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Abstract—The dynamics of the orientational structure of chiral nematic (CN) droplets in an isotropic
medium in dc and ac electric fields is investigated by the polarized light microscopy technique. It is shown
theoretically that the dynamics of rotational processes in these kinds of systems is determined by electrocon-
vective processes developing due to the f lexoelectric polarization associated with the initial configuration of
the director field in droplets. It is established experimentally that the linear and quadratic regions of depen-
dence of the rotational velocity of droplets on the electric field strength are explained by the above-mentioned
mechanisms. Numerical simulation on the basis of the approach developed gives good agreement with exper-
imental data.
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1. INTRODUCTION

The study of the structure and physical properties
of various types of liquid crystal (LC)-based disor-
dered disperse systems is one of the topical problems
in the field of crystal physics and physics of condensed
media. Interest in these objects is motivated by the fact
that LCs possess unusual, and often unique electro-
optical and mechanical properties compared with tra-
ditional optical materials. Moreover, LCs in micro-
disperse systems contain numerous complex orienta-
tional structures, often including topological defects
[1–3], which are easily controlled by the variation of
constitutive parameters, boundary conditions, and
external effects (electric and optical signals and
mechanical, thermal, and magnetic effects). The
applied aspect of the studies is of no less importance,
because they open possibilities for the design of new
functional composite materials based on disperse LC
systems for optoelectronics, display technology,
recording media, and information technologies [4–7].

At present, the structure and the properties of
disperse systems representing suspensions of LC drop-
lets in a polymer matrix [1, 5, 7–9] and in porous
glasses and films [10] and LC emulsions and gels [1, 8]
have been most comprehensively studied. However, in
recent years, great interest has been shown in disperse
systems that represent suspensions of LC droplets in
an isotropic f luid [11–13]. These systems are simpler
in preparation but have been less studied; therefore,
the study of the properties and structural changes in

(micron- and submicron-size) LC droplets under
external forces seems to be an important problem.

Note that the main types of nematic LC-droplet
structures and, accordingly, transitions between them,
are well enough studied [2] compared with chiral sys-
tems or cholesteric LCs, in which the presence of a
helically twisted supermolecular structure of a given
phase determines a number of their unique properties.
An example of such a medium is given by nematic cho-
lesterol and a disperse system of droplets based on it,
in which a significant role is played by boundary
effects. The latter fact should initiate interesting struc-
tural–orientational transformations in droplets in
electric fields: for example, cyclic processes with
period much greater than the period of the effective
electric field [14], and, which is quite nontrivial, rota-
tions of droplets in a dc electric field [15]. In this rela-
tion, a detailed study of the mechanisms of rotational
dynamics of weakly chiral LC droplets dispersed in an
isotropic f luid in electric fields and application of ade-
quate theoretical models to the analysis of experimen-
tal results to establish the mechanisms underlying this
dynamics seem to be topical.

The first experimental observations of LC droplet
dispersions in an isotropic medium were reported by
Lehmann [16] as early as at the end of the 19th cen-
tury. He found a wide variety of structures of various
symmetries of both static and dynamic types (rotation
of LC droplets) that develop in a temperature gradient
field [17, 18]. The rotation of LC droplets was also
observed in an electric field [19, 20]. The nature of
255



256 SKALDIN et al.

Fig. 1. Schematic view of an oblate LC droplet (R = δ + d/2
is the radius of the droplet).
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these phenomena was interpreted as a manifestation of
thermo- and electromechanical mechanisms inherent
in chiral LC systems [21, 22]. However, in [23], the
authors theoretically showed that the translational
motion of “cholesteric fingers” in an electric field can
be initiated by electrohydrodynamic (EHD) instability
with regard to the f lexoelectric mechanism, which can
be used to explain the rotation of droplets in a chiral
nematic (CN) mixture.

Thus, in spite of the presence of theoretical models
of the rotation mechanisms of LC droplets in an elec-
tric field, there is no unambiguous explanation of its
physical nature. This is associated, among other
things, with the lack of experimental data including
the determination of the effect of the chirality of the
LC medium and the size of droplets on the character
of rotation. The goal of the present study is the exper-
imental and theoretical explanation of the rotational
dynamics of chiral nematic LC (CNLC) droplets in an
electric field.

2. EXPERIMENTAL

As test samples, we used a mixture based on a nem-
atic LC n-(4-methoxybenzylidene)-4-butylaniline
(MBBA) and a cholesteric LC, cholesteryl chloride
(CC), in the range from 0.05 to 2.8 wt %, so that the equi-
librium helix pitch P in these mixture ranged from 238 to
4 μm. The relaxation time of induced charge in these
mixtures with conductivity σ ≈ 2.75 × 10–9 (Ω m)–1 was
τq ≈ 1.7 × 10–2 s. The helix pitch of these mixtures was
determined by the method described in [24]. A cell
with an LC layer thickness of 25 ± 0.3 μm was placed
on an HCS250 (Instec, USA) thermal table with ther-
mal stabilization better than 0.01°C. The thickness of
the samples was measured by the interference method
with the use of a USB-650 (Ocean Optics Ltd., USA)
optical-fiber spectrometer with an accuracy of 0.3 μm.
The thermal table was mounted on a rotating object
stage of an AxioImager A1 (Carl Zeiss, Germany)
polarized light microscope. To obtain droplets in the
isotropic environment, the LC cell was overheated so
that the LC was completely transformed to the isotro-
pic state and then slowly cooled until mesophase
nuclei appear, which grew during cooling to form LC
droplets of a desired size. The size of the droplets was
varied by cooling or heating the cell. The electro-opti-
JOURNAL OF EXPERIMENTAL AN
cal characteristics were measured in transmitted light
under crossed nicols condition.

The object of study is free suspended oblate LC
droplets dispersed in an isotropic melt. The droplet
size was measured with the use of AxioVision (Carl
Zeiss, Germany) software with built-in system for
determining the size of objects. The accuracy of deter-
mination of the droplet size was about 1 μm. The
experimental video image sequences obtained by a
VX-440 (PCO, Germany) camera were digitized by a
Pinnacle USB-700 (Pinnacle System, Germany)
frame grabber with resolution of 720 × 576 pixels and
recorded on a hard disk for further processing. An ac
electric voltage U with frequency f = 50 Hz from an
SFG-3015 (GW Instek, Taiwan) waveform generator
with absolute error ±(0.05U + 0.05) V in the frequency
range from 10 Hz to 1 MHz, or a dc electric field from
a GPS-3303 (GW Instek, Taiwan) source with a dis-
crete output voltage step of 0.01 V were applied to the
LC layer.

To measure the dynamic characteristics of CNLC
droplets, such as the velocity of rotation, we applied
the following technique. The video record with exper-
imental data was opened in a special video-sequence
processing software with frame-by-frame scanning.
To determine the rotation period, we fixed the initial
position at time t1 and, upon passing a full period of
2π, fixed the end time t2. The ratio of the full period to
the difference T = t2 – t1 determines the angular veloc-
ity of rotation ω = 2π/T rad/s with accuracy of Δt =
0.01 s.

3. THEORETICAL MODEL 
OF THE DYNAMICS 

OF AN OBLATE DROPLET

As a model object of study, we consider an oblate
CNLC droplet in an isotropic environment placed
between two infinite parallel plates (Fig. 1).

The geometry of the problem is considered in a
cylindrical system of coordinates. The z axis is perpen-
dicular to the bounding plate of the sample, i.e., along
the helix axis in the central part of the droplet, and r
and ϕ are the radial and azimuthal coordinates,
respectively. The origin of the coordinate system is at
the center of the droplet. The size of the CNLC drop-
let is determined by the radius δ and the height d of its
central planar (cylindrical) part. The toroidal part of
the droplet has inner radius d/2 and outer radius δ. A
dc electric field E is applied along the z axis and has
components (0, 0, E).

To describe the physical dynamics of CNLC drop-
lets in an isotropic medium in a dc electric field, we
apply differential equations of continuum mechanics
in an anisotropic f luid [21, 25, 26] with regard to the
flexoelectric effect, which was considered in [23] to
study the dynamics of cholesteric fingers.
D THEORETICAL PHYSICS  Vol. 126  No. 2  2018
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Fig. 2. (a) Model distribution of the director field in a
spherical cholesteric LC droplet (the Franck–Price
model). (b) Monopolar structure of a droplet with a point
defect on the surface, corresponding to the distribution of
the director in the plane of the section passing through the
center of the cholesteric LC droplet. (c) View of an CNLC
droplet with a helix pitch of P = 54 μm (the droplet radius
is R ≈ 50 μm) under crossed Nicol prisms. 
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In view of the complexity of the geometry of the
problem and the awkwardness of the equations, ana-
lytic calculation is impossible, and we solve the prob-
lem numerically. Introduce dimensionless variables

(1)

where UF =  is the voltage corresponding to
the Frederiks transition, Kel is the Franck elasticity
constant, τ = ηd2/Kel is the relaxation time of the
director, and η = α4/2 is the viscosity. Then we can
write EHD equations in the same form as in [23] but
with different dimensionless coefficients.

The deformation field of the director in the droplet
(as shown in Fig. 2) produces volume charges, which
are related to the induction of f lexoelectric polariza-
tion Pf l; this gives rise to a force ρelE in the Navier–
Stokes equations (ρel is the electric charge density). In
the experiments of [19, 20], the velocities on the sur-
faces of rotating droplets did not exceed 1 μm/s, and
typical voltages were 2–4 V, which are 2–3 times less
than the threshold voltage for electroconvection in LC
by the Carr–Helfrich mechanism [21]. Thus, we can
assume that the velocities induced in the CNLC drop-
lets are small compared with the velocities due to elec-
troconvection; this allows us to seek solutions to EHD
equations within perturbation theory, where the small
parameter is the conductivity σ:

(2)

Then, the Navier–Stokes equation with regard to
new variables (1) has the following explicit form in
cylindrical coordinates:

(3)

where ϖ = d/δ,

(4)

and e11 is the f lexoelectric coefficient. Equations (3)
are supplemented with the incompressibility condi-
tion
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(5)

The expression for the electric charge density has the
form

(6)

This expression lacks the frequency-dependent part of
f lexoelectric charge density [23], which is propor-
tional to (1 + ω2 )–1. In the general case, one can the-
oretically show that the frequency-dependent part of
this expression can be neglected irrespective of the
experimental conditions [27], especially as ω2  ≫ 1
for the voltage frequency f ≈ 50 Hz considered in this
paper. The theory stated in [23] can well be applied for
relaxation times of τq = ε0ε⊥/σ⊥ ≈ 10–3 and higher (σ⊥
and ε⊥ are perpendicular components of electric con-
ductivity and dielectric permittivity). However, for
τq ≪ 10–3, this approximation is not valid for two rea-
sons. First, the perturbation theory in which the sys-
tem of equations is solved involves, as a small expan-
sion parameter, the conductivity σ of the medium,
and, second, the approach developed in [23] and,
accordingly, in the present study, is based on a bipolar
electrodiffusion model for electroconvection in
nematics [28], which is naturally restricted by ion
relaxation times related to the charge mobility.
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The inhomogeneous linear equations (3) and (5)
for v1 depend on the static distribution of the CNLC
droplet director and have the following general solu-
tion [23]:

(7)
where ξH = σa/σ⊥ – εa/ε⊥ is the Helfrich parameter for
MBBA (ξH = 0.1–0.5), σa and εa are the anisotropies
of these quantities, the function f1 depends only on the
static distribution of the CNLC droplet director and
the f lexoelectric coefficient, and f2 depends also on
the ratio e3/e1 of f lexoelectric coefficients.

The static configuration of the director in a droplet
can, in principle, be obtained by solving the zero-
order equation for the director field, which is a com-
plicated problem. Therefore, instead, we apply an
approximate analytic model. The first-order equation
for the director field has the following form [23]:

(8)

where v1 is the perturbation velocity; γ2 = α6 – α5 is the

coefficient of rotational viscosity;  and  include

only n0, while  depend on the perturbed director n1;
Ω1 = ∇ × v1/2 is the velocity of local rotation of the
fluid, and  = ∇ ⋅ v1/2 is the hydrodynamic stress ten-
sor. Underlined characters are used to avoid pile-up of
indices; for example,   ≡ .

In the homogeneous case, Eq. (8) takes the form

(9)

and has a solution corresponding to the rotation of the
director. The linear operator in Eq. (9) is self-adjoint.
The condition of nontrivial solvability of Eq. (8),

(10)

yields an expression for the rotation velocity ω:

(11)

where
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The integrals (12) are calculated numerically pro-
vided that the distribution of the director n0 and its
derivatives is known; the functions gi are expressed
algebraically in terms of fi by the substitution of
expression (7) into (10), the functions fi are deter-
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mined by the numerical solution of Eqs. (3) and (5),
and the scalar product is defined as 〈a ⋅ b〉 = a ⋅
b)rdrdϕdz.

For an appropriate basic configuration of the
director, the EHD model allows one to calculate
numerically the rotation velocity of the CNLC droplet
in an electric field.

The numerical calculation of the director field dis-
tribution in the CNLC droplet in a three-dimensional
model presents a nontrivial problem. The main diffi-
culty is due to the presence of defects, which require
the use of a tensor order parameter; this leads to a sig-
nificant increase in the number of equations. On the
other hand, there exist approximate analytic models
that describe the distribution of the director in nem-
atic and cholesteric droplets incorporated into various
media, for example, into a polymeric matrix. In the
present study, we apply the director field model con-
sidered in [29] for a spherical cholesteric LC droplet in
a dc electric field. In this case, the director distribution
in the central part of the droplet has the form

(13)

where ρN = rη(z), η(z) ≡ 2/(2 + ϖπ|z|) and q = 2π/P is
the wave vector of the cholesteric helix.

To simplify the problem and reduce technical
requirements, below we consider only the central part
of the droplet. This means that we have to solve
Eqs. (3) and (5) in a cylinder of height d and radius δ.

The linearized Navier–Stokes equations (3), com-
bined with the incompressibility condition (5), are
solved by the Galerkin method [30]; i.e., the velocity
components are expressed as follows:

(14)

where (r), (ϕ), and (z) are test functions.
The boundary conditions for the velocity are cho-

sen so that the velocity vanishes on the surface of the
cylinder: v1 = 0 for z = ±1/2 and r = 1. Then the cor-
responding test functions have the form

(15)

where s = r, ϕ, z and Ti are Chebyshev polynomials. In
the azimuthal direction, the velocity is expanded in a
Fourier series:
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Fig. 3. Experimental and calculated angular velocity of
rotation of CNLC droplets as a function of the reduced
wave vector q' = q/q0, where q = 2π/P is the wave vector of
the helical structure of an CNLC droplet defined by cho-
lesteric dopants and q0 = 2π/d. The solid curve corre-
sponds to calculated data.
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Moreover, due to the specificity of the cylindrical
system of coordinates, one should use the following
conditions at the origin [29]:

(17)

or (in components),

(18)

Substituting expansion (14) into Eqs. (3) and (5)
and using the test functions (15) and (16), we obtain an
inhomogeneous system of linear algebraic equations.
Then, solving Eq. (10), we find the rotation velocity ω
of the droplet (11).

The main source of numerical errors is the choice
of parameter values in Nr, Nϕ, and Nz in the Galerkin
approximation method (14), which in the present case
gives a relative error of 20%. The calculations were
performed for Nr = Nϕ = Nz = 5 with the following
constitutive parameters:

δ = 15 × 10–6 m, d = 25 × 10–6 m, UF = 0.75 V,

Kel = 5 × 10–12 N, α4 = 82.6 × 10–3 N s/m2,

e11 = –9.5 × 10–12 C/m, e33 = –13.5 × 10–12 C/m,

efl = –17.19 × 10–12 C/m, σa = 1.27 × 10–7 (Ω m)–1,

σ⊥ = 2.75 × 10–7 (Ω  m)–1, εa = –0.53, and ε⊥ = 5.4.

Thus, according to expressions (7) and (11), the
electric-field dependence of the angular velocity of
rotation of droplets contains both linear and quadratic
terms, and their factors contain f lexocoefficients.
Note that both contributions are of EHD nature, and
the numerical ratio between linear and quadratic con-
tributions is  ≈ 5; i.e., at low voltages, the quadratic
term can be neglected.

4. COMPARATIVE ANALYSIS OF 
EXPERIMENTAL RESULTS WITH 

NUMERICAL CALCULATIONS
The determination of the rotation mechanisms of

dispersed droplets in an electric field is a complicated
problem because this process may involve several
mechanisms: electromechanical and electroconvec-
tive with regard to the f lexoeffect. The first, hypo-
thetic case, is based on the representation of the rela-
tion between the rotation angle ϕ of the director and
the external electric field E in terms of the so-called
electromechanical coefficient νe:
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where q0 is the wave vector of the chiral mixture and γ1
is the viscosity. Hence, for the angular rotation veloc-
ity we obtain

This expression implies that the rotation velocity of
the director linearly depends on the applied voltage
and is independent either of the droplet size or the
value of the wave vector. This is an important point for
solving the problem of rotation of LC droplets in an
electric field.

Let us show that the rotation of CNLC droplets in
a dc electric field, which was interpreted by the
authors of [19, 20] as a manifestation of the electrome-
chanical effect, can be explained within the EHD
approach based on the dynamics of induced charges in
the director field deformed due to the f lexoelectric
polarization. To this end, we analyze the angular rota-
tion velocity as a function of applied dc electric volt-
age, the wave vector q of the helical structure of drop-
lets, and the size R of the droplets.

First, according to the theory, the rotation velocity
of droplets changes its sign depending on the value of
the wave vector q of the helix. For left-twisted chiral
LCs, the droplets rotate clockwise (as seen along the
direction of the field E, i.e., ω > 0), while, for right-
twisted LCs, the droplets rotate counterclockwise,
ω < 0. The CNLC droplets considered in this study are
left-twisted LCs; hence, ω > 0, which is confirmed by
the results obtained (Fig. 3). Moreover, the results of
the numerical calculation of the angular velocity of
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1
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Fig. 4. (Color online) (a) Experimental and (b) calculated
angular velocity ω of rotation of CNLC droplets as a func-
tion of the applied voltage U for various values of q'. 

q' = 1

q' = 0.9
q' = 1.7
q' = 3.4
q' = 4.0
q' = 4.7
q' = 5.9

q' = 2
q' = 3
q' = 4
q' = 5

(a)

(b)

2.8 3.2 3.6 4.0 4.4 4.8
U, V

U, V

0

0.2

0.4

0.6

0.8

ω, rad/s

ω, rad/s

0 1 2 3 4 5

0.01

0.02

0.03

0.04

Fig. 5. (Color online) Angular velocity of rotation of
CNLC droplets as a function of d/R; (a) experimental
curves plotted for voltage values of U = 4.5 (1), 4.0 (2),
3.3 (3), 2.8 (4), and 2.4 V (5); (b) calculated data for volt-
age values of U = 1 (1), 2 (2), 3 (3), and 4 V (4).
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rotation as a function of the wave vector q of the helix
in a droplet (Fig. 3) are in sufficiently good agreement
with the experimental dependence (Fig. 3).

Second, the experimental dependence of the angu-
lar velocity of rotation of a droplet linearly depends on
the electric field (Fig. 4a), which qualitatively agrees
with the results of numerical calculation (Fig. 4b) and
corresponds to the first term in expression (11), which
is related to the f lexoelectric effect.

Third, we also obtained experimental dependence
of the angular velocity of rotation of droplets on their
radius (Fig. 5a), which is in good agreement with the
calculated data (Fig. 5b). Here we should also note
that there is no such dependence on the droplet size
within the electromechanical coupling mechanism
[20].

5. CONCLUSIONS
Thus, the observed effect seems to be based on the

EHD instability, which develops due to the presence
of bound f lexoelectric charges induced by the strong
JOURNAL OF EXPERIMENTAL AN
deformation of the orientation field of the director in
the bulk of a droplet, especially near the defects; this
conclusion is based on three experimental results (see
Figs. 3, 4, and 5a), which are in good agreement with
numerical results (see Figs. 3, 4b, and 5b).

As regards the reduction in the electroconvection
threshold, this is associated, in our opinion, with the
fact that the equilibrium structure of a droplet—bent
cholesteric planes—guarantees the presence of charge
sink regions (of both positive and negative signs) at
arbitrarily small voltages; i.e., it is as if the elastic com-
ponent is subtracted from the expression for the
threshold value of the EHD convection field. A similar
behavior is observed in the so-called cholesteric fin-
gers—complex structures that arise near the nematic–
cholesteric transition region [23]. Cholesteric fingers
move translationally in an electric field (either dc or ac
field, depending on the symmetry of the orientation
field of cholesteric fingers) at voltages much lower
than the EHD-instability voltage.

It is also important that, under scrupulous exam-
ination, the mechanisms discussed in this paper show
D THEORETICAL PHYSICS  Vol. 126  No. 2  2018
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a certain similarity with the mechanism of EHD insta-
bility in the isotropic phase, which accompanies elec-
troconvection in anisotropic droplets formed in the
bulk of a chiral nematic sample. The last fact is con-
firmed by the convective motion of microparticles.
However, the fundamental feature of the effect is that
the rotation of the axis of the cholesteric phase in an
anisotropic droplet is insensitive to a change in the
sign of the applied electric field. This is indicative of
the fact that the moments of forces causing the rota-
tion of a droplet contain even powers of electric-field
strength, as is characteristic of the EHD effect, which
is quadratic in electric field.

Moreover, we should note that the rotation velocity
of a droplet essentially depends on the twist wave vec-
tor q, i.e., on the cholesteric concentration (see Figs. 4
and 5), the maximum being attained for q ~ q0. This
dependence also points to the EHD nature of the rota-
tion of droplets, because the moments of forces acting
on the LC from the electric field in the Carr–Helfrich
mechanism are quadratic in the gradients of the orien-
tation field, and viscous moments, with regard to the
fluid velocity gradients, contain higher degrees of such
gradients. Therefore, for stronger twists of the LC, the
rotation of droplets is suppressed by viscosity,
whereas, for weak twists, the effect of the cholesteric
component of the LC is eliminated.
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