. The defect
behaviour in droplets with the anchoring varying from
homoeotropic (molecules aligned normal to the surface) to
planar degenerate (molecules parallel to the surface) is well
researched both topologically and experimentally!®=2!. In any
case, however, the disclinations in an ordinary nematic tend to
shorten as much as possible to minimize the costly isotropic cores
and the absence of obstructions inside the droplet leads to highly
symmetric structures of point defects and ring disclinations.

A way around this setback is to use chiral nematic LCs
(cholesterics). In cholesterics, the intrinsic chirality causes the
director n, denoting the average orientation of the LC molecules,
to spontaneously form a helical twist. This twisting can act as an
obstruction to kinetically trap disclination lines and prevent the
otherwise favourable shortening and merging process. The
distance over which the director turns by 2m, known as the
intrinsic cholesteric pitch p,, can be controlled by temperature??,
optical illumination’> or chiral dopants?*. The periodic
modulation of the average orientation effectively changes the
optical axis, achieving specific optical characteristics of
cholesterics.

Introducing chirality to the LC droplets breaks the rotational
symmetry of the nematic texture inside the droplet. The tendency
to create layer-like helical structure competes with the spherical
boundary conditions of the droplet, creating a frustrated
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environment with a multitude of metastable states?1:25-27,

Ensuing conformations not only depend on the anchoring, but
vary continuously with the cholesteric pitch. The structures with
concentric layers found in cholesteric droplets with degenerate
planar anchoring have lately attracted much attention with their
use in advanced soft matter photonic elements such as Bragg
resonators for micro lasers?®2, The recent detailed numerical
and topological study of these systems shows?’ that the
degenerate boundary conditions still allow enough degrees of
freedom to at least partially accommodate the requirements of the
intrinsic twisting and form rather simple defect structures.
Homoeotropic boundary condition, on the other hand, is much
more restrictive and induces formation of disclinations even at a
flat interface334, In a droplet, the inability of disclinations to pass
through the boundary only allows confined closed disclination
loops, which motivates our quest for knotted structures. While for
a cholesteric with very large pitch (effectively nematic) the ground
state with only a few metastable states is well researched, many
different metastable states could be expected with shorter pitch.
Unlike in the colloidal systems, where entangled disclinations stay
close to the surface, the inverted geometry of droplets allows the
bulk interior to stabilize the disclinations in three dimensions. For
this reason, the homoeotropic cholesteric droplets are an ideal
model system for the search of free-standing knotted disclination
structures.

In this article, we demonstrate the possibility to produce and
manipulate metastable free-standing knots and links of topolo-
gical defect lines by using a simulated thermal quench in the
ordering field of spherical cholesteric LC droplets with surfaces
inducing strong but finite normal (homoeotropic) orientation of
the molecules. We first show that by simulated thermal quench, a
variety of metastable configurations (that is, configurations that
are local minima of the free energy) can be produced that mainly
differ in the type of the knot or link that the topological defect
lines tie. We analyse the variety of possible states, with their
complexity primarily depending on the intrinsic chirality of the
medium, but with chirality sufficiently low that the blue phases
are not yet stable. We study the disclination lines and show how
the topological constraints are satisfied. Finally, we discuss the
difference in the nature of observed structures for droplets with
varying degrees of chirality, and the behaviour in the limiting case
of cholesterics with a high degree of chirality.

Results

Simulated temperature quench. When shortening the pitch, one
would expect a variety of metastable states due to the competition
between cholesteric layered ordering and spherical bounding
surface. Experimentally (and also numerically), obtaining the
states with higher energy than the ground state can often be
challenging. A way to produce the metastable structures, despite
the energetic barriers between the states, is to repeatedlgf relax
the LC from a randomly selected disordered state®. To
experimentally attain such a state, the LC is heated above the
nematic-isotropic transition temperature and then left to quickly
cool down to room temperature. Numerically, the thermal
quench is produced by setting the initial condition of the
director to random vectors at each mesh point and then
numerically relaxing the system as can be seen in Fig. 1a,b. The
numerical quench that we use is very similar to the experimental
thermal quench®. As we are interested in steady states, our
numerical algorithm follows the orientational relaxation but
neglects hydrodynamic aspects that would primarily cause the
anisotropy in the dynamics of disclinations with different
winding numbers®”38, Details are described in the Methods
section.
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Figure 1 | Randomly occurring knots in homoeotropic cholesteric droplets. (a) A highly disordered state for N =5 shortly after the numerically simulated
thermal quench. Note a ‘zoo’ of disclination lines in red, visualized as S = 0.48 isosurfaces of the nematic degree of order. After a few millions of simulation
steps the system relaxes to a (b) metastable state as a local free energy minimum. (¢) By extracting and geometrically simplifying the disclination line, a

knot can be deciphered as a (d) trefoil knot.

After a thermal quench, domains of local LC order are
established, producing a zoo of randomly positioned singular
nematic disclination lines with winding number — 1/2 between
the domain walls, as visualized in Fig. 1a. The relaxation leads to
coarsening of the disclination network until the few remaining
disclination lines reach an equilibrium with the compression and
distortion of the cholesteric helix and thus become kinetically
trapped (Fig. 1b). The resulting metastable structures often
include knotted or linked disclinations. Note that all disclinations
in equilibrium droplets are simple singular nematic disclinations
with winding number —1/2 but the chirality actually prevents
them from minimizing their lengths as typically happens in non-
chiral nematics. After numerically extracting the curve of the
disclination from the equilibrated numerical sample, we simplify
its geometry with dedicated software (Fig. 1c) to ease identifica-
tion of the knot or link formed by the disclination loops (Fig. 1d).
The variety of states that can be obtained primarily depends on
the relative size of the droplet with respect to the chiral pitch,
specified in the units of the droplet radius as py=4R/N.
Effectively, the relative chirality parameter N measures the
number of m turns of the director along the droplet diameter
and does not have to be an integer number. For N<3, we
only obtain a single disclination loop; however, for N>4 the
complexity of possible states quickly increases, as a larger number
of turns of the cholesteric helix allows stabilization of the
disclination lines in a locally trapped state. For N=4, only
multiple unlinked loops and Hopf links are obtained, while for
N=5, a set of more complex links and knots are found, ranging
from symmetric states with one or more isolated loops (Fig. 2a,b)
to the trefoil knot (Fig. 1b), Solomon link (Fig. 2c), Hopf link
(Fig. 2d), Whitehead link (Fig. 2e) and a three-component link
(Fig. 2f), to name a few>®. Moreover, most of the knots or links
are found in many different metastable conformations that differ
in the shape and length of the disclinations. Apart from the
limited disclination length for a given N, there are no topological
restrictions to the knot type, although the more complex knots
are seen less frequently. The geometry of the defects affects both
the surrounding director field and the energetic stability of the
system. The competition of the cholesteric helix with the
frustrating effect of the spherical surface forces the disclinations
towards the surface of the droplet where they are kept a few
nematic correlation lengths away from the surface by the strong
surface anchoring. The expulsion of defects is more pronounced
when the number of turns per droplet diameter is higher.

The free energy differences between different states are up to
300 x 10% kgT and typically the more symmetric and less knotted
structures are more stable. The free energy mainly depends on the
length of the disclination line as shown in Fig. 3, where free
energies of various configurations are plotted. The deviation from

Figure 2 | Examples of different knots and links as obtained for N=5.
(a) A single loop (an unknot), (b) three unlinked loops, (€) Solomon link
with an extra loop, (d) a Hopf link, (e) a Whitehead link and (f) a three-
component link (63 on the Rolfsen table3?) with an additional unlinked
loop. The disclination lines are drawn as regions of depressed nematic
degree of order and colour coded for better visual distinction. The insets
show a simplified schematic view of the corresponding knots. The bottom
inset shows the pitch and the corresponding cholesteric helix.

the linear trend can be attributed primarily to compression of the
cholesteric helix caused by frustration, and the difference in
the volume of the elastically deformed region around the
disclinations in the bulk, compared with the disclinations that
run along the boundary.
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Linking of disclinations. Defects with singularities in the director
field can be described in chiral nematics with the same formalism
as in achiral nematics. An extended description, in which the
helical axis is treated as a separate de%ree of freedom and also
detects defects in the helical order?®, is less suitable for our
system; as the distortion of layers is large compared with the
cholesteric pitch, the helical axis is ill-defined, with extended
regions, especially near the surface of the droplet, where twisting
is completely suppressed by the restrictive boundary condition.
From here on, the only defects we are interested in are singular
nematic disclination lines.

Topologically stable singular nematic disclinations are char-
acterised by the director field that rotates by m on a path that
encircles the disclination. However, there is no topological
restriction on the cross-section profile, so the profile behaviour
is determined only by the free energy cost and geometric
constraints imposed by the confinement. In entangled nematic
colloids, the spherical inclusions with homoeotropic anchoring
ensure that the director field near the disclination always lies
approximately in the plane perpendicular to the disclination
tangent. More precisely, the cross-section looks like a 2D nematic
defect with a —1/2-winding number, which possesses a
characteristic threefold symmetry!842, This symmetry can be
visualized with a splay-bend parameter (Sgp; in units of nematic
correlation length squared 2~ 44 nm?) that detects varying type
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Figure 3 | Free energy of various metastable states. Free energy, plotted
with respect to the measured disclination length, shows a roughly linear
dependence. The slopes of the linear regression lines, fit to the calculated
data for N=4 and 5, are similar within the margin of data dispersion, at
(14,000 kgT/R + 800 kgT/R) and (13,000 kgT/R +1,000 kgT/R),
respectively. The lengths are given in the units of droplet radius R.

of elastic distortion around the disclination*®. Figure 4 shows that
our system exhibits the same restriction to threefold —1/2-
winding number disclinations. In the bulk, the cross-section has
no observable deviations from the perpendicular alignment. For
the disclinations that lie near the surface of the droplet, the
director field tilts out of plane, distorting the threefold cross-
section. However, the director field can be always ‘combed’ back
to the perpendicular orientation in a continuous manner. The
tilting never adds up to topologically significant turning of the
director field, but simply fluctuates around the ideal
perpendicular orientation.

Disclinations from this restricted set, when closed into a loop,
possess a topological invariant Sl—self-linking number—that
describes a total amount of rotation of the profile around the
disclination tangent*2. This number is quantized in the form
Sl=m/3 where loops with an odd m are linked by another
disclination, while loops with an even m are not linked.

Despite the difference in the elastic-free energy functional, a
chiral nematic possesses the same order parameter as the achiral
nematic, so the topological discussion of their respective
configurations is the same. This means the homotopy theory
for nematic defects can be applied. A homoeotropic droplet
requires a topological charge q=1 inside, and in a system of
disclination loops, the conservation law can be written in terms of
the self-linking numbers*?,

3 n n
3 ZSIiJrzZLk,j +n=1 mod 2. (1)

i>j

Here n is the number of loops, SI; are the self-linking numbers
of individual loops and Lk;; are the linking numbers between pairs
of loops.

We use a robust algorithm that extracts the ribbons from
simulation results to calculate the self-linking numbers without
a manual intervention. We take the director field in the
neighbourhood of the disclination and use the principle of
maximum correlation to track the orientation of the intersection
around the loop, measuring the total amount of rotation. Despite
deviations from the ideal profile, the assumption that profiles are
topologically equivalent to a threefold — 1/2 profile is confirmed
in all ~150 simulated structures, which include linked and
knotted structures consisting of multiple components. Some
examples that demonstrate how the conservation (equation (1))
couples topological charge to the linking and self-linking
numbers are given in Table 1.
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Figure 4 | Structure of the droplet with a trefoil knot. A nematic disclination line (red isosurface at S=0.48) from Fig. 1b (N =5) with shown regions of
higher splay (blue, Ssg =0.006) and bend deformations (in yellow, Ssg = — 0.006) around it. Note the screw-like rotation of the line profile. The director
field in a horizontal equatorial section is shown on the right with insets of the line profile near the surface (top inset) and in the bulk (bottom inset). Blue
cylinders represent the director field, red regions S<0.48, while blue and yellow shading marks regions with high splay and bend deformations:
Ssg>0.006 and Ssg< — 0.006, respectively. Note the threefold —1/2 profile of the director field surrounding the line that is symmetric in the bulk,
becomes distorted near the surface, but not enough to prevent the use of the self-linking number formalism.
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Table 1 | Knots with corresponding line length, knot type and S| number.

Line Knot type Length (R) S| number
Fig. 1b Trefoil 22.4 g

Fig. 2a Loop 16.6 0

Fig. 2b 3 loops 614+39+4.0 04040
Fig. 2c Solomon link and a loop 7144203445 Z248+4
Fig. 2d Hopf link 16.9+12.3 147
Fig. 2e Whitehead link N1+18.4 2.8
Fig. 2f 63 and a loop 128+69+47+39 10412424

For N =5 the knots, links and loops from Figs 1, 2 are shown with the knot or link name, disclination line length (in the units of the droplet radius R) and the corresponding S| numbers. Notice that because
of linking, the Sl numbers of the Hopf link components have odd numerators. The components of other links are linked an even number of times, so the numerators of their S| numbers are even. With the
linking numbers taken into account, all configurations satisfy equation (1). The terms in the last two columns correspond to the same-coloured disclinations in Figs 1 and 2.

Chirality and configuration space. The thermal quench simu-
lations show that a large number of different metastable struc-
tures can be reached from different random initial conditions.
This means that the process of relaxation to the equilibrium state
is chaotic and very sensitive to initial conditions, allowing many
structures to be reached even without forcing a specific geometry.
In most of the resulting structures at least a part of the dis-
clination line resides near the surface of the droplet, which con-
trasts with the disclination-shortening behaviour in achiral
nematics. Here the rewiring of the nematic disclinations is
inhibited by layers of m cholesteric twist between the lines. The
layers act as barriers, since the unwinding of the helical order is
energetically costly, and thus prevent the shortening of the dis-
clinations. These frustration-driven barriers in the free energy are
the reason for a large number of metastable states, which only
increases with increasing chirality. Despite the fact that the
chirality prevents shrinking of the disclinations to a point or a
small ring (as would happen in achiral nematics), the free energy
is still found to be mainly governed by the disclination length due
to its isotropic core (Fig. 3).

In contrast to the ordered, lattice-based knots in colloidal
systems, which have well-specified rewiring sites'®, our system
has no metric that would allow us to predict the number of
different disclination loop conformations. Instead, the space of
possible configurations is a continuum. There are no systematic
rules to predict and enumerate the structures, so the knots that we
observed are but a small fraction of the full set of possibilities.
However, the energy landscape continuously depends on the
relative chirality parameter N—either by changing the droplet
radius or the cholesteric pitch. With the variation of N, the local
minima can disappear, merge and move around the configuration
space. At N=0, there is only one deep global minimum—the
radial hedgehog in the middle. With increasing number of helical
turns N, additional local minima with lower symmetry appear
and, eventually, the radially symmetric hedgehog state becomes
unstable. The nematic braids that we found in droplets at N~4-6
represent some of the simplest knots and links and conform
nicely to the topological rules, derived theoretically for — 1/2
disclination loops. With growing N, positions and number of
minima in the free energy landscape become practically
unpredictable, making the system harder to explore.

By further increasing N, we observe not only an increase in the
number of metastable states, but also the tendency for the
disclination lines to be forced to the layer just below the surface
creating structures that are analogous to ones observed in
inverted systems—in homoeotropic colloidal particles dispersed
in cholesterics*4. In droplets, the disclinations act as a screening
mechanism for the frustrating homoeotropic boundary condition,
so that the inside of the droplet can relax to a layer-like structure,
locally similar to the cholesteric ground state (Fig. 5a,b). When N

Figure 5 | Short-pitch droplets with smectic-like subsurface
disclinations. (a,b) A stable structure for N=12 with a disclination loop
located just below the surface. (b, left) The bulk is filled with a uniformly
layered cholesteric director field. (b, right) The director streamlines

just below the droplet surface reveal the in-plane component of the director
field. (¢, d) A metastable state with disclinations in the smectic-like
structure and non-uniform cholesteric order in the bulk.

is sufficiently high, these quasi-2D structures (see also Fig. 5¢,d)
become energetically favourable over structures with disclinations
passing through the inside of the droplet, which disrupts the
layered structure. For N greater than around five turns per
diameter, the structures with the lowest energy have the
disclinations exclusively restricted to a thin layer right below
the surface of the droplet (Fig. 5), although the structures with
bulk disclinations still exist as metastable states with much higher
free energy.

In the limit of cholesterics with high N (note that blue phases
are not stable in this regime; see Methods section), the topology of
the disclination lines is different from the moderately chiral case.
A 2D structure does not allow knots and links but instead exhibits
a constant spacing of disclinations, governed by the cholesteric
pitch. The resulting surface pattern is similar to a 2D smectic
texture, with disclinations acting as smectic layers, and kinks in
the disclinations acting as smectic disclinations, which obey
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topological rules for a smectic on a sphere*’. Furthermore, the 2D
smectic-like disclinations may be interpreted as intersections
of bulk cholesteric A disclinations with the surface. We can
estimate the average length of the disclinations in this case
as [~4nR*/(po/2) =2mRN, which is a relatively accurate
approximation even for the N=4,5 cases (see also Fig. 3 and
Table 1).

The entire range of chirality, from the achiral N=0 to the limit
of N— oo, involves an interesting change in topology of the free
energy landscape. The topologically rich structures of knots and
links that occur around N~4,5 appear to be a borderline
phenomenon at the transition from the single central radial
hedgehog at N=0 to the smectic-like pattern of disclinations at
the high chirality end of the spectrum. The continuous nature of
the chirality parameter opens a question of how the energy
minima emerge, evolve, bifurcate and disappear with increasing
N. Future research on this problem could reveal hierarchy of
metastable states and allow a quantitative exploration of the
configuration space continuum.

Discussion

Homoeotropic cholesteric droplets are the first known system
that exhibits non-transient knotted singular disclination lines in
the bulk. The system has multiple metastable states that persist
after relaxation to a local free energy minimum. This allows for
observation of relatively complex defect structures present in a
simple spherical geometry. Colloidal inclusions are not needed to
prevent disclination line rewiring and annihilation. Instead, the
intrinsic tendency to form a layered structure is opposed by the
spherical confinement enforcing strong but finite homoeotropic
anchoring, which creates conditions for topologically non-trivial
metastable structures. An increase in topological complexity and
potential for knotted structures can be expected not only in
droplets but also in other frustrated environments, such as
periodic or glass-like microcavities*®. The presence of bulk
disclinations under confinement can also be understood as an
intermediate state between the achiral nematic, which tends to a
homogenous texture and minimizes the amount of defects as
much as topologically allowed, and the blue phases, which
contain defects without the need for boundary conditions, and
also show non-trivial defect structures when subject to
confinement*”+48,

The chirality-driven transition from structures with knotted
defects in the bulk to structures with all the disclinations
residing in the boundary layer close to the surface can be
compared with the Meissner effect in superconductors. The role
of the penetration depth is played by the cholesteric pitch,
and as the surface currents in superconductors screen the
unfavourable external magnetic field, the nematic defects screen
the frustrating boundary condition, allowing the interior of the
droplet to assume the twisted ground state. The spiral surface
disclination patterns are similar to those seen around homoeo-
tropic colloidal particles in a cholesteric'®, except the geometry
is inverted.

The thermal quench used in our simulations can be reproduced
experimentally, by heating the droplet above the isotropic—
nematic transition temperature, which means that the knotted
structures are feasible in practice. However, if other experimental
manipulation techniques are applied, the different parts of the
configuration space can be sampled. Changing the initial
condition by applying patterned optical beams with varying
polarization profile, focal width and intensity, could provide a
change in statistics that would allow better control over created
knots and links, possibly creating structures unseen in thermal
quench simulations. Compared with the organized lattice-based

6

nematic braids in thin nematic cells'>!4, the droplets possess

a rotational degeneracy and irregular three-dimensional
texture and as such pose harder challenges for experimental

manipulation and imaging. Modern observation techniques, such

as variants of fluorescence confocal polarizing microscopy*>*’,

could be used to probe the three-dimensional structure of the
disclinations and compare them with our simulations.

The topologically rich occurrence of defects in homoeotropic
chiral droplets is an intriguing system to pursue with further
refined simulations and to investigate experimentally. As closed
systems, the droplets can be observed and manipulated
individually, and used in optical experiments as filters, scatterers
or resonators. Because of their variety and metastability, the
conformation of the droplet could be also used to store
information, if reproducible writing and reliable reading could
be designed. Further, the diversity of states could be used for
marking individual droplets, with the asymmetric texture acting
as a marker for tracking translational and rotational motion of
the droplets in a flowing medium.

Methods

Simulation methods. To model the chiral LC ordering in homoeotropic choles-
teric droplets, a continuum mean field Landau-de Gennes free energy approach is
employed®!. To describe the average orientation and order of the LC molecules, the
tensorial order parameter Q; = (S/2)(3n;n; — d;) + (P/2)(e$1)e](l) - efz)e](z)) is used
to construct the total free energy F (where S is the nematic degree of order, #; is the
nematic director, P is the biaxiality, e is the secondary director and e, =n x e;).
The central interest of this study is the effect of chirality, therefore, we use a single
elastic constant approximation of F (ref. 52):

2
F= [c{8QiQi+ 10,QuQu+ § (@,Q))'} 4V
+ LB 5 + 2q0LenQy 2} av

+ fu{% (Qv*Qg‘)z} dz,

the LC denotes the integration over the bulk of the LC and D over the

surface of the droplet. The first term accounts for the variation of the nematic
degree of order S, that is, the possible formation of singular topological defects; A, B
and C are material parameters. The elastic distortions from the twisted cholesteric
state with a single uniform helical axis, characterized by the pitch p, are
penalized with the second term with L being the elastic constant in a single
constant approximation and go=2m/p, is the inverse pitch. The use of multiple
elastic constants (that is, to account for different splay, twist and bend elastic
constants) would affect the extent of the areas where the three basic deformation
modes were dominant. This would certainly change the free energy and stability of
different configurations but would not affect their topological properties and
variety of knot types. The final term accounts for the LC interaction with the
homoeotropic surface, where W is the anchoring strength and QY is the preferred
surface orientation (that is, perpendicular to the surface). The homoeotropic
anchoring strength W=5 x 10 ~3Jm ~2 was chosen as strong but finite and
experimentally achievable®®. The anchoring strength required to keep the
disclinations away from the surface linearly depends on the elastic constants

and is inversely proportional to the droplet radius, and can be thus much lower
for bigger droplets typically used in experiments®*. The following values for
material parameters were used: L=4x 10N, A= —0.172 x 10°Jm 3,

B= —2.12x10%Jm 3, C=1.73 x 10°Jm ~3 at droplet radius R=1-2.25 um.
The shortest pitch used in our calculations is 0.75 pm, while the blue phases at
these material parameters become stable only at twice shorter pitch.

We minimize the free energy numerically by using an explicit Euler relaxation
finite difference scheme on a cubic grid with typical mesh resolution J = 10 nm to
avoid defect pinning. The surface is allocated as a thin spherical shell of mesh
points with thickness equal to the mesh resolution.

Extraction of disclination geometry. We use a custom code to numerically
extract the positions and profiles of the disclinations from the simulated data.
The position of the disclination line is extracted from the structure and then the
nearby director field in a plane perpendicular to the line is compared with the
ideal —1/2 disclination profile by calculating the cross-correlation. The
maximum of the cross-correlation reveals the best fit of the — 1/2 profile to the
numerical data. The self-linking numbers are then calculated by using an algorithm
proposed by Arai®®. Once the line is obtained, it can be geometrically simplified
to decipher the knot by using the knot relaxation feature in dedicated software
KnotPlot.
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